Skip to main content

Placenta, Umbilical Cord, and Umbilical Cord Blood-Derived Cultured Stromal Cells

  • Chapter
  • First Online:
Orthobiologics
  • 1638 Accesses

Abstract

Placenta, umbilical cord, and umbilical cord blood have emerged as an alternative source to obtain stromal cells. This chapter provides an overview of the cell sourcing options for stromal cells derived from placental tissue, umbilical cord, and umbilical cord blood. There are various methods of collection, isolation, and culture expansion of the stromal cells obtained from these complex tissues to be used for future cell therapies. Detailed information regarding these methods obtained from the literature are summarized in this chapter.

We also provide a brief summary on the preclinical data that supports the ongoing exploration of these neonatal sources as opportunities for cellular therapies in the musculoskeletal system. The stromal cells isolated and culture-expanded from these neonatal sources have shown low immunogenicity, significant immunomodulatory effects, and anti-inflammatory effects. These cells have also shown prominent osteogenic and chondrogenic differentiation, as well as paracrine effects that support the regenerative potential in musculoskeletal healing in tissues such as cartilage and tendons. Therefore, the use of stromal cells obtained from the neonatal tissue sources seems to be promising for future cell therapy and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parolini O, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  2. Wu M, et al. Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci Rep. 2018;8(1):5014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Parolini O. Human Placenta: a Source of Progenitor/Stem Cells? J Reproduktionsmed Endokrinologie. 2006;3(2):117–26.

    CAS  Google Scholar 

  4. Hass R, et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi YS, et al. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta. PLoS One. 2017;12(2):e0172642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Indumathi S, et al. Comparison of feto-maternal organ derived stem cells in facets of immunophenotype, proliferation and differentiation. Tissue Cell. 2013;45(6):434–42.

    Article  CAS  PubMed  Google Scholar 

  7. Pelekanos RA, et al. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue. J Vis Exp. 2016:112.

    Google Scholar 

  8. Genbacev O, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril. 2005;83(5):1517–29.

    Article  PubMed  Google Scholar 

  9. Portmann-Lanz CB, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194(3):664–73.

    Article  CAS  PubMed  Google Scholar 

  10. Chien CC, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells. 2006;24(7):1759–68.

    Article  PubMed  Google Scholar 

  11. Miao Z, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006;30(9):681–7.

    Article  CAS  PubMed  Google Scholar 

  12. Yen BL, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005;23(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  13. Barlow S, et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev. 2008;17(6):1095–107.

    Article  CAS  PubMed  Google Scholar 

  14. Chang CM, et al. Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun. 2007;357(2):414–20.

    Article  CAS  PubMed  Google Scholar 

  15. Yamahara K, et al. Comparison of angiogenic, cytoprotective, and immunosuppressive properties of human amnion- and chorion-derived mesenchymal stem cells. PLoS One. 2014;9(2):e88319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Klein C, et al. Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow. Tissue Eng Part A. 2013;19(23–24):2577–85.

    Article  CAS  PubMed  Google Scholar 

  17. Moraghebi R, et al. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Res Ther. 2017;8(1):190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sakuragawa N, et al. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res. 2004;78(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  19. Soncini M, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1(4):296–305.

    Article  CAS  PubMed  Google Scholar 

  20. Corrao S, et al. Umbilical cord revisited: from Wharton's jelly myofibroblasts to mesenchymal stem cells. Histol Histopathol. 2013;28(10):1235–44.

    PubMed  Google Scholar 

  21. Moore RM, Silver RJ, Moore JJ. Physiological apoptotic agents have different effects upon human amnion epithelial and mesenchymal cells. Placenta. 2003;24(2–3):173–80.

    Article  CAS  PubMed  Google Scholar 

  22. Wolbank S, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007;13(6):1173–83.

    Article  CAS  PubMed  Google Scholar 

  23. Koo BK, et al. Isolation and characterization of chorionic mesenchymal stromal cells from human full term placenta. J Korean Med Sci. 2012;27(8):857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Semenov OV, et al. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol. 2010;202(2):193.e1–193.e13.

    Article  CAS  Google Scholar 

  25. Brooke G, et al. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol. 2009;144(4):571–9.

    Article  PubMed  Google Scholar 

  26. Zhang X, et al. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun. 2006;340(3):944–52.

    Article  CAS  PubMed  Google Scholar 

  27. Igura K, et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6(6):543–53.

    Article  CAS  PubMed  Google Scholar 

  28. Strakova Z, et al. Multipotent properties of myofibroblast cells derived from human placenta. Cell Tissue Res. 2008;332(3):479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abumaree MH, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev Rep. 2013;9(5):620–41.

    Article  CAS  PubMed  Google Scholar 

  30. Liu W, et al. Human placenta-derived adherent cells induce tolerogenic immune responses. Clin Transl Immunol. 2014;3(5):e14.

    Article  CAS  Google Scholar 

  31. Abumaree MH, et al. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta. 2017;59:87–95.

    Article  CAS  PubMed  Google Scholar 

  32. Chang CJ, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 2006;24(11):2466–77.

    Article  CAS  PubMed  Google Scholar 

  33. Li F, et al. Human placenta-derived mesenchymal stem cells with silk fibroin biomaterial in the repair of articular cartilage defects. Cell Reprogram. 2012;14(4):334–41.

    Article  CAS  PubMed  Google Scholar 

  34. Yañez R, et al. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res. 2010;316(19):3109–23.

    Article  PubMed  CAS  Google Scholar 

  35. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.

    Article  CAS  PubMed  Google Scholar 

  36. Kang JW, et al. Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J Vet Sci. 2012;13(1):23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mareschi K, et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol. 2016;44(2):138–50.e1.

    Google Scholar 

  38. Castro-Manrreza ME, et al. Human mesenchymal stromal cells from adult and neonatal sources: a comparative in vitro analysis of their immunosuppressive properties against T cells. Stem Cells Dev. 2014;23(11):1217–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Erkers T, et al. Decidual stromal cells promote regulatory T cells and suppress alloreactivity in a cell contact-dependent manner. Stem Cells Dev. 2013;22(19):2596–605.

    Article  CAS  PubMed  Google Scholar 

  40. Deuse T, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20(5):655–67.

    Article  PubMed  Google Scholar 

  41. Maxson S, et al. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012;1(2):142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akle CA, et al. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003–5.

    Article  CAS  PubMed  Google Scholar 

  43. Tylki-Szymańska A, et al. Amniotic tissue transplantation as a trial of treatment in some lysosomal storage diseases. J Inherit Metab Dis. 1985;8(3):101–4.

    Article  PubMed  Google Scholar 

  44. Yeager AM, et al. A therapeutic trial of amniotic epithelial cell implantation in patients with lysosomal storage diseases. Am J Med Genet. 1985;22(2):347–55.

    Article  CAS  PubMed  Google Scholar 

  45. Li H, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci. 2005;46(3):900–7.

    Article  PubMed  Google Scholar 

  46. Bailo M, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004;78(10):1439–48.

    Article  PubMed  Google Scholar 

  47. Avila M, et al. Reconstruction of ocular surface with heterologous limbal epithelium and amniotic membrane in a rabbit model. Cornea. 2001;20(4):414–20.

    Article  CAS  PubMed  Google Scholar 

  48. Kubo M, et al. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42(7):1539–46.

    CAS  PubMed  Google Scholar 

  49. Yuge I, et al. Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation. 2004;77(9):1452–4.

    Article  CAS  PubMed  Google Scholar 

  50. Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  51. Parolini O, et al. Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol. 2014;66(2):327–39.

    Article  CAS  PubMed  Google Scholar 

  52. Watson N, et al. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy. 2015;17(1):18–24.

    Article  PubMed  Google Scholar 

  53. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2(2):155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahmood R, Shaukat M, Choudhery MS. Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow. AIMS Cell Tissue Eng. 2018;2(2):78–90.

    Article  Google Scholar 

  55. Han YF, et al. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology. 2013;65(5):819–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Semenova E, E.K.M.a.T.O. Comparison of characteristics of mesenchymal stem cells obtained mechanically and enzymatically from placenta and umbilical cord. J Cell Sci Ther. 2017;8(2):262.

    Google Scholar 

  57. Choudhery MS, et al. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy. 2013;15(3):330–43.

    Article  CAS  PubMed  Google Scholar 

  58. Mahmood R, et al. In vitro differentiation potential of human placenta derived cells into skin cells. Stem Cells Int. 2015;2015:841062.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hassan G, et al. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells. 2017;10(2):184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hassan G, et al. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells. Cell Mol Biol Lett. 2018;23:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Majore I, et al. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev Rep. 2011;7(1):17–31.

    Article  PubMed  Google Scholar 

  62. Choudhery MS, et al. Utility of cryopreserved umbilical cord tissue for regenerative medicine. Curr Stem Cell Res Ther. 2013;8(5):370–80.

    Article  CAS  PubMed  Google Scholar 

  63. Marmotti A, et al. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem Cells Int. 2012;2012:326813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hendijani F, Sadeghi-Aliabadi H, Haghjooy Javanmard S. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton's jelly matrix. Cell Tissue Bank. 2014;15(4):555–65.

    Article  CAS  PubMed  Google Scholar 

  65. Capelli C, et al. Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy. 2011;13(7):786–801.

    Article  CAS  PubMed  Google Scholar 

  66. Mennan C, et al. Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed Res Int. 2013;2013:916136.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ding DC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–47.

    Article  PubMed  Google Scholar 

  68. Gore A, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471(7336):63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arutyunyan I, et al. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Harris DT. Umbilical cord tissue mesenchymal stem cells: characterization and clinical applications. Curr Stem Cell Res Ther. 2013;8(5):394–9.

    Article  CAS  PubMed  Google Scholar 

  71. Reppel L, et al. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther. 2015;6:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li X, et al. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fong CY, et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep. 2011;7(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  74. Bassi EJ, Aita CA, Câmara NO. Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J Stem Cells. 2011;3(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ryan JM, et al. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8.

    Article  CAS  Google Scholar 

  76. Donders R, et al. Human Wharton's jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant. 2015;24(10):2077–98.

    Article  PubMed  Google Scholar 

  77. Weiss ML, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells. 2008;26(11):2865–74.

    Article  CAS  PubMed  Google Scholar 

  78. Bai L, et al. Bioactive molecules derived from umbilical cord mesenchymal stem cells. Acta Histochem. 2016;118(8):761–9.

    Article  CAS  PubMed  Google Scholar 

  79. Wolk K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36(5):1309–23.

    Article  CAS  PubMed  Google Scholar 

  80. Kim H, et al. Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Sci Rep. 2019;9(1):13854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sofia V, et al. The influence of Wharton jelly mesenchymal stem cell toward matrix Metalloproteinase-13 and RELA Synoviocyte gene expression on osteoarthritis. Open Access Maced J Med Sci. 2019;7(5):701–6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang L, et al. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A. 2009;15(8):2259–66.

    Article  CAS  PubMed  Google Scholar 

  83. Wu KC, et al. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Ci Ji Yi Xue Za Zhi. 2019;31(1):11–9.

    CAS  PubMed  Google Scholar 

  84. Zhang YLS, Guo WM, et al. Experimental study on repairing full-thickness cartilage defect of goat knee joint with human umbilical cord mesenchymal stem cells and acellular chondrocyte extracellular matrix oriented scaffold. Chin Med Biotechnol. 2016;6:32–9.

    Google Scholar 

  85. Lin YX, et al. In vitro and in vivo evaluation of the developed PLGA/HAp/Zein scaffolds for bone-cartilage interface regeneration. Biomed Environ Sci. 2015;28(1):1–12.

    PubMed  Google Scholar 

  86. Wu CC, et al. TNF-α inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cell Immunol. 2012;273(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  87. Santos JM, et al. The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX®) in the treatment of inflammatory arthritis. J Transl Med. 2013;11:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu Y, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther. 2010;12(6):R210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Miranda JP, et al. The Secretome derived from 3D-cultured umbilical cord tissue MSCs counteracts manifestations typifying rheumatoid arthritis. Front Immunol. 2019;10:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fan CG, Zhang QJ, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Rep. 2011;7(1):195–207.

    Article  PubMed  Google Scholar 

  91. Flynn A, Barry F, O'Brien T. UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy. 2007;9(8):717–26.

    Article  CAS  PubMed  Google Scholar 

  92. Kim SM, et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res. 2008;68(23):9614–23.

    Article  CAS  PubMed  Google Scholar 

  93. Sousa T, et al. Umbilical cord blood processing: volume reduction and recovery of CD34+ cells. Bone Marrow Transplant. 1997;19(4):311–3.

    Article  CAS  PubMed  Google Scholar 

  94. U-pratya Y, et al. Collection and processing of umbilical cord blood for cryopreservation. J Med Assoc Thai. 2003;86(11):1055–62.

    PubMed  Google Scholar 

  95. Bieback K, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22(4):625–34.

    Article  PubMed  Google Scholar 

  96. Jin HJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9):17986–8001.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pievani A, et al. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy. 2014;16(7):893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tempelhof S, Rupp S, Seil R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J Shoulder Elb Surg. 1999;8(4):296–9.

    Article  CAS  Google Scholar 

  99. Jang KM, et al. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: new strategy to enhance tendon graft healing. Arthroscopy. 2015;31(8):1530–9.

    Article  PubMed  Google Scholar 

  100. Desancé M, et al. Chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy. Int J Mol Sci. 2018;19:2.

    Article  CAS  Google Scholar 

  101. Ibrahim AM, et al. Chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in vitro. Microsc Res Tech. 2015;78(8):667–75.

    Article  PubMed  CAS  Google Scholar 

  102. Arrigoni C, et al. Umbilical cord MSCs and their Secretome in the therapy of arthritic diseases: a research and industrial perspective. Cell. 2020;9:6.

    Google Scholar 

  103. Lo WC, et al. Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines. Biomaterials. 2013;34(20):4739–48.

    Article  CAS  PubMed  Google Scholar 

  104. Bertoni L, et al. Intra-articular injection of 2 different dosages of autologous and allogeneic bone marrow- and umbilical cord-derived mesenchymal stem cells triggers a variable inflammatory response of the fetlock joint on 12 sound experimental horses. Stem Cells Int. 2019;2019:9431894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jeong SY, et al. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells. 2013;31(10):2136–48.

    Article  CAS  PubMed  Google Scholar 

  106. Ha CW, et al. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a Minipig model. Stem Cells Transl Med. 2015;4(9):1044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park YB, et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthr Cartil. 2017;25(4):570–80.

    Article  CAS  Google Scholar 

  108. Zheng P, et al. A rabbit model of osteochondral regeneration using three-dimensional printed polycaprolactone-hydroxyapatite scaffolds coated with umbilical cord blood mesenchymal stem cells and chondrocytes. Med Sci Monit. 2019;25:7361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kwon DR, Park GY, Lee SC. Regenerative effects of mesenchymal stem cells by dosage in a chronic rotator cuff tendon tear in a rabbit model. Regen Med. 2019;14(11):1001–12.

    Article  CAS  PubMed  Google Scholar 

  110. Lim JH, et al. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci. 2007;8(3):275–82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, JA., Ha, CW. (2022). Placenta, Umbilical Cord, and Umbilical Cord Blood-Derived Cultured Stromal Cells. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics