Skip to main content

Placental Tissue Extracts

  • Chapter
  • First Online:
Orthobiologics

Abstract

Scientific advancements have led to an increased interest in injectable treatments in the management of common orthopedic conditions. Product options for orthopedic conditions based on placental tissue extracts have advanced rapidly in recent years, after promising results were reported for the treatment of burn, cardiac, and hepatic patients. Included among these advancements are improved techniques of extraction, preparation, storage, and delivery of human amniotic- and placenta-derived cells. Placental tissue extract provides the purported theoretical advantages of reduced immunogenicity, greater potency of a younger progenitor population, and absence of donor-site morbidity as compared to stem cells obtained from autologous sources. This difference in extracellular matrix composition and cellular composition may offer biological properties that other biologic injectables (e.g., platelet-rich plasma (PRP) and hyaluronic acid (HA)) do not provide. This chapter reviews the basic science and early clinical evidence surrounding the use of placental tissue extract in the treatment of various orthopedic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caplan AI, Correa D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop. 2011;29(12):1795–803. Epub 2011/05/28.

    CAS  Google Scholar 

  2. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59. Epub 2013/05/17.

    Article  PubMed  Google Scholar 

  3. Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplant. 2017;26(9):1520–9. Epub 2017/11/09.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nam TW, Oh HM, Lee JE, Kim JH, Hwang JM, Park E, et al. An unusual complication of sacral nerve root injury following bone marrow harvesting: a case report. BMC Cancer. 2019;19(1):347. Epub 2019/04/13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013;95(14):1312–6. Epub 2013/07/19.

    Article  PubMed  Google Scholar 

  6. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26(2):300–11. Epub 2007/11/03.

    Article  PubMed  Google Scholar 

  7. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. Epub 2015/07/04.

    Article  CAS  PubMed  Google Scholar 

  8. Malek A, Bersinger NA. Human placental stem cells: biomedical potential and clinical relevance. J Stem Cells. 2011;6(2):75–92. Epub 2011/01/01.

    PubMed  Google Scholar 

  9. Roubelakis MG, Trohatou O, Anagnou NP. Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells Int. 2012;2012:107836. Epub 2012/06/16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Choi YS, Park YB, Ha CW, Kim JA, Heo JC, Han WJ, et al. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta. PLoS One. 2017;12(2):e0172642. Epub 2017/02/23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004;78(10):1439–48. Epub 2004/12/16.

    Article  PubMed  Google Scholar 

  12. Tracy SA, Ahmed A, Tigges JC, Ericsson M, Pal AK, Zurakowski D, et al. A comparison of clinically relevant sources of mesenchymal stem cell-derived exosomes: bone marrow and amniotic fluid. J Pediatr Surg. 2019;54(1):86–90. Epub 2018/10/27.

    Article  PubMed  Google Scholar 

  13. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23(2):220–9. Epub 2005/01/27.

    Article  PubMed  Google Scholar 

  14. Vangsness CT Jr, Sternberg H, Harris L. Umbilical cord tissue offers the greatest number of harvestable mesenchymal stem cells for research and clinical application: a literature review of different harvest sites. Arthroscopy. 2015;31(9):1836–43. Epub 2015/09/12.

    Article  PubMed  Google Scholar 

  15. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75. Epub 2003/10/25.

    Article  CAS  PubMed  Google Scholar 

  16. De la Fuente A, Mateos J, Lesende-Rodriguez I, Calamia V, Fuentes-Boquete I, de Toro FJ, et al. Proteome analysis during chondrocyte differentiation in a new chondrogenesis model using human umbilical cord stroma mesenchymal stem cells. Mol Cell Proteomics. 2012;11(2):M111.010496. Epub 2011/10/20.

    Article  PubMed  Google Scholar 

  17. Majore I, Moretti P, Stahl F, Hass R, Kasper C. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev Rep. 2011;7(1):17–31. Epub 2010/07/03.

    Article  PubMed  Google Scholar 

  18. Marmotti A, Mattia S, Bruzzone M, Buttiglieri S, Risso A, Bonasia DE, et al. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem Cells Int. 2012;2012:326813. Epub 2012/05/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One. 2010;5(2):e9016. Epub 2010/02/04.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. Epub 2012/12/01.

    Article  CAS  Google Scholar 

  21. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. Epub 2010/12/02.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Sheha H, Fu Y, Liang L, Tseng SC. Update on amniotic membrane transplantation. Expert Rev Ophthalmol. 2010;5(5):645–61. Epub 2011/03/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adly OA, Moghazy AM, Abbas AH, Ellabban AM, Ali OS, Mohamed BA. Assessment of amniotic and polyurethane membrane dressings in the treatment of burns. Burns. 2010;36(5):703–10. Epub 2009/12/17.

    Article  CAS  PubMed  Google Scholar 

  24. Willett NJ, Thote T, Lin AS, Moran S, Raji Y, Sridaran S, et al. Intra-articular injection of micronized dehydrated human amnion/chorion membrane attenuates osteoarthritis development. Arthritis Res Ther. 2014;16(1):R47. Epub 2014/02/07.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raines AL, Shih MS, Chua L, Su CW, Tseng SC, O’Connell J. Efficacy of particulate amniotic membrane and umbilical cord tissues in attenuating cartilage destruction in an osteoarthritis model. Tissue Eng Part A. 2017;23(1–2):12–9. Epub 2016/10/07.

    Article  CAS  PubMed  Google Scholar 

  26. Marino-Martinez IA, Martinez-Castro AG, Pena-Martinez VM, Acosta-Olivo CA, Vilchez-Cavazos F, Guzman-Lopez A, et al. Human amniotic membrane intra-articular injection prevents cartilage damage in an osteoarthritis model. Exp Ther Med. 2019;17(1):11–6. Epub 2019/01/18.

    CAS  PubMed  Google Scholar 

  27. Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic suspension allograft modulates inflammation in a rat pain model of osteoarthritis. J Orthop. 2019;38(5):1141–9.

    Google Scholar 

  28. Reece DS, Burnsed OA, Parchinski K, Marr EE, White RM, Salazar-Noratto GE, et al. Reduced size profile of amniotic membrane particles decreases osteoarthritis therapeutic efficacy. Tissue Eng Part A. 2020;26(1–2):28–37. Epub 2019/07/05.

    Article  CAS  PubMed  Google Scholar 

  29. Wang AT, Zhang QF, Wang NX, Yu CY, Liu RM, Luo Y, et al. Cocktail of hyaluronic acid and human amniotic mesenchymal cells effectively repairs cartilage injuries in sodium iodoacetate-induced osteoarthritis rats. Front Bioeng Biotechnol. 2020;8:87. Epub 2020/03/27.

    Article  PubMed  PubMed Central  Google Scholar 

  30. You Q, Liu Z, Zhang J, Shen M, Li Y, Jin Y, et al. Human amniotic mesenchymal stem cell sheets encapsulating cartilage particles facilitate repair of rabbit osteochondral defects. Am J Sports Med. 2020;48(3):599–611. Epub 2020/01/16.

    Article  PubMed  Google Scholar 

  31. Alden KJ, Harris S, Hubbs B, Kot K, Istwan NB, Mason D. Micronized dehydrated human amnion chorion membrane injection in the treatment of knee osteoarthritis-a large retrospective case series. J Knee Surg. 2021;34(8):841–5. Epub 2019/11/30.

    Article  PubMed  Google Scholar 

  32. Farr J, Gomoll AH, Yanke AB, Strauss EJ, Mowry KC. A randomized controlled single-blind study demonstrating superiority of amniotic suspension allograft injection over hyaluronic acid and saline control for modification of knee osteoarthritis symptoms. J Knee Surg. 2019;32(11):1143–54. Epub 2019/09/19.

    Article  PubMed  Google Scholar 

  33. Vines JB, Aliprantis AO, Gomoll AH, Farr J. Cryopreserved amniotic suspension for the treatment of knee osteoarthritis. J Knee Surg. 2016;29(6):443–50. Epub 2015/12/20.

    Article  PubMed  Google Scholar 

  34. Kimmerling KA, McQuilling JP, Staples MC, Mowry KC. Tenocyte cell density, migration, and extracellular matrix deposition with amniotic suspension allograft. J Orthop. 2019;37(2):412–20. Epub 2018/11/01.

    CAS  Google Scholar 

  35. Coban I, Satoglu IS, Gultekin A, Tuna B, Tatari H, Fidan M. Effects of human amniotic fluid and membrane in the treatment of Achilles tendon ruptures in locally corticosteroid-induced Achilles tendinosis: an experimental study on rats. Foot Ankle Surg. 2009;15(1):22–7. Epub 2009/02/17.

    Article  PubMed  Google Scholar 

  36. de Girolamo L, Morlin Ambra LF, Perucca Orfei C, McQuilling JP, Kimmerling KA, Mowry KC, et al. Treatment with human amniotic suspension allograft improves tendon healing in a rat model of collagenase-induced tendinopathy. Cells. 2019;8(11). Epub 2019/11/14.

    Google Scholar 

  37. Liu Y, Peng Y, Fang Y, Yao M, Redmond RW, Ni T. No midterm advantages in the middle term using small intestinal submucosa and human amniotic membrane in Achilles tendon transverse tenotomy. J Orthop Surg Res. 2016;11(1):125. Epub 2016/11/25.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barboni B, Russo V, Curini V, Mauro A, Martelli A, Muttini A, et al. Achilles tendon regeneration can be improved by amniotic epithelial cell allotransplantation. Cell Transplant. 2012;21(11):2377–95. Epub 2012/04/18.

    Article  CAS  PubMed  Google Scholar 

  39. Ma R, Schar M, Chen T, Wang H, Wada S, Ju X, et al. Use of human placenta-derived cells in a preclinical model of tendon injury. J Bone Joint Surg Am. 2019;101(13):e61. Epub 2019/07/06.

    Article  PubMed  Google Scholar 

  40. Smith MJ, Bozynski CC, Kuroki K, Cook CR, Stoker AM, Cook JL. Comparison of biologic scaffolds for augmentation of partial rotator cuff tears in a canine model. J Shoulder Elb Surg. 2020;29(8):1573–83. Epub 2020/03/15.

    Article  Google Scholar 

  41. Park GY, Kwon DR, Lee SC. Regeneration of full-thickness rotator cuff tendon tear after ultrasound-guided injection with umbilical cord blood-derived mesenchymal stem cells in a rabbit model. Stem Cells Transl Med. 2015;4(11):1344–51. Epub 2015/09/16.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spindler KP, Huston LJ, Chagin KM, Kattan MW, Reinke EK, Amendola A, et al. Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: a MOON longitudinal prospective cohort study. Am J Sports Med. 2018;46(4):815–25. Epub 2018/03/16.

    Article  PubMed  Google Scholar 

  43. Brophy RH, Schmitz L, Wright RW, Dunn WR, Parker RD, Andrish JT, et al. Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter Orthopaedic Outcomes Network (MOON) group. Am J Sports Med. 2012;40(11):2517–22. Epub 2012/09/25.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mather RC 3rd, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95(19):1751–9. Epub 2013/10/04.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Filbay SR, Culvenor AG, Ackerman IN, Russell TG, Crossley KM. Quality of life in anterior cruciate ligament-deficient individuals: a systematic review and meta-analysis. Br J Sports Med. 2015;49(16):1033–41. Epub 2015/08/01.

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Liu Z, Jin Y, Zhu X, Wang S, Yang J, et al. Differentiation of human amniotic mesenchymal stem cells into human anterior cruciate ligament fibroblast cells by in vitro coculture. Biomed Res Int. 2017;2017:7360354. Epub 2017/11/01.

    PubMed  PubMed Central  Google Scholar 

  47. Jang KM, Lim HC, Jung WY, Moon SW, Wang JH. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: new strategy to enhance tendon graft healing. Arthroscopy. 2015;31(8):1530–9. Epub 2015/04/18.

    Article  PubMed  Google Scholar 

  48. Woodall BM, Elena N, Gamboa JT, Shin EC, Pathare N, McGahan PJ, et al. Anterior cruciate ligament reconstruction with amnion biological augmentation. Arthrosc Tech. 2018;7(4):e355–e60. Epub 2018/06/06.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lavender C, Bishop C. The fertilized anterior cruciate ligament: an all-inside anterior cruciate ligament reconstruction augmented with amnion, bone marrow concentrate, and a suture tape. Arthrosc Tech. 2019;8(6):e555–e9. Epub 2019/07/25.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Crawford F, Thomson C. Interventions for treating plantar heel pain. Cochrane Database Syst Rev. 2003(3):Cd000416. Epub 2003/08/15.

    Google Scholar 

  51. Buchbinder R. Clinical practice. Plantar fasciitis. N Engl J Med. 2004;350(21):2159–66. Epub 2004/05/21.

    Article  CAS  PubMed  Google Scholar 

  52. Riddle DL, Pulisic M, Pidcoe P, Johnson RE. Risk factors for plantar fasciitis: a matched case-control study. J Bone Joint Surg Am. 2003;85(5):872–7. Epub 2003/05/03.

    Article  PubMed  Google Scholar 

  53. Zelen CM, Poka A, Andrews J. Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis—a feasibility study. Foot Ankle Int. 2013;34(10):1332–9. Epub 2013/08/16.

    Article  PubMed  Google Scholar 

  54. Hanselman AE, Tidwell JE, Santrock RD. Cryopreserved human amniotic membrane injection for plantar fasciitis: a randomized, controlled, double-blind pilot study. Foot Ankle Int. 2015;36(2):151–8. Epub 2014/09/25.

    Article  PubMed  Google Scholar 

  55. Cazzell S, Stewart J, Agnew PS, Senatore J, Walters J, Murdoch D, et al. Randomized controlled trial of micronized Dehydrated Human Amnion/Chorion Membrane (dHACM) injection compared to placebo for the treatment of plantar fasciitis. Foot Ankle Int. 2018;39(10):1151–61. Epub 2018/07/31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Farr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matache, B.A., Strauss, E.J., Farr, J. (2022). Placental Tissue Extracts. In: Filardo, G., Mandelbaum, B.R., Muschler, G.F., Rodeo, S.A., Nakamura, N. (eds) Orthobiologics. Springer, Cham. https://doi.org/10.1007/978-3-030-84744-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84744-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84743-2

  • Online ISBN: 978-3-030-84744-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics