Skip to main content

Machine Learning-Based Radiomics in Neuro-Oncology

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

In the last decades, modern medicine has evolved into a data-centered discipline, generating massive amounts of granular high-dimensional data exceeding human comprehension. With improved computational methods, machine learning and artificial intelligence (AI) as tools for data processing and analysis are becoming more and more important. At the forefront of neuro-oncology and AI-research, the field of radiomics has emerged. Non-invasive assessments of quantitative radiological biomarkers mined from complex imaging characteristics across various applications are used to predict survival, discriminate between primary and secondary tumors, as well as between progression and pseudo-progression. In particular, the application of molecular phenotyping, envisioned in the field of radiogenomics, has gained popularity for both primary and secondary brain tumors. Although promising results have been obtained thus far, the lack of workflow standardization and availability of multicenter data remains challenging. The objective of this review is to provide an overview of novel applications of machine learning- and deep learning-based radiomics in primary and secondary brain tumors and their implications for future research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    Article  PubMed  CAS  Google Scholar 

  2. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol. 1. Cambridge: MIT Press; 2016.

    Google Scholar 

  3. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  4. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2(12):1636–42. https://doi.org/10.1001/jamaoncol.2016.2631.

    Article  PubMed  Google Scholar 

  5. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJWL, Dekker A, Fenstermacher D, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48. https://doi.org/10.1016/j.mri.2012.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–57. https://doi.org/10.3322/caac.21552.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lohmann P, Galldiks N, Kocher M, Heinzel A, Filss CP, Stegmayr C, Mottaghy FM, Fink GR, Jon Shah N, Langen KJ. Radiomics in neuro-oncology: basics, workflow, and applications. Methods. 2021;188:112–21. https://doi.org/10.1016/j.ymeth.2020.06.003.

    Article  PubMed  CAS  Google Scholar 

  8. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A. MaZda—a software package for image texture analysis. Comput Methods Programs Biomed. 2009;94(1):66–76. https://doi.org/10.1016/j.cmpb.2008.08.005.

    Article  PubMed  Google Scholar 

  9. Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, Pellot-Barakat C, Soussan M, Frouin F, Buvat I. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018;78(16):4786–9. https://doi.org/10.1158/0008-5472.Can-18-0125.

    Article  PubMed  CAS  Google Scholar 

  10. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7. https://doi.org/10.1158/0008-5472.Can-17-0339.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015;42(3):1341–53. https://doi.org/10.1118/1.4908210.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016;61(13):R150–66. https://doi.org/10.1088/0031-9155/61/13/r150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016.

    Google Scholar 

  15. Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, Davis FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990-1994. Neuro Oncol. 1999;1(1):14–25. https://doi.org/10.1093/neuonc/1.1.14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21(Suppl 5):v1–v100. https://doi.org/10.1093/neuonc/noz150.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patchell RA. The management of brain metastases. Cancer Treat Rev. 2003;29(6):533–40. https://doi.org/10.1016/s0305-7372(03)00105-1.

    Article  PubMed  Google Scholar 

  18. Posner JB. Management of brain metastases. Rev Neurol (Paris). 1992;148(6–7):477–87.

    PubMed  CAS  Google Scholar 

  19. Ellis TL, Neal MT, Chan MD. The role of surgery, radiosurgery and whole brain radiation therapy in the management of patients with metastatic brain tumors. Int J Surg Oncol. 2012;2012:952345. https://doi.org/10.1155/2012/952345.

    Article  PubMed  Google Scholar 

  20. Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neurooncol. 2005;75(1):5–14. https://doi.org/10.1007/s11060-004-8093-6.

    Article  PubMed  Google Scholar 

  21. Brem S, Panattil JG. An era of rapid advancement: diagnosis and treatment of metastatic brain cancer. Neurosurgery. 2005;57(5 Suppl):S5–9; discusssion S1-4. https://doi.org/10.1093/neurosurgery/57.suppl_5.s4-5.

    Article  PubMed  Google Scholar 

  22. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S. Emerging applications of artificial intelligence in neuro-oncology. Radiology. 2019;290(3):607–18. https://doi.org/10.1148/radiol.2018181928.

    Article  PubMed  Google Scholar 

  23. Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, et al. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. Am J Neuroradiol. 2018;39(2):208–16. https://doi.org/10.3174/ajnr.A5391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chaddad A, Kucharczyk MJ, Daniel P, Sabri S, Jean-Claude BJ, Niazi T, Abdulkarim B. Radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol. 2019;9:374. https://doi.org/10.3389/fonc.2019.00374.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Narang S, Lehrer M, Yang D, Lee J, Rao A. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res. 2016;5(4):383–97.

    Article  CAS  Google Scholar 

  26. Odland A, Server A, Saxhaug C, Breivik B, Groote R, Vardal J, Larsson C, Bjørnerud A. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth. Acta Radiol. 2015;56(11):1396–403. https://doi.org/10.1177/0284185114554822.

    Article  PubMed  Google Scholar 

  27. Joe BN, Fukui MB, Meltzer CC, Huang QS, Day RS, Greer PJ, Bozik ME. Brain tumor volume measurement: comparison of manual and semiautomated methods. Radiology. 1999;212(3):811–6. https://doi.org/10.1148/radiology.212.3.r99se22811.

    Article  PubMed  CAS  Google Scholar 

  28. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.

    Article  PubMed  Google Scholar 

  29. Bakas S, Zeng K, Sotiras A, Rathore S, Akbari H, Gaonkar B, Rozycki M, Pati S, Davatzikos C. GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop). 2016;9556:144–55. https://doi.org/10.1007/978-3-319-30858-6_1.

    Article  Google Scholar 

  30. Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G, Melhem ER, Davatzikos C. GLISTR: glioma image segmentation and registration. IEEE Trans Med Imaging. 2012;31(10):1941–54. https://doi.org/10.1109/TMI.2012.2210558.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pérez U, Arana E, Moratal D. Brain metastases detection algorithms in magnetic resonance imaging. IEEE Latin Am Trans. 2016;14(3):1109–14. https://doi.org/10.1109/TLA.2016.7459586.

    Article  Google Scholar 

  32. Liu Y, Stojadinovic S, Hrycushko B, Wardak Z, Lau S, Lu W, Yan Y, Jiang SB, Zhen X, Timmerman R, et al. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS One. 2017;12(10):e0185844. https://doi.org/10.1371/journal.pone.0185844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grøvik E, Yi D, Iv M, Tong E, Rubin D, Zaharchuk G. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J Magn Reson Imaging. 2020;51(1):175–82. https://doi.org/10.1002/jmri.26766.

    Article  PubMed  Google Scholar 

  34. Zhou Z, Sanders JW, Johnson JM, Gule-Monroe MK, Chen MM, Briere TM, Wang Y, Son JB, Pagel MD, Li J, et al. Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology. 2020;295(2):407–15. https://doi.org/10.1148/radiol.2020191479.

    Article  PubMed  Google Scholar 

  35. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digital imaging. 2013;26(6):1045–57. https://doi.org/10.1007/s10278-013-9622-7.

    Article  Google Scholar 

  36. Isensee F, Jaeger PF, Full PM, Vollmuth P, Maier-Hein KH. nnU-Net for brain tumor segmentation. arXiv preprint arXiv:2011.00848. 2020.

    Google Scholar 

  37. Ghaffari M, Sowmya A, Oliver R. Automated brain tumor segmentation using multimodal brain scans: a survey based on models submitted to the BraTS 2012-2018 challenges. IEEE Rev Biomed Eng. 2020;13:156–68. https://doi.org/10.1109/rbme.2019.2946868.

    Article  PubMed  Google Scholar 

  38. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. 2009. p. 248–55.

    Google Scholar 

  39. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: CACM. 2017.

    Google Scholar 

  40. Charron O, Lallement A, Jarnet D, Noblet V, Clavier JB, Meyer P. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med. 2018;95:43–54. https://doi.org/10.1016/j.compbiomed.2018.02.004.

    Article  PubMed  Google Scholar 

  41. López-Zorrilla A, de Velasco-Vázquez M, Serradilla-Casado O, Roa-Barco L, Graña M, Chyzhyk D, Price CC. Brain white matter lesion segmentation with 2D/3D CNN. Cham: Springer International Publishing; 2017.

    Book  Google Scholar 

  42. Szegedy C, Wei L, Yangqing J, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). 2015.

    Google Scholar 

  43. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with Deep Neural Networks. Med Image Anal. 2017;35:18–31. https://doi.org/10.1016/j.media.2016.05.004.

    Article  PubMed  Google Scholar 

  44. Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51. https://doi.org/10.1109/tmi.2016.2538465.

    Article  PubMed  Google Scholar 

  45. Urban, G., Bendszus M, Hamprecht F, Kleesiek J. Multi-modal brain tumor segmentation using deep convolutional neuralnetworks. In: MICCAI multimodal brain tumor segmentation challenge (BraTS) 2014. 2014. p. 31–5.

    Google Scholar 

  46. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Cham: Springer International Publishing; 2015.

    Google Scholar 

  47. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. Cham: Springer International Publishing; 2018.

    Google Scholar 

  48. Jiang Z, Ding C, Liu M, Tao D. Two-stage cascaded U-net: 1st place solution to BraTS challenge 2019 segmentation task. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer International Publishing; 2020.

    Google Scholar 

  49. Gao H, Zhuang L, van der Maaten L, Weinberger K. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993. 2018.

    Google Scholar 

  50. McKinley R, Meier R, Wiest R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: BrainLes@MICCAI. 2018.

    Google Scholar 

  51. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. In: BrainLes@MICCAI. 2018.

    Google Scholar 

  52. Lin T-Y, Goyal P, Girshick RB, He K, Dollár P. Focal loss for dense object detection. In: 2017 IEEE international conference on computer vision (ICCV). 2017. p. 2999–3007.

    Google Scholar 

  53. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in biomedical image segmentation. In: Deep learning and data labeling for medical applications. Cham: Springer; 2016. p. 179–87.

    Chapter  Google Scholar 

  54. Beig N, Patel J, Prasanna P, Hill V, Gupta A, Correa R, Bera K, Singh S, Partovi S, Varadan V, et al. Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma. Sci Rep. 2018;8(1):7. https://doi.org/10.1038/s41598-017-18310-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015;15(1):506. https://doi.org/10.1007/s11910-014-0506-0.

    Article  PubMed  CAS  Google Scholar 

  56. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  57. Lu CF, Hsu FT, Hsieh KL, Kao YJ, Cheng SJ, Hsu JB, Tsai PH, Chen RJ, Huang CC, Yen Y, et al. Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res. 2018;24(18):4429–36. https://doi.org/10.1158/1078-0432.Ccr-17-3445.

    Article  PubMed  Google Scholar 

  58. Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, Su MY, Cha S, Filippi CG, Bota D, et al. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am J Neuroradiol. 2018;39(7):1201–7. https://doi.org/10.3174/ajnr.A5667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Liang S, Zhang R, Liang D, Song T, Ai T, Xia C, Xia L, Wang Y. Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes (Basel). 2018;9(8):382. https://doi.org/10.3390/genes9080382.

    Article  PubMed  CAS  Google Scholar 

  60. Eichinger P, Alberts E, Delbridge C, Trebeschi S, Valentinitsch A, Bette S, Huber T, Gempt J, Meyer B, Schlegel J, et al. Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep. 2017;7(1):13396. https://doi.org/10.1038/s41598-017-13679-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhao J, Wang YL, Li XB, Hu MS, Li ZH, Song YK, Wang JY, Tian YS, Liu DW, Yan X, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol. 2019;141(1):195–203. https://doi.org/10.1007/s11060-018-03025-7.

    Article  PubMed  CAS  Google Scholar 

  62. Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T, Dunkl V, Kocher M, Viswanathan S, Filss CP, et al. Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep. 2018;8(1):13328. https://doi.org/10.1038/s41598-018-31806-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, Neumaier B, Shah NJ, Langen K-J, Galldiks N. Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45(3):443–51. https://doi.org/10.1007/s00259-017-3846-6.

    Article  PubMed  CAS  Google Scholar 

  64. Vettermann F, Suchorska B, Unterrainer M, Nelwan D, Forbrig R, Ruf V, Wenter V, Kreth F-W, Herms J, Bartenstein P, et al. Non-invasive prediction of IDH-wildtype genotype in gliomas using dynamic 18F-FET PET. Eur J Nucl Med Mol Imaging. 2019;46(12):2581–9. https://doi.org/10.1007/s00259-019-04477-3.

    Article  PubMed  CAS  Google Scholar 

  65. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. https://doi.org/10.1056/NEJMoa040938.

    Article  PubMed  CAS  Google Scholar 

  66. Johnson ML, Sima CS, Chaft J, Paik PK, Pao W, Kris MG, Ladanyi M, Riely GJ. Association of KRAS and EGFR mutations with survival in patients with advanced lung adenocarcinomas. Cancer. 2013;119(2):356–62. https://doi.org/10.1002/cncr.27730.

    Article  PubMed  CAS  Google Scholar 

  67. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, Kerr K, Popat S, Reck M, Senan S, et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v1–v27. https://doi.org/10.1093/annonc/mdw326.

    Article  PubMed  CAS  Google Scholar 

  68. Ahn SJ, Kwon H, Yang JJ, Park M, Cha YJ, Suh SH, Lee JM. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer. Sci Rep. 2020;10(1):8905. https://doi.org/10.1038/s41598-020-65470-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Park YW, An C, Lee J, Han K, Choi D, Ahn SS, Kim H, Ahn SJ, Chang JH, Kim SH, et al. Diffusion tensor and postcontrast T1-weighted imaging radiomics to differentiate the epidermal growth factor receptor mutation status of brain metastases from non-small cell lung cancer. Neuroradiology. 2021;63(3):343–52. https://doi.org/10.1007/s00234-020-02529-2.

    Article  PubMed  Google Scholar 

  70. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. https://doi.org/10.1038/nrclinonc.2017.43.

    Article  PubMed  CAS  Google Scholar 

  71. Shofty B, Artzi M, Shtrozberg S, Fanizzi C, DiMeco F, Haim O, Peleg Hason S, Ram Z, Bashat DB, Grossman R. Virtual biopsy using MRI radiomics for prediction of BRAF status in melanoma brain metastasis. Sci Rep. 2020;10(1):6623. https://doi.org/10.1038/s41598-020-63821-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Curran WJ Jr, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell SO, Krisch RE, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993;85(9):704–10. https://doi.org/10.1093/jnci/85.9.704.

    Article  PubMed  Google Scholar 

  73. Stelzer KJ. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013;4(Suppl 4):S192–202. https://doi.org/10.4103/2152-7806.111296.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zinn PO, Sathyan P, Mahajan B, Bruyere J, Hegi M, Majumder S, Colen RR. A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature. PLoS One. 2012;7(8):e41522. https://doi.org/10.1371/journal.pone.0041522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpace L, Mikkelsen T, Jain R, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;267(2):560–9. https://doi.org/10.1148/radiol.13120118.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li Q, Bai H, Chen Y, Sun Q, Liu L, Zhou S, Wang G, Liang C, Li Z-C. A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci Rep. 2017;7:14331. https://doi.org/10.1038/s41598-017-14753-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lao J, Chen Y, Li ZC, Li Q, Zhang J, Liu J, Zhai G. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017;7(1):10353. https://doi.org/10.1038/s41598-017-10649-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kickingereder P, Burth S, Wick A, Götz M, Eidel O, Schlemmer HP, Maier-Hein KH, Wick W, Bendszus M, Radbruch A, et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology. 2016;280(3):880–9. https://doi.org/10.1148/radiol.2016160845.

    Article  PubMed  Google Scholar 

  79. Rathore S, Akbari H, Rozycki M, Abdullah KG, Nasrallah MP, Binder ZA, Davuluri RV, Lustig RA, Dahmane N, Bilello M, et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep. 2018;8(1):5087. https://doi.org/10.1038/s41598-018-22739-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18(3):417–25. https://doi.org/10.1093/neuonc/nov127.

    Article  PubMed  Google Scholar 

  81. Della Seta M, Collettini F, Chapiro J, Angelidis A, Engeling F, Hamm B, Kaul D. A 3D quantitative imaging biomarker in pre-treatment MRI predicts overall survival after stereotactic radiation therapy of patients with a singular brain metastasis. Acta Radiol. 2019;60(11):1496–503. https://doi.org/10.1177/0284185119831692.

    Article  PubMed  Google Scholar 

  82. Tini P, Nardone V, Pastina P, Battaglia G, Vinciguerra C, Carfagno T, Rubino G, Carbone SF, Sebaste L, Cerase A, et al. Perilesional edema in brain metastasis from non-small cell lung cancer (NSCLC) as predictor of response to radiosurgery (SRS). Neurol Sci. 2017;38(6):975–82. https://doi.org/10.1007/s10072-017-2876-y.

    Article  PubMed  Google Scholar 

  83. Kocher M, Voges J, Treuer H, Sturm V, Müller R-P. Reduced response rate of necrotic brain metastases to radiosurgery. In: Kondziolka D, editor. Radiosurgery 1999. Basel: Karger; 2000. p. 240–6.

    Google Scholar 

  84. Cha YJ, Jang WI, Kim MS, Yoo HJ, Paik EK, Jeong HK, Youn SM. Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res. 2018;38(9):5437–45. https://doi.org/10.21873/anticanres.12875.

    Article  PubMed  Google Scholar 

  85. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  PubMed  CAS  Google Scholar 

  86. Mouraviev A, Detsky J, Sahgal A, Ruschin M, Lee YK, Karam I, Heyn C, Stanisz GJ, Martel AL. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery. Neuro Oncol. 2020;22(6):797–805. https://doi.org/10.1093/neuonc/noaa007.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, Bendszus M, Brown PD, Camidge DR, Chang SM, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8. https://doi.org/10.1016/s1470-2045(15)70057-4.

    Article  PubMed  Google Scholar 

  88. Karami E, Soliman H, Ruschin M, Sahgal A, Myrehaug S, Tseng CL, Czarnota GJ, Jabehdar-Maralani P, Chugh B, Lau A, et al. Quantitative MRI biomarkers of stereotactic radiotherapy outcome in brain metastasis. Sci Rep. 2019;9(1):19830. https://doi.org/10.1038/s41598-019-56185-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, Shiue K, Suh JH. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys. 2013;87(3):449–57. https://doi.org/10.1016/j.ijrobp.2013.05.015.

    Article  PubMed  Google Scholar 

  90. Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, Jonathan Yang T, Rosenblum MK, Ballangrud Å, Young RJ, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125(1):149–56. https://doi.org/10.1007/s11060-015-1881-3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Furuse M, Nonoguchi N, Yamada K, Shiga T, Combes J-D, Ikeda N, Kawabata S, Kuroiwa T, Miyatake S-I. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. Radiation Oncol (London, England). 2019;14(1):28. https://doi.org/10.1186/s13014-019-1228-x.

    Article  Google Scholar 

  92. Ehrenfeld CE, Maschke M, Dörfler A, Reinhardt V, Koeppen S. Is stereotactic biopsy a reliable method to differentiate tumor from radiation necrosis? Clin Neuropathol. 2002;21(1):9–12.

    PubMed  CAS  Google Scholar 

  93. Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP, Gupta A, Singh G, Hatanpaa KJ, Sloan A, et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. Am J Neuroradiol. 2016;37(12):2231–6. https://doi.org/10.3174/ajnr.A4931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Peng L, Parekh V, Huang P, Lin DD, Sheikh K, Baker B, Kirschbaum T, Silvestri F, Son J, Robinson A, et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. Int J Radiat Oncol Biol Phys. 2018;102(4):1236–43. https://doi.org/10.1016/j.ijrobp.2018.05.041.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP, Kamp MA, Stegmayr C, Neumaier B, Shah NJ, et al. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase (18)F-FET PET accuracy without dynamic scans. Eur Radiol. 2017;27(7):2916–27. https://doi.org/10.1007/s00330-016-4638-2.

    Article  PubMed  Google Scholar 

  96. Hettal L, Stefani A, Salleron J, Courrech F, Behm-Ansmant I, Constans JM, Gauchotte G, Vogin G. Radiomics method for the differential diagnosis of radionecrosis versus progression after fractionated stereotactic body radiotherapy for brain oligometastasis. Radiat Res. 2020;193(5):471–80. https://doi.org/10.1667/rr15517.1.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang Z, Yang J, Ho A, Jiang W, Logan J, Wang X, Brown PD, McGovern SL, Guha-Thakurta N, Ferguson SD, et al. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur Radiol. 2018;28(6):2255–63. https://doi.org/10.1007/s00330-017-5154-8.

    Article  PubMed  Google Scholar 

  98. Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, Ruge MI, Neumaier B, Shah NJ, Fink GR, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin. 2018;20:537–42. https://doi.org/10.1016/j.nicl.2018.08.024.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dong F, Li Q, Jiang B, Zhu X, Zeng Q, Huang P, Chen S, Zhang M. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers. Eur Radiol. 2020;30(5):3015–22. https://doi.org/10.1007/s00330-019-06460-w.

    Article  PubMed  Google Scholar 

  100. Ortiz-Ramón R, Ruiz-España S, Mollá-Olmos E, Moratal D. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach. Phys Med. 2020;76:44–54. https://doi.org/10.1016/j.ejmp.2020.06.016.

    Article  PubMed  Google Scholar 

  101. Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, Li S, Tang K, Zhang C, Fan X, et al. Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 2019;451:128–35. https://doi.org/10.1016/j.canlet.2019.02.054.

    Article  PubMed  CAS  Google Scholar 

  102. Bae S, An C, Ahn SS, Kim H, Han K, Kim SW, Park JE, Kim HS, Lee SK. Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep. 2020;10(1):12110. https://doi.org/10.1038/s41598-020-68980-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chen C, Ou X, Wang J, Guo W, Ma X. Radiomics-based machine learning in differentiation between glioblastoma and metastatic brain tumors. Front Oncol. 2019;9:806. https://doi.org/10.3389/fonc.2019.00806.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Artzi M, Bressler I, Ben Bashat D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging. 2019;50(2):519–28. https://doi.org/10.1002/jmri.26643.

    Article  PubMed  Google Scholar 

  105. Swinburne NC, Schefflein J, Sakai Y, Oermann EK, Titano JJ, Chen I, Tadayon S, Aggarwal A, Doshi A, Nael K. Machine learning for semi-automated classification of glioblastoma, brain metastasis and central nervous system lymphoma using magnetic resonance advanced imaging. Ann Transl Med. 2019;7(11):232. https://doi.org/10.21037/atm.2018.08.05.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen C, Zheng A, Ou X, Wang J, Ma X. Comparison of radiomics-based machine-learning classifiers in diagnosis of glioblastoma from primary central nervous system lymphoma. Front Oncol. 2020;10:1151. https://doi.org/10.3389/fonc.2020.01151.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bhatia A, Birger M, Veeraraghavan H, Um H, Tixier F, McKenney AS, Cugliari M, Caviasco A, Bialczak A, Malani R, et al. MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors. Neuro Oncol. 2019;21(12):1578–86. https://doi.org/10.1093/neuonc/noz141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, Fiehler J, Gauer T, Werner R, Gellissen S. Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology. 2019;290(2):479–87. https://doi.org/10.1148/radiol.2018180946.

    Article  PubMed  Google Scholar 

  109. Zhang J, Jin J, Ai Y, Zhu K, Xiao C, Xie C, Jin X. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images. Eur Radiol. 2021;31(2):1022–8. https://doi.org/10.1007/s00330-020-07183-z.

    Article  PubMed  Google Scholar 

  110. Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y, Chen Y, Liang C, Zheng H. Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol. 2018;28(9):3640–50. https://doi.org/10.1007/s00330-017-5302-1.

    Article  PubMed  Google Scholar 

  111. Wei J, Yang G, Hao X, Gu D, Tan Y, Wang X, Dong D, Zhang S, Wang L, Zhang H, et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur Radiol. 2019;29(2):877–88. https://doi.org/10.1007/s00330-018-5575-z.

    Article  PubMed  Google Scholar 

  112. Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage. 2010;49(2):1398–405. https://doi.org/10.1016/j.neuroimage.2009.09.049.

    Article  PubMed  CAS  Google Scholar 

  113. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 1999;26(12):2654–68. https://doi.org/10.1118/1.598805.

    Article  PubMed  CAS  Google Scholar 

  114. Way TW, Sahiner B, Hadjiiski LM, Chan HP. Effect of finite sample size on feature selection and classification: a simulation study. Med Phys. 2010;37(2):907–20. https://doi.org/10.1118/1.3284974.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mazurowski MA, Habas PA, Zurada JM, Lo JY, Baker JA, Tourassi GD. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw. 2008;21(2–3):427–36. https://doi.org/10.1016/j.neunet.2007.12.031.

    Article  PubMed  Google Scholar 

  116. Ford J, Dogan N, Young L, Yang F. Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain. Contrast Media Mol Imaging. 2018;2018:1729071. https://doi.org/10.1155/2018/1729071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yang F, Dogan N, Stoyanova R, Ford JC. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth. Phys Med. 2018;50:26–36. https://doi.org/10.1016/j.ejmp.2018.05.017.

    Article  PubMed  Google Scholar 

  118. Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A, Trattnig S. Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys. 2009;36(4):1236–43. https://doi.org/10.1118/1.3081408.

    Article  PubMed  Google Scholar 

  119. Waugh SA, Lerski RA, Bidaut L, Thompson AM. The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys. 2011;38(9):5058–66. https://doi.org/10.1118/1.3622605.

    Article  PubMed  Google Scholar 

  120. Hainc N, Stippich C, Stieltjes B, Leu S, Bink A. Experimental texture analysis in glioblastoma: a methodological study. Invest Radiol. 2017;52(6):367–73. https://doi.org/10.1097/rli.0000000000000354.

    Article  PubMed  Google Scholar 

  121. Kofler F, Berger C, Waldmannstetter D, Lipkova J, Ezhov I, Tetteh G, Kirschke J, Zimmer C, Wiestler B, Menze BH. BraTS toolkit: translating BraTS brain tumor segmentation algorithms into clinical and scientific practice. Front Neurosci. 2020;14:125. https://doi.org/10.3389/fnins.2020.00125.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

FE is participant in the BIH Charité Junior Clinician Scientist Program funded by the Charité – Universitätsmedizin Berlin and Berlin Institute of Health at Charité (BIH).

Funding

JMK and DD are supported by the Bundesministerium für Bildung und Forschung (BMBF COMPLS3-022).

Conflicts of Interest/Competing Interests

None of the authors has any conflict of interest to disclose.

DK received travel grants from Accuray and has served as an advisory board member for Novocure, no conflicts of interest with regard to the current work exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius M. Kernbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehret, F., Kaul, D., Clusmann, H., Delev, D., Kernbach, J.M. (2022). Machine Learning-Based Radiomics in Neuro-Oncology. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics