Skip to main content

Heavy Metal Removal by Bacillus for Sustainable Agriculture

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Microbial biosorbents are widely used for the removal of various toxic metals which pose a significant threat to agriculture. Metals like cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, palladium, platinum, and zinc are the predominant metal contaminants in our soils and water which call for instantaneous action to design microbiological techniques for effective bioremediation. The associated anthropogenic activities lead to a significant release of toxic metals into the environment purposely. Various industries related to mining, surface finishing, energy and fuel producing, fertilizer, pesticide, metallurgy, iron and steel, electroplating, electrolysis, paints and ceramic discharge metal laden effluents result in severe environmental pollution and health hazards. An indefinite persistence of heavy metals in the environment is a potential health hazard as it leads to bioaccumulation of toxic metals in the crops that eventually leads to biomagnification upon entering the food chain. This chapter highlights the promises of Bacillus as a potential biosorbent for the effective removal of toxic heavy metals from the environment. Numerous members of the genus Bacillus, like B. subtilis, B. thuringiensis, B. sterothermophilus, B. megaterium, B. cereus, B. pumilus, B. licheniformis, and B. jeotgali have been reported to remove heavy metals most effectively. Diverse functional groups like carboxyl, amino, amide, phosphate, and hydroxyl groups associated to bacterial cell walls which attribute to biosorption capacity have been described herein. Numerous contributing factors like time, temperature, pH, cell density, and agitation are also discussed. Bacillus-mediated biosorption and bioaccumulation is a powerful strategy for the removal of toxic heavy metal stress in order to ensure sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Monem MO, Al-Zubeiry AHS, Al-Gheethi AAS (2010) Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S. Water Sci Technol 61:2994–3007

    Article  CAS  PubMed  Google Scholar 

  • Akshatha Jain N, Udayashankara TH, Lokesh KS, Sudarshan BL (2017) Bioremediation of lead, nickel and copper by metal resistant Bacillus licheniformis isolated from mining site : optimization of operating parameters under laboratory conditions. Int J Res Eng Technol 5:13–32

    Google Scholar 

  • Akujobi CO, Odu NN, Okorondu SI (2012) Bioaccumulation of lead by Bacillus species isolated from pig waste. J Res Biol 2:83–89

    Google Scholar 

  • Al-Daghistani H (2012) Bio-remediation of Cu, Ni and Cr from rotogravure wastewater using immobilized, dead, and live biomass of indigenous thermophilic Bacillus species. Internet J Microbiol 10:1–10

    Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7:57–62

    Article  CAS  Google Scholar 

  • Arivalagan P, Singaraj D, Haridass V, Kaliannan T (2014) Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecol Eng 71:728–735

    Article  Google Scholar 

  • Bai B, Li Q, Holdsworth CH, Asma E, Tai YC, Chatziioannou A, Leahy RM (2002) Model-based normalization for iterative 3D PET image reconstruction. Phys Med Biol 47:2773–2784

    Article  CAS  PubMed  Google Scholar 

  • Bairagi H, Ghati A, Ray L (2010) Biosorption of copper ions by Bacillus cereus M116 from aqueous solution. Indian Chem Eng 51(3):203–214

    Article  Google Scholar 

  • Baldi F (1997) Microbial transformation of mercury species and their importance in the biogeochemical cycle of mercury. Met Ions Biol Syst 34:213–257

    CAS  PubMed  Google Scholar 

  • Baran MF, Duz MZ (2019) Removal of cadmium (II) in the aqueous solutions by biosorption of Bacillus licheniformis isolated from soil in the area of Tigris River. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1669583

  • Barboza NR, Guerra-Sá R, Leão VA (2016) Mechanisms of manganese bioremediation by microbes: an overview. J Chem Technol Biotechnol 91:2733–2739

    Article  CAS  Google Scholar 

  • Basha SA, Rajaganesh K (2014) Original research article microbial bioremediation of heavy metals from textile industry dye effluents using isolated bacterial strains. Int J Curr Microbiol App Sci 3:785–794

    Google Scholar 

  • Belapurkar P, Goyal P, Kar A (2016) In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity. J Pharm Bioallied Sci 8:272–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belogolova G, Gordeeva O, Sokolova M, Pastukhov M, Vaishlya O, Poletaeva V, Belozerova O (2020) Transformation of lead compounds in the soil-plant system under the influence of Bacillus and Azotobacter rhizobacteria. Chem Ecol 36:220–235

    Article  CAS  Google Scholar 

  • Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60:2311–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ, Forsberg CW, Doyle RJ (1982) Major sites of metal binding in Bacillus licheniformis walls. J Bacteriol 150:1438–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Effects of heavy metals on nitrogen uptake by Paxillus involutus and mycorrhizal birch seedlings. FEMS Microbiol Ecol 33:61–67

    Article  CAS  PubMed  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn (II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  CAS  PubMed  Google Scholar 

  • Brewer PA, Taylor MP (1997) The spatial distribution of heavy metal contaminated sediment across terraced floodplains. Catena 30(2–3):229–249

    Article  CAS  Google Scholar 

  • Chien M, Nakahata R, Ono T, Miyauchi K, Endo G (2012) Mercury removal and recovery by immobilized Bacillus megaterium MB1. Front Chem Sci Eng 6:192–197

    Article  CAS  Google Scholar 

  • Dadrasnia A, Wei KSC, Shahsavari N, Azirun MS, Ismail S (2015) Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. Int J Environ Res Public Health 12:15321–15338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Sinha S, Mukherjee SK (2014) Nickel bioremediation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Biorem J 18:169–177

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21:2642–2653

    Article  CAS  Google Scholar 

  • De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17

    Article  PubMed  Google Scholar 

  • Deborah S, Sebastin Raj J (2016) Bioremediation of heavy metals from distilleries effluent using microbes. J Appl Adv Res 1(2):23–28

    Article  Google Scholar 

  • Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM (2008) Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1. Appl. Environ Microbiol 74:2646–2658

    Article  CAS  Google Scholar 

  • Dieluweit S, Pum D, Sleytr UB (1998) Formation of a gold superlattice on an S-layer with square lattice symmetry. Supramol Science 5(1–2):15–19

    Article  CAS  Google Scholar 

  • Dismukes GC (1986) The metal centers of the photosynthetic oxygen-evolving complex. Photochem Photobiol 43:99–115

    Article  CAS  Google Scholar 

  • Do H, Wang Y, Long Z, Ketehouli T, Li X, Zhao Z, Li M (2020) A psychrotolerant Ni-resistant Bacillus cereus D2 induces carbonate precipitation of nickel at low temperature. Ecotoxicol Environ Saf 198:110672

    Article  CAS  PubMed  Google Scholar 

  • El-Helow ER, Sabry SA, Amer RM (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13:273–280

    Article  CAS  PubMed  Google Scholar 

  • Francist CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    Article  Google Scholar 

  • Ganguly A, Guha AK, Ray L (2011) Adsorption behaviour of cadmium by Bacillus cereus M116: some physical and biochemical studies. Chem Spec Bioavailab 23(3):175–182

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Lee K-J, Cho M, Kim JS, Kamala-Kannan S, Oh B-T (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Nature 90:2267–2272

    CAS  Google Scholar 

  • Govarthanan M, Park S-H, Park Y-J, Myung H, Krishnamurthy RR, Lee SH, Lovanh N, Kamala-Kannan S, Oh B-T (2015) Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake extract in mine soil. RSC Adv 5:54564–54570

    Article  CAS  Google Scholar 

  • Green-Ruiz C, Rodriguez-Tirado V, Gomez-Gil B (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    Article  CAS  PubMed  Google Scholar 

  • Hasan HA, Abdullah SRS, Kofli NT, Kamaruddin SK (2010) Biosorption of manganese in drinking water by isolated bacteria. J Appl Sci 10(21):2653–2657

    Article  CAS  Google Scholar 

  • Hasan HA, Abdullah SRS, Kofli NT, Kamarudin SK (2012) Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J Environ Manag 111:34–43

    Google Scholar 

  • Hossain SM, Anantharaman N (2006) Studies on bacterial growth and lead(IV) biosorption using Bacillus subtilis. Indian J Chem Technol 13:591–596

    CAS  Google Scholar 

  • Huang JP, Huang CP, Morehart AL (1994) Removal of heavy metals by fungal (Aspergillus oryzae) adsorption In Vernet JP (ed) Trace metals in the environmentI, 2nd edn. Science Publishers/Elsevier, Amsterdam

    Google Scholar 

  • Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463

    Article  CAS  PubMed  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol:Article ID 2568038

    Google Scholar 

  • Imam SSA, Rajpoot IK, Gajjar B, Sachdeva A (2016) Comparative study of heavy metal bioremediation in soil by Bacillus subtilis and Saccharomyces cerevisiae. Indian J Sci Technol 9(47). https://doi.org/10.17485/ijst/2016/v9i47/106911

  • Jacobsen RT (2005) Catalyst recovery – part 3: removing contaminants from spent catalysts. Chem Eng Prog 101:41–43

    CAS  Google Scholar 

  • Kannan SK, Mahadevan S, Krishnamoorthy R (2006) Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India. Arch Microbiol 185:202–211

    Article  CAS  PubMed  Google Scholar 

  • Kelly CDR, Cristina FS, Whasley FD, Rosane FS (2014) Bioaccumulation of Fe3+ by bacteria isolated from soil and fermented foods for use in bioremediation processes. African J Microbiol Res 8:2513–2521

    Article  Google Scholar 

  • Kumar KA, Achyuthan H (2007) Heavy metal accumulation in certain marine animals along the East Coast of Chennai, Tamil Nadu, India. J Environ Biol 28:637–643

    CAS  Google Scholar 

  • Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P, Datta S, Kalia A, Singh J (2015) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31:357–361

    Article  Google Scholar 

  • Lee Y, Tebo BM (1994) Cobalt (II) oxidation by the marine manganese(II)-oxidizing Bacillus sp. strain SG-1. Appl Environ Microbiol 60(8):2949–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei D-Y, Liu Z, Y-h P, Liao S-b XH (2014) Biosorption of copper, lead and nickel on immobilized Bacillus coagulans using experimental design methodologies. Ann Microbiol 64:1371–1384

    Article  CAS  Google Scholar 

  • Liu Y-G, Liao T, He Z-B, Li T-T, Wang H, Hu X-J, Guo Y-M, He Y (2013) Biosorption of copper(II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. Trans Nonferrous Met Soc China 23:1804–1814

    Article  CAS  Google Scholar 

  • Lovely DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J 5(3–4):375–399

    Article  Google Scholar 

  • Lozano GA (1998) Parasitic stress and self-medication in wild animals. Adv Study Behav 27:291–317

    Article  Google Scholar 

  • Matthey J (2002) Platinum 2002. Platin Met Rev 46(3):116

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Microorganisms in environmental management: microbes and environment. In: Microorganisms in environmental management: microbes and environment. Springer Nature, Cham, pp 665–682

    Chapter  Google Scholar 

  • Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    Article  CAS  PubMed  Google Scholar 

  • Ottemann KM, Miller JF (1997) Roles for motility in bacterial-host interactions. Mol Microbiol 24:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  PubMed  Google Scholar 

  • Öztürk A (2007) Removal of nickel from aqueous solution by the bacterium bacillus thuringiensis. J Hazard Mater 147:518–523

    Article  PubMed  Google Scholar 

  • Pakarinen J, Paatero E (2011) Recovery of manganese from iron containing sulfate solutions by precipitation. Miner Eng 24:1421–1429

    Article  CAS  Google Scholar 

  • Paraneeiswaran A, Shukla SK, Prashanth K, Rao TS (2015) Microbial reduction of [Co(III)–EDTA]− by Bacillus licheniformis SPB-2 strain isolated from a solar salt pan. J Hazard Mater 283:582–590

    Article  CAS  PubMed  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    Article  CAS  PubMed  Google Scholar 

  • Patterson JW (1985) Industrial waste water treatment technology, 2nd edn. Butterworths, USA

    Google Scholar 

  • Pollmann K, Raff J, Schnorpfeil M, Radeva G, Selenska-Pobell S (2005) Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements. Microbiology 151:2961–2973

    Article  PubMed  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68

    Article  CAS  PubMed  Google Scholar 

  • Pugazhendhi A, Ranganathan K, Kaliannan T (2018) Biosorptive removal of copper(II) by Bacillus cereus isolated from contaminated soil of electroplating industry in India. Water Air Soil Pollut 229:76

    Article  Google Scholar 

  • Que Q, Helmann JD (2000) Manganese homestasisin Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468

    Article  CAS  PubMed  Google Scholar 

  • Ramírez V, Baez A, López P, Bustillos R, Villalobos MÁ, Carreño R, Contreras JL, Muñoz-Rojas J, Fuentes LE, Martínez J, Munive JA (2019) Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Front Microbiol 10:1833

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2004) Platinum group elements in the environment and their health risk. Sci Total Environ 318:1–43

    Article  CAS  PubMed  Google Scholar 

  • Sabae SZ, Hazaa M, Hallim SA, Awny NM, Daboor SM (2006) Bioremediation of Zn+2, Cu+2 and Fe+2 using Bacillus subtilis D215 and Pseudomonas putida biovar A D 225. Biosci Res 3(1):189–204

    Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2001) Extracellular biopolymeric flocculants: recent trends and biotechnological importance. Biotechnol Adv 19:371–385

    Article  CAS  PubMed  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  CAS  PubMed  Google Scholar 

  • Samarth DP, Chandekar CJ, Bhadekar RK (2012) Biosorption of heavy metals from aqueous solution using Bacillus Licheniformis. Int J Pure Appl Sci Technol 10(2):12–19

    CAS  Google Scholar 

  • Saranraj P, Stella D (2012) Bioremediation of sugar mill effluent by immobilized bacterial consortium. Int J Pure Appl Microbiol 2:43–48

    Google Scholar 

  • Sari A, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144:1–9

    Article  CAS  Google Scholar 

  • Sathyavathi S, Manjula A, Rajendhran J, Gunasekaran P (2013) Biosynthesis and characterization of mercury sulphide nanoparticles produced by Bacillus cereus MRS-1. Indian J Exp Biol 51:973–978

    CAS  PubMed  Google Scholar 

  • Shazia A, Yasmin A, Hasnain S (2002) Characterization of some indigenous mercury resistant bacteria from pollutant environment. Pak J Biol Sci 5:792–797

    Article  Google Scholar 

  • Sinha A, Singh VN, Mehta BR, Khare SK (2011) Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. J Hazard Mater 192:620–627

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Pant KK, Khare SK (2012) Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int Biodeterior Biodegrad 71:1–8

    Article  CAS  Google Scholar 

  • Sivakami G, Priyadarshini R, Baby V, Rajakumar S, Ayyasamy PM (2012) Bioremediation of ferric iron in synthetic metal oxide using Bacillus sp. (SO-10) 1:34–41

    Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Van Pelt S, Tourova TP (2008) Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 288:235–240

    Article  CAS  PubMed  Google Scholar 

  • Stefanescu IA (2015) Bioaccumulation of heavy metals by Bacillus megaterium from phosphogypsum waste. Sci Study Res Chem Chem Eng Biotechnol Food Ind 16:93–97

    CAS  Google Scholar 

  • Sukumar C, Janaki V, Vijayaraghavan K, Kamala-Kannan S, Shanthi K (2017) Removal of Cr(VI) using co-immobilized activated carbon and Bacillus subtilis: fixed-bed column study. Clean Techn Environ Policy 19:251–258

    Article  CAS  Google Scholar 

  • Taran M, Sisakhtnezhad S, Azin T (2015) Biological removal of nickel (II) by Bacillus sp. KL1 in different conditions: optimization by Taguchi statistical approach. Polish J Chem Technol 17:29–32

    Article  CAS  Google Scholar 

  • Upadhyay KH, Vaishnav AM, Tipre DR, Patel BC, Dave SR (2017) Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate Bacillus licheniformis. 3. Biotech 7:1–10

    Google Scholar 

  • Varghese R, Krishna MP, Arun Babu V, Mohamed Hatha AA (2012) Biological removal of lead by Bacillus sp. obtained from metal contaminated industrial area. J Microbiol Biotechnol Food Sci 2(2):756–770

    CAS  Google Scholar 

  • Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716

    Article  PubMed  Google Scholar 

  • Vijayakumar G, Tamilarasan R, Kumar MD (2011) Removal of Cd 2+ ions from aqueous solution using live and dead Bacillus subtilis. Chem Eng Res Bull 15:18–24

    CAS  Google Scholar 

  • Vishan I, Sivaprakasam S, Kalamdhad A (2017) Biosorption of lead using Bacillus badius AK strain isolated from compost of green waste (water hyacinth). Environ Technol (UK) 38:1812–1822

    Article  CAS  Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14:291–302

    Article  CAS  PubMed  Google Scholar 

  • Wahl R, Mertig M, Raff J, Selenska-Pobell S, Pompe W (2001) Electron-beam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S layer of Bacillus sphaericus NCTC 9602. Adv Mater 13:736–740

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  Google Scholar 

  • Wang Y, Moore M, Levinson HS, Silver S, Walsh C, Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J Bacteriol 171:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz EI (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–415

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz EI, Ensari NY (2005) Cadmium biosorption by Bacillus circulans strain EB1. World J Microbiol Biotechnol 21:777–779

    Article  CAS  Google Scholar 

  • Yun-guo L, Bao-ying F, Ting F, Hai-zhou Z, Xin L (2008) Tolerance and removal of chromium(VI) by Bacillus sp. strain YB-1 isolated from electroplating sludge. Trans Nonferrous Met Soc China 18:480–487

    Article  Google Scholar 

  • Zhenggang X, Yi D, Huimin H, Liang W, Yunlin Z, Guiyan Y (2019) Biosorption characteristics of Mn (II) by Bacillus cereus strain HM-5 isolated from soil contaminated by manganese ore. Polish J Environ Stud 28:463–472

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Sougata Ghosh acknowledges the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India and Jawaharlal Nehru Centre for an Advanced Scientific Research, India for funding under the Post-doctoral Overseas Fellowship in Nano Science and Technology (Ref. JNC/AO/A.0610.1(4) 2019-2260 dated August19, 2019).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Bhattacharya, J., Nitnavare, R., Webster, T.J. (2022). Heavy Metal Removal by Bacillus for Sustainable Agriculture. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_1

Download citation

Publish with us

Policies and ethics