Skip to main content

Adipose-Derived Stem/Stromal Cells, Stromal Vascular Fraction, and Microfragmented Adipose Tissue

  • Chapter
  • First Online:
Orthobiologics

Abstract

Adipose tissue has become one of the main foci in the development of regenerative therapeutic strategies due to the easy harvesting procedure and fewer ethical concerns compared to other sources of stem/stromal cells. To date, the adipose tissue has been used for regenerative purposes either as the source of (1) adipose-derived cells (ASCs), that is, plastic-adherent culture-expanded cells, or of (2) adipose tissue-derived products obtained at the point of care known as stromal vascular fraction (SVF) or microfragmented adipose tissue (microfat). The application of both methods has been reported to be successful in different preclinical and clinical scenarios, especially for the treatment of musculoskeletal conditions. Currently, ASCs, SVF, or microfat is delivered with two approaches. The first one relies on the seeding of cells/SVF or microfat on a support (scaffold), and it is typically used in association with surgery for the treatment of focal defects; the second approach consists in the direct injection of these adipose-derived products to damaged sites, and it is meant to treat wider areas of degeneration. In this case, the direct cell differentiation mechanism is not the main responsible for the benefits observed after cell transplantation, but rather the therapeutic effect is related to the secretion of soluble factors (secretome) and their interactions with resident cells through paracrine mechanisms. Many controversial points still animate the debate on the most effective harvest and processing procedures composition, cell concentration, dose, and delivery strategy. In this chapter, we discuss the different adipose-derived products (ASCs, SVF, and microfat), their phenotype, rationale, therapeutic potential, and available evidence based on the most relevant in vitro and preclinical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells Wiley. 2007;25:818–27.

    Article  CAS  Google Scholar 

  2. Casteilla L, Dani C. Adipose tissue-derived cells: From physiology to regenerative medicine. Diabetes Metab. Elsevier Masson SAS. 2006:393–401.

    Google Scholar 

  3. Li Y, Meng Y, Yu X. The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol. Frontiers Media S.A. 2019:69.

    Google Scholar 

  4. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. MDPI AG. 2019;20:2523.

    Article  CAS  PubMed Central  Google Scholar 

  5. Chu D-T, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Van Thanh V, et al. Adipose tissue stem cells for therapy: an update on the progress of isolation, culture, storage, and clinical application. J Clin Med. MDPI AG. 2019;8:917.

    Article  CAS  PubMed Central  Google Scholar 

  6. Casteilla L. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. Baishideng Publishing Group Inc. 2011;3:25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Polancec D, Zenic L, Hudetz D, Boric I, Jelec Z, Rod E, et al. Immunophenotyping of a stromal vascular fraction from microfragmented Lipoaspirate used in osteoarthritis cartilage treatment and its lipoaspirate counterpart. Genes (Basel). 2019;10(6):474.

    Google Scholar 

  8. Aronowitz JA, Lockhart RA, Hakakian CS. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. SpringerPlus. 2015;4:1–9.

    Article  Google Scholar 

  9. Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy. Elsevier Inc. 2013;15:979–85.

    Article  CAS  PubMed  Google Scholar 

  10. Vezzani B, Shaw I, Lesme H, Yong L, Khan N, Tremolada C, et al. Higher pericyte content and secretory activity of microfragmented human adipose tissue compared to enzymatically derived stromal vascular fraction. Stem Cells Transl Med. 2018;7:876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carelli S, Messaggio F, Canazza A, Hebda DM, Caremoli F, Latorre E, et al. Characteristics and properties of mesenchymal stem cells derived from microfragmented adipose tissue. Cell Transplant. SAGE Publications Inc. 2015;24:1233–52.

    Article  PubMed  Google Scholar 

  12. Rodriguez J, Pratta A-S, Abbassi N, Fabre H, Rodriguez F, Debard C, et al. Evaluation of three devices for the isolation of the stromal vascular fraction from adipose tissue and for ASC culture: a comparative study [internet]. Stem Cells Int. 2017:e9289213.

    Google Scholar 

  13. Leto Barone AA, Khalifian S, Lee WPA, Brandacher G. Immunomodulatory effects of adipose-derived stem cells: fact or fiction? Biomed Res Int. 2013;2013:383685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19:902–7.

    Article  PubMed  Google Scholar 

  15. Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23:1308–16.

    Article  PubMed  Google Scholar 

  16. Comella K, Blas JAP, Ichim T, Lopez J, Limon J, Moreno RC. Autologous stromal vascular fraction in the intravenous treatment of end-stage chronic obstructive pulmonary disease: a phase I trial of safety and tolerability. J Clin Med Res. Elmer Press, Inc. 2017;9:701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopa S, Colombini A, Moretti M, de Girolamo L. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences. Knee Surg Sports Traumatol Arthrosc. 2019;27:2003–20.

    Article  PubMed  Google Scholar 

  18. Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink T, Pennisi CP, et al. Discrete adipose-derived stem cell subpopulations may display differential functionality after in vitro expansion despite convergence to a common phenotype distribution. Stem Cell Res Ther. BioMed Central Ltd. 2016;7:1–13.

    Article  CAS  Google Scholar 

  19. Alvarez-Viejo M, Menendez-Menendez Y, Blanco-Gelaz MA, Ferrero-Gutierrez A, Fernandez-Rodriguez MA, Gala J, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013;45:434–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gomez-Salazar M, Gonzalez-Galofre ZN, Casamitjana J, Crisan M, James AW, Péault B. Five decades later, are mesenchymal stem cells still relevant? Front Bioeng Biotechnol [Internet] Frontiers. 2020;8:148.

    Google Scholar 

  21. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. Elsevier. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Domergue S, Bony C, Maumus M, Toupet K, Frouin E, Rigau V, et al. Comparison between stromal vascular fraction and adipose mesenchymal stem cells in remodeling hypertrophic scars. PLoS One. 2016;11. Public Library of Science.

    Google Scholar 

  25. Nyberg E, Farris A, O’Sullivan A, Rodriguez R, Grayson W. Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care agents for bone regeneration. Tissue Eng Part A. Mary Ann Liebert Inc. 2019;25:1459–69.

    Article  CAS  PubMed  Google Scholar 

  26. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regen Med Nat Res. 2019:1–15.

    Google Scholar 

  27. Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC Immunophenotypical subsets during expansion in vitro. Int J Mol Sci. Multidisciplinary Digital Publishing Institute. 2020;21:1408.

    Article  CAS  PubMed Central  Google Scholar 

  28. Dominici M, Paolucci P, Conte P, Horwitz EM. Heterogeneity of multipotent mesenchymal stromal cells: from stromal cells to stem cells and vice versa. Transplantation. 2009;87:S36–42.

    Article  PubMed  Google Scholar 

  29. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. John Wiley and Sons Ltd. 2017;6:2173–85.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Varghese J, Griffin M, Mosahebi A, Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther. 2017;8:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. De Girolamo L, Lopa S, Arrigoni E, Sartori MF, Baruffaldi Preis FW, Brini AT. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy. Elsevier Inc. 2009;11:793–803.

    Article  PubMed  CAS  Google Scholar 

  32. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14:1115–22.

    Article  PubMed  Google Scholar 

  33. Gonzalez-Garza MT, Cruz-Vega DE. Regenerative capacity of autologous stem cell transplantation in elderly: a report of biomedical outcomes. Regen Med. Future Medicine Ltd. 2017;12:169–78.

    Article  CAS  PubMed  Google Scholar 

  34. Mitterberger MC, Mattesich M, Zwerschke W. Bariatric surgery and diet-induced long-term caloric restriction protect subcutaneous adipose-derived stromal/progenitor cells and prolong their life span in formerly obese humans. Exp Gerontol. Elsevier Inc. 2014;56:106–13.

    Article  PubMed  Google Scholar 

  35. Moschen AR, Molnar C, Geiger S, Graziadei I, Ebenbichler CF, Weiss H, et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor a expression. Gut. BMJ Publishing Group. 2010;59:1259–64.

    Article  CAS  PubMed  Google Scholar 

  36. Faustini M, Bucco M, Chlapanidas T, Lucconi G, Marazzi M, Tosca MC, et al. Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues. Tissue Eng Part C Methods. 2010;16:1515–21.

    Article  PubMed  Google Scholar 

  37. Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende ARDR, Grechi B, et al. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg. 2008;122:614–8.

    Article  CAS  PubMed  Google Scholar 

  38. Geissler PJ, Davis K, Roostaeian J, Unger J, Huang J, Rohrich RJ. Improving fat transfer viability: the role of aging, body mass index, and harvest site. Plast Reconstr Surg. Lippincott Williams and Wilkins. 2014;134:227–32.

    Article  CAS  PubMed  Google Scholar 

  39. Jurgens WJFM, Oedayrajsingh-Varma MJ, Helder MN, ZandiehDoulabi B, Schouten TE, Kuik DJ, et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017;2017:2374161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, et al. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother. Elsevier Masson SAS. 2019;114:108765.

    Article  CAS  PubMed  Google Scholar 

  42. Hutton DL, Grayson WL. Hypoxia inhibits de novo vascular assembly of adipose-derived stromal/stem cell populations, but promotes growth of preformed vessels. Tissue Eng Part A. 2016;22:161–9.

    Article  CAS  PubMed  Google Scholar 

  43. Jae WL, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther. NIH Public Access. 2009;9:1259–70.

    Article  CAS  Google Scholar 

  44. Basu J, Ludlow JW. Developments in tissue engineered and regenerative medicine products: a practical approach. Developments in tissue engineered and regenerative medicine products: a practical approach. Elsevier Ltd; 2012.

    Book  Google Scholar 

  45. Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. Humana Press Inc. 2016;1416:123–46.

    Article  CAS  PubMed  Google Scholar 

  46. Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. BioMed Central Ltd. 2014;12:260.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. Cell Press. 2011;9:11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. Nature Publishing Group. 2013;45:e54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rawat S, Gupta S, Mohanty S. Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune response activation and immunomodulation. IntechOpen; 2019.

    Google Scholar 

  50. Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Jyothi PS. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE 2 -dependent mechanism. Sci Rep. Nature Publishing Group. 2016;6.

    Google Scholar 

  51. Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: a potential target on cartilage regeneration. Front Immunol. Frontiers Media S.A. 2020;11:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Denkovskij J, Bagdonas E, Kusleviciute I, Mackiewicz Z, Unguryte A, Porvaneckas N, et al. Paracrine Potential of the Human Adipose Tissue-Derived Stem Cells to Modulate Balance between Matrix Metalloproteinases and Their Inhibitors in the Osteoarthritic Cartilage In Vitro. hindawi.com. 2017.

    Google Scholar 

  53. Viganò M, Lugano G, Orfei CP, Menon A, Ragni E, Colombini A, et al. Autologous microfragmented adipose tissue reduces the catabolic and fibrosis response in an in vitro model of tendon cell inflammation. Stem Cells Int. Hindawi Publishing Corporation. 2019;2019:5620286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. Taylor and Francis Ltd. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. BioMed Central Ltd. 2019:1–12.

    Google Scholar 

  56. Zhang M, Zhang F, Sun J, Sun Y, Xu L, Zhang D, et al. The condition medium of mesenchymal stem cells promotes proliferation, adhesion and neuronal differentiation of retinal progenitor cells. Neurosci Lett. Elsevier Ireland Ltd. 2017;657:62–8.

    Article  CAS  PubMed  Google Scholar 

  57. Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G. Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol. Frontiers Media S.A. 2016.

    Google Scholar 

  58. van den Akker F, Vrijsen KR, Deddens JC, Buikema JW, Mokry M, van Laake LW, et al. Suppression of T cells by mesenchymal and cardiac progenitor cells is partly mediated via extracellular vesicles. Heliyon. Elsevier Ltd. 2018;4:e00642.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. Ivyspring International Publisher. 2018;8:1399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee M, Ban JJ, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer’s disease. Brain Res. Elsevier B.V. 2018;1691:87–93.

    Article  CAS  PubMed  Google Scholar 

  61. Shen H, Yoneda S, Abu-Amer Y, Guilak F, Gelberman RH. Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. J Orthop Res. John Wiley and Sons Inc. 2020;38:117–27.

    Article  CAS  PubMed  Google Scholar 

  62. Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, et al. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther. BioMed Central Ltd. 2019.

    Google Scholar 

  63. Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res. BioMed Central Ltd. 2019;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vasiliadis AV, Galanis N. Effectiveness of AD-MSCs injections for the treatment of knee osteoarthritis: analysis of the current literature. J Stem Cells Regen Med. 2020;16:3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Di Matteo B, Vandenbulcke F, Vitale ND, Iacono F, Ashmore K, Marcacci M, et al. Minimally manipulated mesenchymal stem cells for the treatment of knee osteoarthritis: a systematic review of clinical evidence. Stem Cells Int. 2019;2019:1735242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Robinson DM, Eng C, Makovitch S, Rothenberg JB, DeLuca S, Douglas S, et al. Non-operative orthobiologic use for rotator cuff disorders and glenohumeral osteoarthritis: a systematic review. J Back Musculoskelet Rehabil. 2020;34:17.

    Article  Google Scholar 

  67. Hiligsmann M, Cooper C, Arden N, Boers M, Branco JC, Luisa Brandi M, et al. Health economics in the field of osteoarthritis: an Expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum. 2013;43:303–13.

    Article  PubMed  Google Scholar 

  68. Bendich I, Rubenstein WJ, Cole BJ, Ma CB, Feeley BT, Lansdown DA. What is the appropriate Price for PRP injections for knee osteoarthritis? A cost-effectiveness analysis based on evidence from level 1 randomized controlled trials. Arthroscopy. Elsevier BV. 2020.

    Google Scholar 

  69. Mehranfar S, Abdi Rad I, Mostafavi E, Akbarzadeh A. The use of stromal vascular fraction (SVF), platelet-rich plasma (PRP) and stem cells in the treatment of osteoarthritis: an overview of clinical trials. Artif Cells Nanomed Biotechnol. Taylor and Francis Ltd. 2019;47:882–90.

    Article  CAS  PubMed  Google Scholar 

  70. Colombini A, Perucca Orfei C, Kouroupis D, Ragni E, De Luca P, ViganÒ M, et al. Mesenchymal stem cells in the treatment of articular cartilage degeneration: new biological insights for an old-timer cell. Cytotherapy. 2019;21:1179–97.

    Article  CAS  PubMed  Google Scholar 

  71. Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, et al. Adipose-derived mesenchymal stem cells: a promising tool in the treatment of musculoskeletal diseases. Int J Mol Sci. MDPI AG. 2019;20:3105.

    Article  CAS  PubMed Central  Google Scholar 

  72. De Girolamo L, Niada S, Arrigoni E, Di Giancamillo A, Domeneghini C, Dadsetan M, et al. Repair of osteochondral defects in the minipig model by OPF hydrogel loaded with adipose-derived mesenchymal stem cells. Regen Med. Future Medicine Ltd. 2015;10:135–51.

    Article  PubMed  CAS  Google Scholar 

  73. Hsu YK, Sheu SY, Wang CY, Chuang MH, Chung PC, Luo YS, et al. The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model. Knee. Elsevier B.V. 2018;25:1181–91.

    Article  PubMed  Google Scholar 

  74. Feng C, Luo X, He N, Xia H, Lv X, Zhang X, et al. Efficacy and persistence of allogeneic adipose-derived mesenchymal stem cells combined with hyaluronic acid in osteoarthritis after intra-articular injection in a sheep model. Tissue Eng Part A. 2018;24:219–33.

    Article  CAS  PubMed  Google Scholar 

  75. Oshima T, Nakase J, Toratani T, Numata H, Takata Y, Nakayama K, et al. A scaffold-free allogeneic construct from adipose-derived stem cells regenerates an osteochondral defect in a rabbit model. Arthroscopy. W.B. Saunders. 2019;35:583–93.

    Article  PubMed  Google Scholar 

  76. Rubio M, Sopena J, Carrillo JM, Cugat R, Dominguez JM, Vilar J, et al. Hip osteoarthritis in dogs: a randomized study using mesenchymal stem cells from adipose tissue and plasma rich in growth factors. Int J Mol Sci. MDPI AG. 2014;15:13437–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, et al. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res. BioMed Central Ltd. 2014;10:143.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Olsen A, Johnson V, Webb T, Santangelo KS, Dow S, Duerr FM. Evaluation of intravenously delivered allogeneic mesenchymal stem cells for treatment of elbow osteoarthritis in dogs: a pilot study. Vet Comp Orthop Traumatol. Georg Thieme Verlag. 2019;32:173–81.

    Article  PubMed  Google Scholar 

  79. Jurgens WJFM, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GAP, Smit TH, et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access. Mary Ann Liebert Inc. 2013;2:315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu T, Yu X, Yang Q, Liu X, Fang J, Dai X. Autologous micro-fragmented adipose tissue as stem cell-based natural scaffold for cartilage defect repair. Cell Transplant. SAGE Publications Ltd. 2019;28:1709–20.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Filardo G, Tschon M, Perdisa F, Brogini S, Cavallo C, Desando G, et al. Micro-fragmentation is a valid alternative to cell expansion and enzymatic digestion of adipose tissue for the treatment of knee osteoarthritis: a comparative preclinical study. Knee Surg Sports Traumatol Arthrosc. [Internet]. 2021.

    Google Scholar 

  82. Ahmad Z, Wardale J, Brooks R, Henson F, Noorani A, Rushton N. Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy. W.B. Saunders. 2012;28:1018–29.

    Article  PubMed  Google Scholar 

  83. Ni M, Lui PPY, Rui YF, Lee WYW, Lee WYW, Tan Q, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res. John Wiley and Sons Inc. 2012;30:613–9.

    Article  CAS  PubMed  Google Scholar 

  84. Schneider M, Angele P, Järvinen TAH, Docheva D. Rescue plan for Achilles: therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv Drug Deliv Rev. Elsevier B.V. 2018;129:352–75.

    Article  CAS  PubMed  Google Scholar 

  85. de Aro A, Carneiro G, Teodoro L, da Veiga F, Ferrucci D, Simões G, et al. Injured Achilles tendons treated with adipose-derived stem cells transplantation and GDF-5. Cell. MDPI AG. 2018;7:127.

    Article  CAS  Google Scholar 

  86. Schneider PRA, Buhrmann C, Mobasheri A, Matis U, Shakibaei M. Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells. J Orthop Res. 2011;29:1351–60.

    Article  CAS  PubMed  Google Scholar 

  87. Kokubu S, Inaki R, Hoshi K, Hikita A. Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen Ther. Japanese Society of Regenerative Medicine. 2020;14:103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Uysal CA, Tobita M, Hyakusoku H, Mizuno H. Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthet Surg. 2012;65:1712–9.

    Article  PubMed  Google Scholar 

  89. Oshita T, Tobita M, Tajima S, Mizuno H. Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. Am J Sports Med. SAGE Publications Inc. 2016;44:1983–9.

    Article  PubMed  Google Scholar 

  90. Skutella T. Autologous adipose tissue-derived mesenchymal stem cells affect the regeneration of equine tendon lesions. Ommega Int. 2016;1:1–8.

    Google Scholar 

  91. Carvalho ADM, Badial PR, Álvarez LEC, Yamada ALM, Borges AS, Deffune E, et al. Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: a randomized controlled trial. Stem Cell Res Ther. 2013;4:85.

    Article  PubMed Central  CAS  Google Scholar 

  92. Randelli P, Menon A, Ragone V, Creo P, Bergante S, Randelli F, et al. Lipogems product treatment increases the proliferation rate of human tendon stem cells without affecting their Stemness and differentiation capability. Stem Cells Int. 2016;2016:4373410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lu LY, Ma M, Cai JF, Yuan F, Zhou W, Luo SL, et al. Effects of local application of adipose-derived stromal vascular fraction on tendon-bone healing after rotator cuff tear in rabbits. Chin Med J. Wolters Kluwer Medknow Publications. 2018;131:2620–2.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Morcos MW, Al-Jallad H, Hamdy R. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int. 2015;2015:842975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, et al. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A. John Wiley and Sons Inc. 2019;107:301–11.

    Article  CAS  PubMed  Google Scholar 

  96. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. BioMed Central Ltd. 2019:9.

    Google Scholar 

  97. Yoon D, Kang BJ, Kim Y, Lee SH, Rhew D, Kim WH, et al. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model. J Vet Sci. Korean Society of Veterinary Science. 2015;16:397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dozza B, Salamanna F, Baleani M, Giavaresi G, Parrilli A, Zani L, et al. Nonunion fracture healing: evaluation of effectiveness of demineralized bone matrix and mesenchymal stem cells in a novel sheep bone nonunion model. J Tissue Eng Regener Med. 2018;12:1972–85.

    Article  CAS  Google Scholar 

  99. Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. Elsevier Inc. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  100. Halvorsen YDC, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7:729–41.

    Article  CAS  PubMed  Google Scholar 

  101. Jeon O, Rhie JW, Kwon IK, Kim JH, Kim BS, Lee SH. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng A. Mary Ann Liebert Inc. 2008;14:1285–94.

    Article  CAS  Google Scholar 

  102. Li X, Yao J, Wu L, Jing W, Tang W, Lin Y, et al. Osteogenic induction of adipose-derived stromal cells: not a requirement for bone formation in vivo. Artif Organs. 2010;34:46–54.

    Article  PubMed  CAS  Google Scholar 

  103. Sunay O, Can G, Cakir Z, Denek Z, Kozanoglu I, Erbil G, et al. Autologous rabbit adipose tissue-derived mesenchymal stromal cells for the treatment of bone injuries with distraction osteogenesis. Cytotherapy. 2013;15:690–702.

    Article  CAS  PubMed  Google Scholar 

  104. Nomura I, Watanabe K, Matsubara H, Hayashi K, Sugimoto N, Tsuchiya H. Uncultured autogenous adipose-derived regenerative cells promote bone formation during distraction osteogenesis in rats. Clin Orthop Relat Res. 2014;472:3798–806.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Desando G, Bartolotti I, Cattini L, Tschon M, Martini L, Fini M, et al. Prospects on the potential in vitro regenerative features of mechanically treated-adipose tissue for osteoarthritis care. Stem Cell Rev Rep. 2021;17(4):1362–73.

    Google Scholar 

  106. Mauro A. Satellite cell of skeletal muscle FIBERS. J Biophys Biochem Cytol. 1961;9:493–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Anderson JE. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J Exp Biol. 2006;209:2276–92.

    Article  CAS  PubMed  Google Scholar 

  108. Grogan BF, Hsu JR. Skeletal trauma research consortium. Volumetric muscle loss. J Am Acad Orthop Surg. 2011;19(Suppl 1):S35–7.

    Article  PubMed  Google Scholar 

  109. Vieira NM, Brandalise V, Zucconi E, Jazedje T, Secco M, Nunes VA, et al. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell. 2008;100:231–41.

    Article  CAS  PubMed  Google Scholar 

  110. Desiderio V, De Francesco F, Schiraldi C, De Rosa A, La Gatta A, Paino F, et al. Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue. J Cell Physiol. 2013;228:1762–73.

    Article  CAS  PubMed  Google Scholar 

  111. Milner DJ, Bionaz M, Monaco E, Cameron JA, Wheeler MB. Myogenic potential of mesenchymal stem cells isolated from porcine adipose tissue. Cell Tissue Res. 2018;372:507–22.

    Article  CAS  PubMed  Google Scholar 

  112. Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, et al. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. 2007;16:695–706.

    Article  CAS  PubMed  Google Scholar 

  113. Kesireddy V. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. Int J Nanomedicine. 2016;11:1461–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peçanha R, de Bagno LLES, Ribeiro MB, Robottom Ferreira AB, Moraes MO, Zapata-Sudo G, et al. Adipose-derived stem-cell treatment of skeletal muscle injury. J Bone Joint Surg Am. 2012;94:609–17.

    Article  PubMed  Google Scholar 

  115. Pilny E, Smolarczyk R, Jarosz-Biej M, Hadyk A, Skorupa A, Ciszek M, et al. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue. Stem Cell Res Ther. 2019;10:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tauber Z, Cizkova K, Janikova M, Jurcikova J, Vitkova K, Pavliska L, et al. Serum C-peptide level correlates with the course of muscle tissue healing in the rabbit model of critical limb ischemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163:132–40.

    Article  PubMed  Google Scholar 

  117. Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, et al. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther. 2019;10:116.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zimowska M, Archacka K, Brzoska E, Bem J, Czerwinska AM, Grabowska I, et al. IL-4 and SDF-1 increase adipose tissue-derived stromal cell ability to improve rat skeletal muscle regeneration. Int J Mol Sci. 2020;21.

    Google Scholar 

  119. Huang H, Liu J, Hao H, Chen D, Zhizhong L, Li M, et al. Preferred M2 polarization by ASC-based hydrogel accelerated angiogenesis and myogenesis in volumetric muscle loss rats. Stem Cells Int. 2017;2017:2896874.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura de Girolamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ragni, E., Viganò, M., De Luca, P., Pedrini, E., de Girolamo, L. (2022). Adipose-Derived Stem/Stromal Cells, Stromal Vascular Fraction, and Microfragmented Adipose Tissue. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics