Skip to main content

Explosive Volcanism on Mars

  • Chapter
  • First Online:
Mars: A Volcanic World
  • 928 Accesses

Abstract

Explosive volcanism should be the most common style on a planet characterized by a low atmospheric pressure and by an assumed high volatile content. However, the observations of the surface of Mars show how explosive volcanism is not widespread as it should be in a planet with the above mentioned characteristics. Therefore, one of the two characteristics should be missing. Considering that the atmospheric pressure has been more or less the same all over the Martian history, then the obvious conclusion is that Mars never had such an high volatile content. Yet, low contents of volatile can still trigger explosive volcanism in the low pressure environment of Mars and this is the reason why several pyroclastic deposits have been observed on the surface of the Red Planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCauley JF, Carr MH, Cutts JA, Hartmann WK, Masursky H, Milton DJ et al (1972) Preliminary mariner 9 report on the geology of Mars. Icarus 17:289–327

    Article  Google Scholar 

  2. Greeley R, Spudis PD (1981) Volcanism on Mars. Rev Geophys [Internet] [cited 2018 Sep 23] 19(1):13–41. http://doi.wiley.com/10.1029/RG019i001p00013

  3. Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O, et al (2013) Long-term evolution of the Martian crust-mantle system. Space Sci Rev [Internet] [cited 2018 Nov 6] 174(1–4):49–111. http://link.springer.com/10.1007/s11214-012-9948-3

  4. Scott D, Tanaka K (1978) Geologic map of Mars [Internet]. Reston [cited 2019 Dec 7]. https://pubs.er.usgs.gov/publication/i1083

  5. Moore HJ (2001) Geologic map of the Tempe-Mareotis region of Mars [Internet]. Reston, Virginia [cited 2019 Jul 19]. https://pubs.usgs.gov/imap/i2727/

  6. Scott DH, Tanaka KL (1986) Geologic map of the western equatorial region of Mars [Internet]. IMAP 1802 [cited 2019 Apr 6]. https://pubs.er.usgs.gov/publication/i1802A

  7. Tanaka KL, Scott DH (1987) Geologic map of the polar regions of Mars. USGS Miscellaneous Investigations Series Map I–1802–C

    Google Scholar 

  8. Hodges CA, Moore HJ (1994) Atlas of volcanic landforms on Mars [Internet]. Professional Paper 1534 [cited 2019 Jul 19]. https://pubs.er.usgs.gov/publication/pp1534

  9. Carr MH (1973) Volcanism on Mars. 78(20):4049–4062.

    Google Scholar 

  10. Scott DH, Schaber GG, Horstman KC, Dial ALJ (1980) Lava flow maps of the Tharsis province on Mars [Internet]. Reports of planetary geology program, 1979–1980, pp 179–180 [cited 2019 Mar 27]. http://adsabs.harvard.edu/abs/1980rpgp.rept..179S

  11. Schaber GG, Horstman KC, Dial Jr AL (1978) Lava flow materials in the Tharsis region of Mars. In: Lunar and planetary science conference, 9th [Internet]. Houston, Tex., March 13–17. Pergamon Press, Inc., New York, [cited 2020 Jan 16], pp 3433–3458. https://ui.adsabs.harvard.edu/abs/1978LPSC....9.3433S/abstract

  12. Greeley R, Bridges NT, Crown DA, Crumpler L, Fagents SA, Mouginis-Mark PJ, et al (2000) Volcanism on the Red planet: Mars. In: Environmental effects on volcanic eruptions. Springer, US, pp 75–112

    Google Scholar 

  13. Mouginis-Mark P, Yoshioka MT (1998) The long lava flows of Elysium Planita, Mars. J Geophys Res Planets [Internet] [cited 2019 Mar 27] 103(E8):19389–19400. http://doi.wiley.com/10.1029/98JE01126

  14. Zimbelman JR, Garry WB, Bleacher JE, Crown DA (2015) Volcanism on Mars. In: The Encyclopedia of volcanoes [Internet]. Academic Press [cited 2019 Jul 21], pp 717–728. https://www.sciencedirect.com/science/article/pii/B9780123859389000419

  15. Leone G (2014) A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J Volcanol Geotherm Res 277:1–8

    Google Scholar 

  16. Leone G (2016) Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J Volcanol Geotherm Res 309:78–95

    Article  Google Scholar 

  17. Leverington DW (2019) Formation of Ares Vallis (Mars) by effusions of low-viscosity lava within multiple regions of chaotic terrain. Geomorphology [Internet] [cited 2019 Aug 23] 345:106828. https://www.sciencedirect.com/science/article/pii/S0169555X19303009

  18. Hopper JP, Leverington DW (2014) Formation of Hrad Vallis (Mars) by low viscosity lava flows. Geomorphology [Internet] [cited 2018 Oct 25] 207:96–113. https://www.sciencedirect.com/science/article/pii/S0169555X13005552

  19. Koeppen WC, Hamilton VE (2008) Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J Geophys Res E Planets 113(5):E05001

    Google Scholar 

  20. Hiesinger H (2004) The Syrtis major volcanic province, Mars: synthesis from Mars global surveyor data. J Geophys Res 109:E01004, https://doi.org/10.1029/2003JE002143

  21. Bramble MS, Mustard JF, Salvatore MR (2017) The geological history of Northeast Syrtis Major, Mars. Icarus [Internet] [cited 2019 Aug 18] 293:66–93. https://www.sciencedirect.com/science/article/pii/S0019103516303499?via%3Dihub

  22. Peterson JE (1978) Volcanism in the Noachis-Hellas region of Mars, 2. Lunar Planet Sci Conf Proc [Internet] [cited 2019 Sep 6] 3:3411–3432. https://ui.adsabs.harvard.edu/abs/1978LPSC....9.3411P/abstract

  23. Greeley R, Crown DA (1990) Volcanic geology of Tyrrhena Patera, Mars. J Geophys Res [Internet] [cited 2018 Sep 19] 95(B5):7133. http://doi.wiley.com/10.1029/JB095iB05p07133

  24. Crown DA, Greeley R (1993) Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J Geophys Res Planets [Internet] [cited 2018 Sep 19] 98(E2):3431–3451. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE02804

  25. Williams DA, Greeley R, Werner SC, Michael G, Crown DA, Neukum G, et al (2008) Tyrrhena Patera: geologic history derived from Mars express high resolution stereo camera. J Geophys Res [Internet] [cited 2018 Nov 5] 113(E11):E11005. http://doi.wiley.com/10.1029/2008JE003104

  26. Michalski JR, Bleacher JE (2013) Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature 502(7469):47–52

    Article  Google Scholar 

  27. Edgett KS (1997) Aeolian dunes as evidence for explosive volcanism in the tharsis region of Mars. Icarus 130(1):96–114

    Article  Google Scholar 

  28. Kerber L, Head JW, Madeleine JB, Forget F, Wilson L (2011) The dispersal of pyroclasts from Apollinaris Patera, Mars: implications for the origin of the Medusae Fossae formation. Icarus 216(1):212–220

    Article  Google Scholar 

  29. Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus [Internet] [cited 2018 Nov 6] 218(1):88–99. https://www.sciencedirect.com/science/article/pii/S001910351100457X

  30. Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys [Internet] [cited 2018 Sep 22] 32(3):221. http://doi.wiley.com/10.1029/94RG01113

  31. Wilson L (1980) Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J Volcanol Geotherm Res 8(2–4):297–313

    Article  Google Scholar 

  32. Stix J, Phillips JC (2012) An analog investigation of magma fragmentation and degassing: effects of pressure, volatile content, and decompression rate. J Volcanol Geotherm Res 15(211–212):12–23

    Article  Google Scholar 

  33. Guzewich SD, Newman CE, de la Torre Juárez M, Wilson RJ, Lemmon M, Smith MD, et al (2016) Atmospheric tides in Gale Crater, Mars. Icarus [Internet] [cited 2019 Apr 5] 268:37–49. https://www.sciencedirect.com/science/article/pii/S0019103515005850

  34. Wilson L (2009) Volcanism in the solar system. Nat Geosci 2:389–397. https://doi.org/10.1038/ngeo529

  35. Wood CA (1979) Monogenetic volcanoes of the terrestrial planets. In: Lunar Planet Sci Conf 10th, Houston, Tex, March 19–23, 1979, Proceedings, vol 3 (A80-23677 08-91) New York, Pergamon Press Inc, pp 2815–2840 [Internet] [cited 2018 Sep 23] 10:2815–2840. http://adsabs.harvard.edu/abs/1979LPSC...10.2815W

  36. Kereszturi G, Nemeth K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Updates in volcanology—new advances in understanding volcanic systems [Internet]. InTech [cited 2020 Aug 8]. http://www.intechopen.com/books/updates-in-volcanology-new-advances-in-understanding-volcanic-systems/monogenetic-basaltic-volcanoes-genetic-classification-growth-geomorphology-and-degradation

  37. Brož P, Hauber E (2013) Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J Geophys Res Planets [Internet] [cited 2019 Jul 22] 118(8):1656–1675. http://doi.wiley.com/10.1002/jgre.20120

  38. Wänke H, Dreibus G (1994) Chemistry and accretion history of Mars. Philos Trans R Soc Lond Ser A Phys Eng Sci [Internet] [cited 2019 Oct 10] 349(1690):285–293. http://www.royalsocietypublishing.org/doi/10.1098/rsta.1994.0132

  39. Carr MH, Wänke H (1992) Earth and Mars: water inventories as clues to accretional histories. Icarus 98(1):61–71

    Article  Google Scholar 

  40. Grott M, Breuer D (2009) Implications of large elastic thicknesses for the composition and current thermal state of Mars. Icarus 201(2):540–548

    Article  Google Scholar 

  41. Hauck SA, Phillips RJ (2002) Thermal and crustal evolution of Mars. J Geophys Res [Internet] [cited 2018 Oct 18] 107(E7):5052. http://doi.wiley.com/10.1029/2001JE001801

  42. Breuer D, Spohn T (2006) Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet Space Sci 54(2):153–169

    Google Scholar 

  43. White DSM, Dalton HA, Kiefer WS, Treiman AH (2006) Experimental petrology of the basaltic shergottite Yamato-980459: implications for the thermal structure of the Martian mantle. Meteorit Planet Sci [Internet] [cited 2020 Aug 8] 41(9):1271–1290. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1945-5100.2006.tb00521.x

  44. Fraeman AA, Korenaga J (2010) The influence of mantle melting on the evolution of Mars. Icarus 210(1):43–57

    Google Scholar 

  45. Grott M, Morschhauser A, Breuer D, Hauber E (2011) Volcanic outgassing of CO2 and H2O on Mars. Earth Planet Sci Lett 308(3–4):391–400

    Article  Google Scholar 

  46. Morschhauser A, Grott M, Breuer D (2011) Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212(2):541–558

    Article  Google Scholar 

  47. Ogawa M, Yanagisawa T (2011) Numerical models of Martian mantle evolution induced by magmatism and solid-state convection beneath stagnant lithosphere. J Geophys Res [Internet] [cited 2020 Aug 8] 116(E8):E08008. http://doi.wiley.com/10.1029/2010JE003777

  48. Ruedas T, Tackley PJ, Solomon SC (2013) Thermal and compositional evolution of the martian mantle: effects of phase transitions and melting. Phys Earth Planet Inter [Internet] [cited 2019 Aug 19] 216:32–58. https://www.sciencedirect.com/science/article/pii/S0031920112002166

  49. Plesa AC, Breuer D (2014) Partial melting in one-plate planets: implications for thermo-chemical and atmospheric evolution. Planet Space Sci 1(98):50–65

    Article  Google Scholar 

  50. Sekhar P, King SD (2014) 3D spherical models of Martian mantle convection constrained by melting history. Earth Planet Sci Lett 15(388):27–37

    Article  Google Scholar 

  51. Kiefer WS, Li Q (2016) Water undersaturated mantle plume volcanism on present-day Mars. Meteorit Planet Sci [Internet] [cited 2020 Aug 8] 51(11):1993–2010. http://doi.wiley.com/10.1111/maps.12720

  52. Filiberto J, Baratoux D, Beaty D, Breuer D, Farcy BJ, Grott M, et al (2016) A review of volatiles in the Martian interior. Meteorit Planet Sci [Internet] [cited 2020 Feb 10] 51(11):1935–1958. http://doi.wiley.com/10.1111/maps.12680

  53. Bargery AS, Wilson L (2010) Dynamics of the ascent and eruption of water containing dissolved CO2 on Mars. J Geophys Res [Internet] [cited 2019 Apr 22] 115:5008. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009JE003403

  54. Tanaka KL, Robbins SJ, Fortezzo CM, Skinner JA, Hare TM (2014) The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet Space Sci [Internet] [cited 2019 Mar 26] 95:11–24. https://www.sciencedirect.com/science/article/pii/S0032063313000652

  55. Brož P, Čadek O, Hauber E, Rossi AP (2014) Shape of scoria cones on Mars: insights from numerical modeling of ballistic pathways. Earth Planet Sci Lett 1(406):14–23

    Article  Google Scholar 

  56. Heap MJ, Byrne PK, Mikhail S (2017) Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: implications for topography, volcanism, and hydrology. Icarus 1(281):103–114

    Article  Google Scholar 

  57. Brož P, Hauber E, Platz T, Balme M (2015) Evidence for Amazonian highly viscous lavas in the southern highlands on Mars. Earth Planet Sci Lett 1(415):200–212

    Article  Google Scholar 

  58. Wilson L, Head JW (2007) Explosive volcanic eruptions on Mars: Tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. J Volcanol Geotherm Res 163(1–4):83–97

    Article  Google Scholar 

  59. Wilson L (2004) Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel, Mars. Geophys Res Lett [Internet] [cited 2020 Aug 19] 31(15):L15701. http://doi.wiley.com/10.1029/2004GL020322

  60. Glaze LS, Baloga SM (2002) Volcanic plume heights on Mars: limits of validity for convective models. J Geophys Res E Planets [Internet] [cited 2020 Aug 15] 107(10):16–1. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JE001830

  61. Glaze LS, Baloga SM, Wimert J (2011) Explosive volcanic eruptions from linear vents on Earth, Venus, and Mars: comparisons with circular vent eruptions. J Geophys Res [Internet] [cited 2020 Nov 12] 116(E1):E01011. http://doi.wiley.com/10.1029/2010JE003577

  62. Kerber L, Head JW, Madeleine J-B, Forget F, Wilson L (2012) The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus [Internet] [cited 2019 Aug 13] 219(1):358–381. https://www.sciencedirect.com/science/article/pii/S0019103512001091

  63. Kerber L, Forget F, Madeleine J-B, Wordsworth R, Head JW, Wilson L (2013) The effect of atmospheric pressure on the dispersal of pyroclasts from martian volcanoes. Icarus [Internet] [cited 2018 Sep 22] 223(1):149–156. https://www.sciencedirect.com/science/article/pii/S0019103512004915

  64. Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127(1–2):121–152

    Article  Google Scholar 

  65. Kleinhans MG, Markies H, De Vet SJ, In’t Veld AC, Postema FN (2011) Static and dynamic angles of repose in loose granular materials under reduced gravity. J Geophys Res E Planets [Internet] [cited 2020 Sep 15] 116(11). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JE003865

  66. Atwood-Stone C, McEwen AS (2013) Avalanche slope angles in low-gravity environments from active Martian sand dunes. Geophys Res Lett [Internet] [cited 2020 Sep 15] 40(12):2929–2934. http://doi.wiley.com/10.1002/grl.50586

  67. McElroy MB, Yung YL, Nier AO (1976) Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere. Science (80) [Internet] [cited 2020 Sep 16] 194(4260):70–72. https://science.sciencemag.org/content/194/4260/70

  68. Brain DA, Jakosky BM (1998) Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering. J Geophys Res Planets [Internet] [cited 2019 May 24] 103(E10):22689–22694. http://doi.wiley.com/10.1029/98JE02074

  69. Anders E, Owen T (1977) Mars and earth: origin and abundance of volatiles. Science (80) [Internet] [cited 2020 Sep 16] 198(4316):453–465. https://science.sciencemag.org/content/198/4316/453

  70. Jakosky BM, Brain D, Chaffin M, Curry S, Deighan J, Grebowsky J et al (2018) Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 15(315):146–157

    Article  Google Scholar 

  71. Jakosky BM (2019) The CO2 inventory on Mars. Planet Space Sci 1(175):52–59

    Article  Google Scholar 

  72. Lillis RJ, Frey HV, Manga M, Mitchell DL, Lin RP, Acuña MH et al (2008) An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the martian dynamo. Icarus 194(2):575–596

    Article  Google Scholar 

  73. Leone G, Tackley PJ, Gerya TV, May DA, Zhu G (2014) Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys Res Lett 41(24):8736–8743

    Article  Google Scholar 

  74. Gillmann C, Lognonné P, Moreira M (2011) Volatiles in the atmosphere of Mars: the effects of volcanism and escape constrained by isotopic data. Earth Planet Sci Lett [Internet] [cited 2019 Apr 5] 303(3–4):299–309. https://www.sciencedirect.com/science/article/pii/S0012821X11000239

  75. Kurokawa H, Sato M, Ushioda M, Matsuyama T, Moriwaki R, Dohm JM et al (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in Martian meteorites. Earth Planet Sci Lett 394:179–185

    Article  Google Scholar 

  76. Krasnopolsky VA (2015) Variations of the HDO/H2O ratio in the Martian atmosphere and loss of water from Mars. Icarus [Internet] 257:377–386. https://doi.org/10.1016/j.icarus.2015.05.021

  77. Villanueva GL, Mumma MJ, Novak RE, Käufl HU, Hartogh P, Encrenaz T et al (2015) Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 348(6231):218–221

    Google Scholar 

  78. Gillmann C, Lognonné P, Chassefière E, Moreira M (2009) The present-day atmosphere of Mars: where does it come from? Earth Planet Sci Lett 277(3–4):384–393

    Google Scholar 

  79. Greeley R (1987) Release of juvenile water on Mars: estimated amounts and timing associated with volcanism. Science [Internet] [cited 2019 Oct 13] 236(4809):1653–1654. http://www.ncbi.nlm.nih.gov/pubmed/17754317

  80. Carr MH, Head JW (2015) Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys Res Lett [Internet] [cited 2019 May 23] 42(3):726–732. http://doi.wiley.com/10.1002/2014GL062464

  81. Leone G (2020) The absence of an ocean and the fate of water all over the Martian history. Earth Sp Sci [Internet] 7(4):e2019EA001031. https://doi.org/10.1029/2019EA001031

  82. Wallace P, Plank T, Edmons M, Hauri E (2018) Volatiles in magmas. In: Carroll MR, Holloway JR (eds). Volatiles in magmas, vol 30. De Gruyter Mouton, 1–517 p

    Google Scholar 

  83. Ushioda M, Takahashi E, Hamada M, Suzuki T (2014) Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt. Earth Planets Sp [Internet] [cited 2019 Apr 6] 66(1):127. http://earth-planets-space.springeropen.com/articles/10.1186/1880-5981-66-127

  84. Mouginis-Mark PJ, Wilson L, Head JW (1982) Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. J Geophys Res [Internet] [cited 2018 Nov 6] 87(B12):890–904. http://doi.wiley.com/10.1029/JB087iB12p09890

  85. Plescia JB (1993) An assessment of volatile release from recent volcanism in Elysium, Mars. Icarus [Internet] [cited 2019 Mar 26] 104(1):20–32. https://www.sciencedirect.com/science/article/pii/S0019103583710791?via%3Dihub

  86. O’Neill C, Lenardic A, Jellinek AM, Kiefer WS (2007) Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. J Geophys Res E Planets 112(E07003):1–17

    Google Scholar 

  87. Grott M, Hauber E, Werner SC, Kronberg P, Neukum G (2005) High heat flux on ancient Mars: evidence from rift flank uplift at Coracis Fossae. Geophys Res Lett [Internet] [cited 2018 Nov 6] 32(21):L21201. http://doi.wiley.com/10.1029/2005GL023894

  88. Hirschmann MM, Withers AC (2008 Jun 15) Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet Sci Lett 270(1–2):147–155

    Article  Google Scholar 

  89. Johnson MC, Rutherford MJ, Hess PC (1991 Jan 1) Chassigny petrogenesis: melt compositions, intensive parameters and water contents of Martian (?) magmas. Geochim Cosmochim Acta 55(1):349–366

    Article  Google Scholar 

  90. Guest A, Smrekar SE (2007 Oct 15) New constraints on the thermal and volatile evolution of Mars. Phys Earth Planet Inter 164(3–4):161–176

    Article  Google Scholar 

  91. Balta JB, McSween HY (2013) Water and the composition of Martian magmas. Geology [Internet] [cited 2019 Oct 1] 41(10):1115–1118. https://pubs.geoscienceworld.org/geology/article/41/10/1115-1118/131070

  92. Craddock RA, Greeley R (2009) Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204(2):512–526

    Google Scholar 

  93. Ramirez RM, Craddock RA (2018) The geological and climatological case for a warmer and wetter early Mars [Internet], vol 11, Nature Geoscience. Nature Publishing Group [cited 2020 Sep 16], pp 230–237. https://doi.org/10.1038/s41561-018-0093-9

  94. Wordsworth RD (2016) The climate of early Mars. Annu Rev Earth Planet Sci [Internet] [cited 2019 Aug 16] 44(1):381–408. http://www.annualreviews.org/doi/10.1146/annurev-earth-060115-012355

  95. Postawko SE, Kuhn WR (1986) Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J Geophys Res Solid Earth [Internet] [cited 2020 Sep 16] 91(B4):431–438. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB091iB04p0D431%4010.1002/%28ISSN%292169-9356.LPSC16

  96. Mischna MA, Baker V, Milliken R, Richardson M, Lee C (2013) Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate. J Geophys Res Planets [Internet] [cited 2020 Sep 16] 118(3):560–576. http://doi.wiley.com/10.1002/jgre.20054

  97. Halevy I, Head JW (2014) Episodic warming of early Mars by punctuated volcanism. Nat Geosci 7(12):865–868

    Article  Google Scholar 

  98. Kerber L, Forget F, Wordsworth R (2015) Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 15(261):133–148

    Article  Google Scholar 

  99. Wordsworth R, Kalugina Y, Lokshtanov S, Vigasin A, Ehlmann B, Head J, et al (2017) Transient reducing greenhouse warming on early Mars. Geophys Res Lett [Internet] [cited 2020 Sep 16] 44(2):665–671. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071766

  100. Tanaka KL (2000) Dust and ice deposition in the Martian geologic record. Icarus 144(2):254–266

    Article  Google Scholar 

  101. Hynek BM, Phillips RJ, Arvidson RE (2003) Explosive volcanism in the Tharsis region: global evidence in the Martian geologic record. J Geophys Res [Internet] [cited 2019 Aug 8] 108(E9):5111. http://doi.wiley.com/10.1029/2003JE002062

  102. Moore JM (1990) Nature of the mantling deposit in the heavily cratered terrain of northeastern Arabia, Mars. J Geophys Res [Internet] [cited 2020 Aug 15] 95(B9):14279–14289. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB095iB09p14279

  103. Grant JA, Schultz PH (1990) Gradational epochs on Mars: evidence from West-Northwest of Isidis Basin and Electris. Icarus 84(1):166–195

    Article  Google Scholar 

  104. Wendt L, Bishop JL, Neukum G (2013) Knob fields in the Terra Cimmeria/Terra Sirenum region of Mars: stratigraphy, mineralogy and morphology. Icarus 225(1):200–215

    Google Scholar 

  105. Mandt KE, de Silva SL, Zimbelman JR, Crown DA (2008) Origin of the Medusae Fossae formation, Mars: insights from a synoptic approach. J Geophys Res E Planets [Internet] [cited 2020 Aug 15] 113(12). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008JE003076

  106. Scott DH, Tanaka KL (1982) Ignimbrites of Amazonis Planitia region of Mars. J Geophys Res Solid Earth [Internet] [cited 2019 Aug 8] 87(B2):1179–1190. http://doi.wiley.com/10.1029/JB087iB02p01179

  107. Bradley BA, Sakimoto SEH, Frey H, Zimbelman JR (2002) Medusae Fossae formation: new perspectives from Mars global surveyor. J Geophys Res E Planets [Internet] [cited 2020 Aug 20] 107(8):2–1. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JE001537

  108. Squyres SW, Aharonson O, Clark BC, Cohen BA, Crumpler L, De Souza PA, et al (2007) Pyroclastic activity at home plate in Gusev crater, Mars. Science (80) [Internet] [cited 2020 Aug 25] 316(5825):738–742. www.sciencemag.org/cgi/content/full/316/5825/736/DC1

  109. Mandt K, Silva S de, Zimbelman J, Wyrick D (2009) Distinct erosional progressions in the Medusae Fossae formation, Mars, indicate contrasting environmental conditions. Icarus [Internet] [cited 2019 Aug 14] 204(2):471–477. https://www.sciencedirect.com/science/article/pii/S0019103509002772

  110. Zimbelman JR, Scheidt SP (2012) Hesperian age for western medusae fossae formation, Mars. Science (80) [Internet] [cited 2020 Aug 25] 336(6089):1683. http://science.sciencemag.org/content/336/6089/1683

  111. Ojha L, Lewis K (2018) The density of the Medusae Fossae formation: implications for its composition, origin, and importance in Martian history. J Geophys Res Planets [Internet] [cited 2020 Aug 25] 123(6):1368–1379. http://doi.wiley.com/10.1029/2018JE005565

  112. Kress AM, Head JW (2015) Late Noachian and early Hesperian ridge systems in the south circumpolar Dorsa Argentea formation, Mars: evidence for two stages of melting of an extensive late Noachian ice sheet. Planet Space Sci [Internet] [cited 2019 Apr 13] 109–110:1–20. https://www.sciencedirect.com/science/article/pii/S0032063314003869

  113. Whitten JL, Campbell BA, Plaut JJ (2018) Radar properties of the Dorsa Argentea formation, Mars determined from SHARAD and MARSIS data. AGUFM [Internet] [cited 2020 Aug 31] 2018:P51G-2961. https://ui.adsabs.harvard.edu/abs/2018AGUFM.P51G2961W/abstract

  114. Tanaka KL, Kargel JS, MacKinnon DJ, Hare TM, Hoffman N (2002) Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys Res Lett [Internet] [cited 2020 Aug 12] 29(8):37-1–37-4. http://doi.wiley.com/10.1029/2001GL013885

  115. Tanaka KL, Leonard GJ (1995) Geology and landscape evolution of the Hellas region of Mars. J Geophys Res [Internet] [cited 2020 Aug 12] 100(E3):5407. http://doi.wiley.com/10.1029/94JE02804

  116. Williams DA, Greeley R, Fergason RL, Kuzmin R, McCord TB, Combe JP et al (2009) The Circum-Hellas Volcanic Province, Mars: overview. Planet Space Sci 57:895–916

    Article  Google Scholar 

  117. Bernhardt H, Hiesinger H, Ivanov MA, Ruesch O, Erkeling G, Reiss D (2016) Photogeologic mapping and the geologic history of the Hellas basin floor, Mars. Icarus 15(264):407–442

    Article  Google Scholar 

  118. Williams J-P, Dohm JM, Soare RJ, Flahaut J, Lopes RMC, Pathare AV, et al (2017) Long-lived volcanism within Argyre basin, Mars. Icarus [Internet] [cited 2019 Aug 13] 293:8–26. https://www.sciencedirect.com/science/article/pii/S0019103516307254

  119. Gregg TKP, Crown DA, Greeley R (1998) Geologic map of part of the Tyrrhena Patera region of Mars (MTM Quadrangle-20252) [Internet]. IMAP [cited 2020 Aug 12]. http://pubs.er.usgs.gov/publication/i2556

  120. Gregg TKP, Farley MA (2006) Mafic pyroclastic flows at Tyrrhena Patera, Mars: constraints from observations and models. J Volcanol Geotherm Res [Internet] [cited 2018 Nov 5] 155(1–2):81–89. https://www.sciencedirect.com/science/article/pii/S0377027306000606

  121. Ghent RR, Anderson SW, Pithawala TM (2012) The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus 217(1):169–183

    Google Scholar 

  122. Ivanov MA, Hiesinger H, Erkeling G, Hielscher FJ, Reiss D (2012) Major episodes of geologic history of Isidis Planitia on Mars. Icarus 218:24–46

    Article  Google Scholar 

  123. Smith ML, Claire MW, Catling DC, Zahnle KJ (2014) The formation of sulfate, nitrate and perchlorate salts in the Martian atmosphere. Icarus 1(231):51–64

    Article  Google Scholar 

  124. Burns RG, Fisher DS (1990) Iron‐sulfur mineralogy of Mars: magmatic evolution and chemical weathering products. J Geophys Res Solid Earth [Internet] [cited 2020 Sep 16] 95(B9):14415–14421. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB095iB09p14415%4010.1002/%28ISSN%292169-9356.MARS4

  125. Banin A, Han FX, Kan I, Cicelsky A (1997) Acidic volatiles and the Mars soil. J Geophys Res E Planets [Internet] [cited 2020 Sep 16] 102(E6):13341–13356. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/97JE01160

  126. Quinn RC, Zent AP, Grunthaner FJ, Ehrenfreund P, Taylor CL, Garry JRC (2005) Detection and characterization of oxidizing acids in the Atacama desert using the Mars oxidation instrument. Planet Space Sci 53(13):1376–1388

    Article  Google Scholar 

  127. Schiffman P, Zierenberg R, Marks N, Bishop JL, Darby DM (2006 Nov 1) Acid-fog deposition of Kilauea volcano: a possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology 34(11):921–924

    Article  Google Scholar 

  128. Hutchins KS, Jakosky BM (1996) Evolution of Martian atmospheric argon: implications for sources of volatiles. J Geophys Res Planets [Internet] [cited 2020 Feb 10] 101(E6):14933–14949. http://doi.wiley.com/10.1029/96JE00860

  129. Slipski M, Jakosky BM (2016) Argon isotopes as tracers for martian atmospheric loss. Icarus 1(272):212–227

    Article  Google Scholar 

  130. Cassidy M, Manga M, Cashman K, Bachmann O (2018) Controls on explosive-effusive volcanic eruption styles [Internet], vol 9. Nature communications. Nature Publishing Group, [cited 2020 Aug 8], pp 1–16. www.nature.com/naturecommunications

  131. Castro JM, Gardner JE (2008) Did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, California? Geology 36(4):279–282

    Article  Google Scholar 

  132. Edmonds M, Herd RA (2007) A volcanic degassing event at the explosive-effusive transition. Geophys Res Lett [Internet] [cited 2020 Aug 8] 34(21):L21310. http://doi.wiley.com/10.1029/2007GL031379

  133. Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature [Internet] [cited 2020 Aug 8] 426(6965):432–435. www.nature.com/nature

  134. Walker GPL, Croasdale R (1971) Characteristics of some basaltic pyroclastics. Bull Volcanol [Internet] [cited 2020 Aug 8] 35(2):303–317. https://link.springer.com/article/10.1007/BF02596957

  135. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundschau [Internet] [cited 2020 Aug 8] 62(2):431–446. https://link.springer.com/article/10.1007/BF01840108

  136. Houghton BF, Nairn IA (1991) The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruptive and depositional mechanisms at a “wet” volcano. Bull Volcanol [Internet] [cited 2020 Aug 8] 54(1):25–49. https://link.springer.com/article/10.1007/BF00278204

  137. Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91(1–2):97–120

    Article  Google Scholar 

  138. Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakāko’i Ash, Kīlauea Volcano, Hawai’i. J Volcanol Geotherm Res 137(1–3 SPEC. ISS.):15–31

    Google Scholar 

  139. Németh K, Cronin SJ (2011 Apr 15) Drivers of explosivity and elevated hazard in basaltic fissure eruptions: the 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J Volcanol Geotherm Res 201(1–4):194–209

    Article  Google Scholar 

  140. Németh K, Cronin SJ, Smith IEM, Agustin Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol [Internet] [cited 2020 Aug 8] 74(9):2121–2137. https://link.springer.com/article/10.1007/s00445-012-0653-6

  141. Liu EJ, Cashman KV, Rust AC, Höskuldsson A (2017) Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption, Iceland. Bull Volcanol [Internet] [cited 2020 Aug 8] 79(10):1–26. https://link.springer.com/article/10.1007/s00445-017-1150-8

  142. Mura A, Adriani A, Tosi F, Lopes RMC, Sindoni G, Filacchione G, et al (2020) Infrared observations of Io from Juno. Icarus 341:113607

    Google Scholar 

  143. Roth L, Boissier J, Moullet A, Sánchez-Monge Á, de Kleer K, Yoneda M, et al (2020) An attempt to detect transient changes in Io’s SO2 and NaCl atmosphere. Icarus 350:113925

    Google Scholar 

  144. Kahn R (1985) The evolution of CO2 on Mars. Icarus 62(2):175–190

    Article  Google Scholar 

  145. Malin MC, Caplinger MA, Davis SD (2001) Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science (80) [Internet] [cited 2020 Aug 11] 294(5549):2146–2148. www.sciencemag.org

  146. Dundas CM, McEwen AS, Chojnacki M, Milazzo MP, Byrne S, McElwaine JN, et al (2017) Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat Geosci [Internet] [cited 2019 May 26] 10(12):903–907. http://www.nature.com/articles/s41561-017-0012-5

  147. Leighton RB, Murray BC, Sharp RP, Allen JD, Sloan RK (1965) Mariner IV photography of Mars: initial results. Science [Internet] [cited 2019 May 25] 149(3684):627–630. http://www.ncbi.nlm.nih.gov/pubmed/17747569

  148. Trokhimovskiy A, Fedorova A, Korablev O, Montmessin F, Bertaux J-L, Rodin A, et al (2015) Mars’ water vapor mapping by the SPICAM IR spectrometer: five Martian years of observations. Icarus [Internet] [cited 2019 Apr 5] 251:50–64. https://www.sciencedirect.com/science/article/pii/S0019103514005466

  149. Gonnermann HM (2015) Magma fragmentation. Annu Rev Earth Planet Sci [Internet] [cited 2020 Aug 10] 43(1):431–458. http://www.annualreviews.org/doi/10.1146/annurev-earth-060614-105206

  150. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res [Internet] [cited 2018 Sep 22] 17(1–4):1–29. https://www.sciencedirect.com/science/article/pii/0377027383900604

  151. Leone G, Wilson L (2001) Density structure of Io and the migration of magma through its lithosphere. J Geophys Res Planets 106(E12):32983–32995

    Article  Google Scholar 

  152. Davies AGD (2001) Volcanism on Io: the view from Galileo. Astron Geophy 42(2):10–15. https://doi.org/10.1046/j.1468-4004.2001.42210.x

  153. Basaltic Volcanism Study Project (U.S.), Lunar and Planetary Institute (1981) Basaltic volcanism on the terrestrial planets [Internet]. Pergamon Press, [cited 2019 Jan 19], 1286 p. http://ads.harvard.edu/books/bvtp/

  154. Nairn IA, Self S (1978) Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975. J Volcanol Geotherm Res 3(1–2):39–60

    Article  Google Scholar 

  155. Fitzgerald RH, Tsunematsu K, Kennedy BM, Breard ECP, Lube G, Wilson TM et al (2014) The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. J Volcanol Geotherm Res 1(286):248–262

    Article  Google Scholar 

  156. Vanderkluysen L, Harris AJL, Kelfoun K, Bonadonna C, Ripepe M (2012) Bombs behaving badly: unexpected trajectories and cooling of volcanic projectiles. Bull Volcanol [Internet] [cited 2020 Aug 10] 74(8):1849–1858. https://link.springer.com/article/10.1007/s00445-012-0635-8

  157. Cataldo E, Wilson L, Lane S, Gilbert J (2002) A model for large‐scale volcanic plumes on Io: implications for eruption rates and interactions between magmas and near‐surface volatiles. J Geophys Res Planets [Internet] [cited 2020 Aug 10] 107(E10):19–1. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JE001513-1

  158. Wilson L, Head JW (1983) A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature 302:663–669

    Google Scholar 

  159. Davies AG, Davies RL, Veeder GJ, de Kleer K, de Pater I, Matson DL, et al (2018) Discovery of a powerful, transient, explosive thermal event at Marduk Fluctus, Io, in Galileo NIMS Data. Geophys Res Lett [Internet] [cited 2018 Sep 26] 45(7):2926–2933. http://doi.wiley.com/10.1002/2018GL077477

  160. Head JW, Wilson L (1989 Jul 1) Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37(3–4):261–271

    Article  Google Scholar 

  161. Ollila AM, Newsom HE, Clark B, Wiens RC, Cousin A, Blank JG et al (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: early results for Gale crater from Bradbury Landing site to Rocknest. J Geophys Res E Planets 119:255–285

    Article  Google Scholar 

  162. Sautter V, Fabre C, Forni O, Toplis MJ, Cousin A, Ollila AM, et al (2014) Igneous mineralogy at Bradbury rise: the first ChemCam campaign at Gale crater. J Geophys Res Planets [Internet] [cited 2019 Mar 27] 119(1):30–46. http://doi.wiley.com/10.1002/2013JE004472

  163. Schmidt ME, Campbell JL, Gellert R, Perrett GM, Treiman AH, Blaney DL, et al (2014) Geochemical diversity in first rocks examined by the curiosity rover in gale crater: evidence for and significance of an alkali and volatile-rich igneous source. J Geophys Res Planets [Internet] [cited 2018 Oct 18] 119(1):64–81. http://doi.wiley.com/10.1002/2013JE004481

  164. Gasparri D, Leone G, Cataldo V, Punjabi V, Nandakumar S (2020) Lava filling of Gale crater from Tyrrhenus Mons on Mars. J Volcanol Geotherm Res 389:106743

    Google Scholar 

  165. Liu EJ, Cashman KV, Rust AC, Edmonds M (2018) Insights into the dynamics of mafic magmatic-hydromagmatic eruptions from volatile degassing behaviour: the Hverfjall Fires, Iceland. J Volcanol Geotherm Res 1(358):228–240

    Article  Google Scholar 

  166. Saucedo R, Macías JL, Ocampo-Díaz YZE, Gómez-Villa W, Rivera-Olguín E, Castro-Govea R, et al (2017) Mixed magmatic-phreatomagmatic explosions during the formation of the Joya Honda maar, San Luis Potosí, Mexico. In: Geological society special publication [Internet]. Geological Society of London [cited 2020 Aug 11], pp 255–279. https://sp.lyellcollection.org/content/446/1/255

  167. Nunns AG, Hochstein MP (2019) Geophysical constraints on the structure and formation of Onepoto, Orakei, Pupuke and Tank Farm maar volcanoes, Auckland volcanic field. New Zeal J Geol Geophys [Internet] [cited 2020 Aug 11] 62(3):341–356. https://www.tandfonline.com/doi/abs/10.1080/00288306.2019.1581239

  168. Graettinger AH (2018 May) Trends in Maar crater size and shape using the global Maar Volcano location and shape (MaarVLS) database. J Volcanol Geotherm Res 15(357):1–13

    Article  Google Scholar 

  169. Allen CC (1979 Dec 30) Volcano-ice interactions on Mars. J Geophys Res Solid Earth 84(B14):8048–8059

    Article  Google Scholar 

  170. Thordarson T, Self S (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull Volcanol [Internet] [cited 2020 Aug 11] 55(4):233–263. https://link.springer.com/article/10.1007/BF00624353

  171. Keszthelyi LP, Jaeger WL, Dundas CM, Martínez-Alonso S, McEwen AS, Milazzo MP (2010) Hydrovolcanic features on Mars: preliminary observations from the first Mars year of HiRISE imaging. Icarus [Internet] [cited 2018 Oct 18] 205(1):211–229. https://www.sciencedirect.com/science/article/pii/S0019103509003443

  172. Hamilton CW, Fagents SA, Thordarson T (2011) Lava–ground ice interactions in Elysium Planitia, Mars: geomorphological and geospatial analysis of the Tartarus Colles cone groups. J Geophys Res [Internet] [cited 2019 Aug 20] 116(E3):E03004. http://doi.wiley.com/10.1029/2010JE003657

  173. Dundas CM (2017) Effects of lava heating on volatile-rich slopes on Io. J Geophys Res Planets [Internet] [cited 2020 Aug 11] 122(3):546–559. http://doi.wiley.com/10.1002/2016JE005177

  174. Snyder CW (1979) The planet Mars as seen at the end of the Viking mission. J Geophys Res Solid Earth 84(B14):8487–8519

    Article  Google Scholar 

  175. Ingersoll AP (1970) Mars: occurrence of liquid water. Science [Internet] [cited 2019 Apr 17] 168(3934):972–973. http://www.ncbi.nlm.nih.gov/pubmed/17844187

  176. Leone G (2017) Mangala Valles, Mars: a reassessment of formation processes based on a new geomorphological and stratigraphic analysis of the geological units. J Volcanol Geotherm Res 337:62–80

    Article  Google Scholar 

  177. Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geotherm Res 185(1–2):69–95

    Google Scholar 

  178. Mouginis-Mark PJ (2005) Prodigious ash deposits near the summit of Arsia Mons volcano, Mars. Geophys Res Lett [Internet] [cited 2019 Apr 5] 29(16):15-1–15-4. http://doi.wiley.com/10.1029/2002GL015296

  179. Hauber E, Brož P, Jagert F, Jodowski P, Platz T (2011) Very recent and wide-spread basaltic volcanism on Mars. Geophys Res Lett [Internet] [cited 2020 Aug 11] 38(10):L10201 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011GL047310

  180. Bouley S, Baratoux D, Paulien N, Missenard Y, Saint- B (2018) The revised tectonic history of Tharsis. Earth Planet Sci Lett 15(488):126–133

    Article  Google Scholar 

  181. Plescia JB (2004) Morphometric properties of Martian volcanoes. J Geophys Res [Internet] [cited 2018 Sep 22] 109(E3):E03003. http://doi.wiley.com/10.1029/2002JE002031

  182. Williams DA, Greeley R, Zuschneid W, Werner SC, Neukum G, Crown DA, et al (2007) Hadriaca Patera: insights into its volcanic history from Mars express high resolution stereo camera. J Geophys Res [Internet] [cited 2020 Aug 13] 112(E10):E10004. http://doi.wiley.com/10.1029/2007JE002924

  183. Williams DA, Manfredi L, Fergason RL, Combe J-P, Poulet F, Rosemberg C, et al (2010) Surface-compositional properties of the Malea Planum region of the Circum-Hellas Volcanic Province, Mars. Earth Planet Sci Lett [Internet] [cited 2019 Sep 6] 294(3–4):451–465. https://www.sciencedirect.com/science/article/pii/S0012821X09006669

  184. Williams DA, Greeley R, Manfredi L, Raitala J, Neukum G (2010) The Circum-Hellas Volcanic Province, Mars: assessment of wrinkle-ridged plains. Earth Planet Sci Lett 294:492–505

    Article  Google Scholar 

  185. Leonard GJ, Tanaka KL (2001) Geologic map of the Hellas region of Mars. US Department of the Interior, US Geological Survey, Reston, Virginia

    Google Scholar 

  186. Frey H (2008) Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys Res Lett 35(13):L13203

    Article  Google Scholar 

  187. Lillis RJ, Manga M, Mitchell DL, Lin RP, Acuna MH (2006) Unusual magnetic signature of the Hadriaca Patera Volcano: implications for early Mars. Geophys Res Lett [Internet] [cited 2020 Aug 12] 33(3):L03202. http://doi.wiley.com/10.1029/2005GL024905

  188. Lopes RMC, Kilburn CRJ (1990) Emplacement of lava flow fields: application of terrestrial studies to Alba Patera, Mars. J Geophys Res [Internet] [cited 2019 Mar 27] 95(B9):14383. http://doi.wiley.com/10.1029/JB095iB09p14383

  189. Ivanov MA, Head JW (2006) Alba Patera, Mars: topography, structure, and evolution of a unique late Hesperian-early Amazonian shield volcano. J Geophys Res E Planets 111(E9):E09003

    Article  Google Scholar 

  190. Cattermole P (1990) Volcanic flow development at Alba Patera, Mars. Icarus [Internet] [cited 2019 Mar 27] 83(2):453–493. https://www.sciencedirect.com/science/article/pii/001910359090079O?via%3Dihub

  191. Schneeberger DM, Pieri DC (1991) Geomorphology and stratigraphy of Alba Patera, Mars. J Geophys Res [Internet] [cited 2020 Aug 13] 96(B2):1907. http://doi.wiley.com/10.1029/90JB01662

  192. Mouginis-Mark PJ, Wilson L, Zimbelman JR (1988) Polygenic eruptions on Alba Patera, Mars. Bull Volcanol [Internet] [cited 2020 Aug 13] 50(6):361–379. https://link.springer.com/article/10.1007/BF01050636

  193. Leone G (2015) Transition topography (Mars). In: Encyclopedia of planetary landforms [Internet]. Springer, New York, NY, pp 1–6. https://doi.org/10.1007/978-1-4614-9213-9_650-1

  194. Robinson MS, Mouginis PJ, Zimbelman JR, Wu SSC, Ablin KK, Howington AE (1993) Chronology, eruption duration, and atmospheric contribution of the Martian volcano Apollinaris patera. Icarus 104(2):301–323

    Article  Google Scholar 

  195. El Maarry MR, Dohm JM, Marzo GA, Fergason R, Goetz W, Heggy E, et al (2012) Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars. Icarus [Internet] [cited 2018 Sep 22] 217(1):297–314. https://www.sciencedirect.com/science/article/pii/S0019103511004155

  196. Werner SC (2009) The global Martian volcanic evolutionary history. Icarus 201:44–68

    Article  Google Scholar 

  197. Malin MC, Edgett KS (2000) Sedimentary rocks of early Mars. Science (80) [Internet] [cited 2020 Aug 13] 290(5498):1927–1937. www.sciencemag.org

  198. Edgett KS, Malin MC (2002) Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys Res Lett [Internet] [cited 2020 Aug 13] 29(24):32-1–32-4. http://doi.wiley.com/10.1029/2002GL016515

  199. Bishop JL, Rampe EB (2016) Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth Planet Sci Lett 15(448):42–48

    Article  Google Scholar 

  200. Wada K (1978) Allophane and imogolite. Dev Sedimentol 26(C):147–187

    Google Scholar 

  201. Levard C, Basile-Doelsch I (2016) Geology and mineralogy of imogolite-type materials. In: Developments in clay science. Elsevier B.V., pp 49–65

    Google Scholar 

  202. Rogers AD, Warner NH, Golombek MP, Head JW, Cowart JC (2018) Areally extensive surface bedrock exposures on Mars: many are clastic rocks, not Lavas. Geophys Res Lett [Internet] [cited 2019 Sep 11] 45(4):1767–1777. http://doi.wiley.com/10.1002/2018GL077030

  203. Mandon L, Quantin-Nataf C, Thollot P, Mangold N, Lozac’h L, Dromart G, et al (2020) Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus 336:113436

    Google Scholar 

  204. Kremer CH, Mustard JF, Bramble MS (2019) A widespread olivine-rich ash deposit on Mars. Geology 47(7):677–681

    Article  Google Scholar 

  205. Fawdon P, Skok JR, Balme MR, Vye-Brown CL, Rothery DA, Jordan CJ (2015) The geological history of Nili Patera, Mars. J Geophys Res Planets [Internet] [cited 2020 Aug 15] 120(5):951–977. http://doi.wiley.com/10.1002/2015JE004795

  206. Robbins SJ, Achille G Di, Hynek BM. The volcanic history of Mars: high-resolution crater-based studies of the calderas of 20 volcanoes. Icarus [Internet] [cited 2018 Nov 13] 211(2):1179–1203. https://www.sciencedirect.com/science/article/pii/S0019103510004318

  207. Plescia JB (2000) Geology of the Uranius Group Volcanic constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus. Icarus [Internet] [cited 2019 May 17] 143(2):376–396. https://www.sciencedirect.com/science/article/abs/pii/S0019103599962590

  208. Reimers CE, Komar PD (1979) Evidence for explosive volcanic density currents on certain Martian volcanoes. Icarus [Internet] [cited 2018 Sep 22] 39(1):88–110. https://www.sciencedirect.com/science/article/pii/0019103579901039

  209. Plescia JB (2003) Tharsis Tholus: an unusual Martian volcano. Icarus 165(2):223–241

    Article  Google Scholar 

  210. Platz T, Münn S, Walter TR, Procter JN, McGuire PC, Dumke A et al (2011) Vertical and lateral collapse of Tharsis Tholus, Mars. Earth Planet Sci Lett. 305(3–4):445–455

    Article  Google Scholar 

  211. Mouginis-Mark PJ, Christensen PR (2005) New observations of volcanic features on Mars from the THEMIS instrument. J Geophys Res Planets [Internet] [cited 2019 Jul 30];110(E8). http://doi.wiley.com/10.1029/2005JE002421

  212. Hauber E, Van Gasselt S, Ivanov B, Werner S, Head JW, Neukum G, et al (2005) Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature [Internet] [cited 2020 Aug 14] 434(7031):356–61. www.nature.com/nature

  213. De Pablo MA, Michael GG, Centeno JD (2013) Age and evolution of the lower NW flank of the Hecates Tholus volcano, Mars, based on crater size-frequency distribution on CTX images. Icarus 226(1):455–469

    Article  Google Scholar 

  214. de Pablo Hernández MÁ, Carrillo JDC (2012) Geomorphological map of the lower NW flank of the Hecates Tholus volcano, Mars (scale 1:100,000). J Maps [Internet] [cited 2020 Aug 14] 8(3):208–214. https://www.tandfonline.com/doi/full/10.1080/17445647.2012.703902

  215. Stewart EM, Head JW (2001) Ancient Martian volcanoes in the Aeolis region: new evidence from MOLA data, J Geophys Res 106(E8):17505–17513. https://doi.org/10.1029/2000JE001322

  216. Bleacher JE, Greeley R, Williams DA, Cave SR, Neukum G (2007) Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J Geophys Res E Planets 112:E09005, https://doi.org/10.1029/2006JE002873

  217. Moyer EJ, Irion FW, Yung YL, Gunson MR (1996) ATMOS stratospheric deuterated water and implications for troposphere‐stratosphere transport. Geophys Res Lett [Internet] [cited 2019 Apr 5] 23(17):2385–2388. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96GL01489%4010.1002/%28ISSN%291944-8007.ATLASS1

  218. Peters SI, Christensen PR (2017) Flank vents and graben as indicators of Late Amazonian volcanotectonic activity on Olympus Mons. J Geophys Res Planets 122:501–523

    Article  Google Scholar 

  219. Carr MH, Greeley R, Blasius KR, Guest JE, Murray JB (1977) Some Martian volcanic features as viewed from the Viking orbiters. J Geophys Res [Internet] [cited 2020 Aug 17] 82(28):3985–4015. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JS082i028p03985

  220. Frey H, Jarosewich M (1982) Subkilometer Martian volcanoes: properties and possible terrestrial analogs. J Geophys Res [Internet] [cited 2018 Nov 6] 87(B12):9867–9879. http://doi.wiley.com/10.1029/JB087iB12p09867

  221. Plescia JB (1994) Geology of the small Tharsis Volcanoes: Jovis Tholus, Ulysses Patera, BibIls Patera, Mars. Icarus 111(1):246–269

    Article  Google Scholar 

  222. West M (1974) Martian volcanism: additional observations and evidence for pyroclastic activity. Icarus 21(1):1–11

    Article  Google Scholar 

  223. Keszthelyi L, Jaeger W, McEwen A, Tornabene L, Beyer RA, Dundas C et al (2008) High resolution imaging science experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars reconnaissance orbiter primary science phase. J Geophys Res E Planets 113:E04005, https://doi.org/10.1029/2007JE002968

  224. Harrison KP, Chapman MG (2008) Evidence for ponding and catastrophic floods in central Valles Marineris, Mars. Icarus 198(2):351–364

    Article  Google Scholar 

  225. Brož P, Hauber E, Wray JJ, Michael G (2017) Amazonian volcanism inside Valles Marineris on Mars. Earth Planet Sci Lett 1(473):122–130

    Article  Google Scholar 

  226. Meresse S, Costard F, Mangold N, Masson P, Neukum G (2008) Formation and evolution of the chaotic terrains by subsidence and magmatism: hydraotes Chaos, Mars. Icarus 194(2):487–500

    Google Scholar 

  227. Korteniemi J, Kukkonen S (2018) Volcanic structures within Niger and Dao Valles, Mars, and implications for outflow channel evolution and Hellas basin rim development. Geophys Res Lett [Internet] [cited 2020 Aug 17] 45(7):2934–2944. https://onlinelibrary.wiley.com/doi/abs/10.1002/2018GL077067

  228. Lanz JK, Saric MB (2009) Cone fields in SW Elysium Planitia: hydrothermal venting on Mars? J Geophys Res [Internet] [cited 2018 Oct 18] 114(E2):E02008. http://doi.wiley.com/10.1029/2008JE003209

  229. Lanz JK, Wagner R, Wolf U, Kröchert J, Neukum G (2010) Rift zone volcanism and associated cinder cone field in Utopia Planitia, Mars. J Geophys Res [Internet] [cited 2020 Aug 18] 115(E12):E12019. http://doi.wiley.com/10.1029/2010JE003578

  230. Skinner JA, Tanaka KL (2007 Jan 1) Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland-lowland boundary plain, Mars. Icarus 186(1):41–59

    Article  Google Scholar 

  231. Okubo CH (2016) Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars. Icarus 1(269):23–37

    Article  Google Scholar 

  232. Wheatley DF, Chan MA, Okubo CH (2019) Clastic pipes and mud volcanism across Mars: terrestrial analog evidence of past Martian groundwater and subsurface fluid mobilization. Icarus 1(328):141–151

    Article  Google Scholar 

  233. Senthil Kumar P, Krishna N, Prasanna Lakshmi KJ, Raghukanth STG, Dhabu A, Platz T (Jan) Recent seismicity in Valles Marineris, Mars: insights from young faults, landslides, boulder falls and possible mud volcanoes. Earth Planet Sci Lett 1(505):51–64

    Article  Google Scholar 

  234. Fagents SA, Lanagan P, Greeley R (2002) Rootless cones on Mars: a consequence of lava-ground ice interaction. Geol Soc Lond Spec Publ [Internet] [cited 2019 Aug 20] 202(1):295–317. http://sp.lyellcollection.org/lookup/doi/10.1144/GSL.SP.2002.202.01.15

  235. Reynolds P, Brown RJ, Thordarson T, Llewellin EW, Fielding K (2015) Rootless cone eruption processes informed by dissected tephra deposits and conduits. Bull Volcanol [Internet] [cited 2020 Aug 18] 77(9):1–17. http://imagej.nih

  236. Cattermole P (1986) Linear volcanic features at Alba Patera, Mars—PRobable spatter ridges. J Geophys Res [Internet] [cited 2020 Aug 18] 91(B13):E159. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB091iB13p0E159

  237. Greeley R, Fagents SA (2001) Icelandic pseudocraters as analogs to some volcanic cones on Mars. J Geophys Res Planets [Internet] [cited 2019 Aug 20] 106(E9):20527–20546. http://doi.wiley.com/10.1029/2000JE001378

  238. Baker VR (2001) Water and the martian landscape. Nature [Internet] [cited 2019 Apr 11] 412(6843):228–236. http://www.nature.com/articles/35084172

  239. Feldman WC, Prettyman TH, Maurice S, Plaut JJ, Bish DL, Vaniman DT, et al (2004) Global distribution of near-surface hydrogen on Mars. J Geophys Res E Planets [Internet] [cited 2020 Aug 18] 109(9). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003JE002160

  240. Christensen PR (2006) Water at the Poles and in Permafrost regions of Mars. Elements [Internet] [cited 2019 Apr 5] 2(3):151–155. https://pubs.geoscienceworld.org/elements/article/2/3/151-155/137698

  241. Byrne S, Dundas CM, Kennedy MR, Mellon MT, McEwen AS, Cull SC, et al (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science (80) [Internet] [cited 2020 Aug 18] 325(5948):1674–1676. http://science.sciencemag.org/

  242. Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton W V, et al (2009) H2O at the Phoenix landing site. Science [Internet] [cited 2019 Apr 5] 325(5936):58–61. http://www.ncbi.nlm.nih.gov/pubmed/19574383

  243. Vincendon M, Forget F, Mustard J (2010) Water ice at low to midlatitudes on Mars. J Geophys Res [Internet] [cited 2020 Aug 18] 115(E10):E10001. http://doi.wiley.com/10.1029/2010JE003584

  244. Rossbacher LA, Judson S (1981) Ground ice on Mars: inventory, distribution, and resulting landforms. Icarus [Internet] [cited 2019 Aug 8] 45(1):39–59. https://www.sciencedirect.com/science/article/pii/0019103581900051

  245. Head JW, Wilson L (2007) Heat transfer in volcano-ice interactions on Mars: synthesis of environments and implications for processes and landforms. In: Annals of glaciology

    Google Scholar 

  246. Wilson L, Mouginis-Mark PJ (2003) Phreato-magmatic dike-cryosphere interactions as the origin of small ridges north of Olympus Mons, Mars. Icarus 165(2):242–252

    Google Scholar 

  247. Chapman MG, Tanaka KL (2001) Interior trough deposits on Mars: Subice volcanoes? J Geophys Res Planets [Internet] [cited 2020 Aug 19] 106(E5):10087–10100. http://doi.wiley.com/10.1029/2000JE001303

  248. Ghatan GJ, Head JW III (2002) Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J Geophys Res Planets 107(E7):5048–5071

    Article  Google Scholar 

  249. Chapman MG, Allen CC, Gudmundsson MT, Gulick VC, Jakobsson SP, Lucchitta BK, et al (2000) Volcanism and ice interactions on Earth and Mars. In: Environmental effects on volcanic eruptions [Internet]. Springer, US [cited 2020 Aug 19], pp 39–73. https://link.springer.com/chapter/10.1007/978-1-4615-4151-6_3

  250. Christiansen EH (1989) Lahars in the Elysium region of Mars. Geology [Internet] [cited 2018 Oct 22] 17(3):203. https://pubs.geoscienceworld.org/geology/article/17/3/203-206/204846

  251. Russell PS, Head JW (2003) Elysium-Utopia flows as mega-lahars: a model of dike intrusion, cryosphere cracking, and water-sediment release. J Geophys Res E Planets [Internet] [cited 2020 Aug 18] 108(6). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002JE001995

  252. Wilson L, Mouginis-Mark PJ (2003) Phreatomagmatic explosive origin of Hrad Vallis, Mars. J Geophys Res E Planets [Internet] [cited 2020 Aug 18] 108(8):1–1. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002JE001927

  253. Pedersen GBM (2013) Frozen Martian lahars? Evaluation of morphology, degradation and geologic development in the Utopia-Elysium transition zone. Planet Space Sci 85:59–77

    Article  Google Scholar 

  254. Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A (2000) Lahars at Merapi volcano, central Java: an overview. J Volcanol Geotherm Res 100(1–4):423–456

    Article  Google Scholar 

  255. Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods—a global review [Internet], vol 52. Bulletin of volcanology. Springer [cited 2020 Aug 18], pp 1–27. https://link.springer.com/article/10.1007/BF00641384

  256. Leverington DW (2007) Was the Mangala Valles system incised by volcanic flows? J Geophys Res [Internet] [cited 2018 Oct 25] 112(E11):E11005. http://doi.wiley.com/10.1029/2007JE002896

  257. Leverington DW (2004) Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J Geophys Res [Internet] [cited 2018 Oct 25] 109(E10):E10011. http://doi.wiley.com/10.1029/2004JE002311

  258. Leverington DW (2006) Volcanic processes as alternative mechanisms of landform development at a candidate crater-lake site near Tyrrhena Patera, Mars. J Geophys Res E Planets 111(E11):E11002

    Article  Google Scholar 

  259. Leverington DW (2011) A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132:51–75

    Article  Google Scholar 

  260. Gudmundsson MT, Sigmundsson F, Björnsson H (1997) Ice-volcano interaction of the 1996 Gjalp subglacial eruption, Vatnajokull, Iceland. Nature [Internet] [cited 2020 Aug 19] 389(6654):954–957. https://www.nature.com/articles/40122

  261. Honnorez J, Kirst P (1975) Submarine basaltic volcanism: morphometric parameters for discriminating hyaloclastites from hyalotuffs. Bull Volcanol [Internet] [cited 2020 Aug 19] 39(3):441–465. https://link.springer.com/article/10.1007/BF02597266

  262. Skilling IP (1994) Evolution of an englacial volcano: Brown Bluff, Antarctica. Bull Volcanol [Internet] [cited 2020 Aug 19] 56(6–7):573–591. https://link.springer.com/article/10.1007/BF00302837

  263. Chapman MG (1994 Jun 1) Evidence, age, and thickness of a Frozen Paleolake in Utopia Planitia, Mars. Icarus 109(2):393–406

    Article  Google Scholar 

  264. Chapman MG (2003 Feb 1) Sub-ice volcanoes and ancient oceans/lakes: a Martian challenge. Glob Planet Change 35(3–4):185–198

    Article  Google Scholar 

  265. Martínez-Alonso S, Mellon MT, Banks ME, Keszthelyi LP, McEwen AS (2011) Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars. Icarus 212(2):597–621

    Article  Google Scholar 

  266. Scanlon KE, Head JW, Wilson L, Marchant DR (2014) Volcano–ice interactions in the Arsia Mons tropical mountain glacier deposits. Icarus [Internet] [cited 2019 Apr 5] 237:315–339. https://www.sciencedirect.com/science/article/pii/S0019103514002164

  267. Ann Hodges C, Moore HJ (1979) The subglacial birth of Olympus Mons and its aureoles. J Geophys Res [Internet] [cited 2020 Aug 19] 84(B14):8061. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB084iB14p08061

  268. Frey H, Lowry BL, Chase SA (1979) Pseudocraters on Mars. J Geophys Res [Internet] [cited 2019 Aug 20] 84(B14):8075. http://doi.wiley.com/10.1029/JB084iB14p08075

  269. Mouginis PJ (1985 Nov 1) Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus 64(2):265–284

    Article  Google Scholar 

  270. Malin MC (1992) Mars observer camera. J Geophys Res [Internet] [cited 2020 Aug 20] 97(E5):7699–7718. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/92JE00340

  271. Tanaka KL, Fortezzo CM, Hayward RK, Rodriguez JAP, Skinner JA (2011) History of plains resurfacing in the Scandia region of Mars. Planet Space Sci 59(11–12):1128–1142

    Article  Google Scholar 

  272. Greeley R, Guest JE (1987) Geologic map of the eastern equatorial region of Mars [Internet] IMAP [cited 2019 Jul 27]. https://pubs.er.usgs.gov/publication/i1802B

  273. Bruno BC, Fagents SA, Thordarson T, Baloga SM, Pilger E (2004) Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes. J Geophys Res [Internet] [cited 2019 Aug 20] 109(E7):E07009. http://doi.wiley.com/10.1029/2004JE002273

  274. Bruno BC, Fagents SA, Hamilton CW, Burr DM, Baloga SM (2006) Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: using spatial distribution as a remote sensing tool. J Geophys Res [Internet] [cited 2020 Aug 20] 111(E6):E06017. http://doi.wiley.com/10.1029/2005JE002510

  275. Noguchi R, Kurita K (2015) Unique characteristics of cones in Central Elysium Planitia, Mars. Planet Space Sci 111(1):44–54

    Article  Google Scholar 

  276. Dundas CM, Keszthelyi LP (2013) Modeling steam pressure under martian lava flows. Icarus 226(1):1058–1067

    Article  Google Scholar 

  277. Hamilton CW, Fagents SA, Wilson L (2010) Explosive lava-water interactions in Elysium Planitia, Mars: geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. J Geophys Res [Internet] [cited 2020 Aug 20] 115(E9):E09006. http://doi.wiley.com/10.1029/2009JE003546

  278. Bertagnini A, Landi P, Santacroce R, Sbrana A (1991) The 1906 eruption of Vesuvius: from magmatic to phreatomagmatic activity through the flashing of a shallow depth hydrothermal system. Bull Volcanol [Internet] [cited 2020 Aug 19] 53(7):517–532. https://link.springer.com/article/10.1007/BF00298153

  279. Clarke H, Troll VR, Carracedo JC (2009) Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife Canary Islands. J Volcanol Geotherm Res 180(2–4):225–245

    Article  Google Scholar 

  280. Cioni R, Sbrana A, Vecci R (1992) Morphologic features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J Volcanol Geotherm Res 51(1–2):61–78

    Article  Google Scholar 

  281. Mouginis PJ, Wilson L (2019) Late-stage intrusive activity at Olympus Mons, Mars: summit inflation and giant dike formation. Icarus 1(319):459–469

    Article  Google Scholar 

  282. Pedersen GBM, Head JW, Wilson L (2010) Formation, erosion and exposure of early Amazonian dikes, dike swarms and possible subglacial eruptions in the Elysium Rise/Utopia Basin Region, Mars. Earth Planet Sci Lett 294(3–4):424–439

    Article  Google Scholar 

  283. Levy JS, Goudge TA, Head JW, Fassett CI (2017) Candidate volcanic and impact-induced ice depressions on Mars. Icarus 15(285):185–194

    Article  Google Scholar 

  284. Scott ED, Wilson L (1999) Evidence for a sill emplacement event on the upper flanks of the Ascraeus Mons shield volcano, Mars. J Geophys Res Planets [Internet] [cited 2020 Aug 19] 104(E11):27079–27089. http://doi.wiley.com/10.1029/1999JE001049

  285. Morris AR, Mouginis PJ (2006) Thermally distinct craters near Hrad Vallis, Elysium Planitia, Mars. Icarus 180(2):335–347

    Article  Google Scholar 

  286. Pajola M, Rossato S, Baratti E, Mangili C, Mancarella F, McBride K, et al (2016) The Simud–Tiu Valles hydrologic system: a multidisciplinary study of a possible site for future Mars on-site exploration. Icarus [Internet] [cited 2019 Jul 7] 268:355–381. https://www.sciencedirect.com/science/article/pii/S0019103516000038

  287. Picardi G, Plaut JJ, Biccari D, Bombaci O, Calabrese D, Cartacci M, et al (2005) Planetary science: Radar soundings of the subsurface of Mars. Science (80) [Internet] [cited 2020 Aug 24] 310(5756):1925–1928. http://science.sciencemag.org/

  288. Watters TR, Campbell B, Carter L, Leuschen CJ, Plaut JJ, Picardi G, et al (2007) Radar sounding of the Medusae Fossae formation Mars: equatorial ice or dry, low-density deposits? Science [Internet] [cited 2019 Apr 6] 318(5853):1125–1128. http://www.ncbi.nlm.nih.gov/pubmed/17975034

  289. Orosei R, Rossi AP, Cantini F, Caprarelli G, Carter LM, Papiano I, et al (2017) Radar sounding of Lucus Planum, Mars, by MARSIS. J Geophys Res Planets [Internet] [cited 2020 Aug 24] 122(7):1405–1418. http://doi.wiley.com/10.1002/2016JE005232

  290. Ganesh I, Carter LM, Smith IB (2020) SHARAD mapping of Arsia Mons caldera. J Volcanol Geotherm Res 390:106748

    Google Scholar 

  291. Fassett CI, Head JW (2007) Valley formation on martian volcanoes in the Hesperian: evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on Ceraunius Tholus. Icarus [Internet] [cited 2019 Jul 20] 189(1):118–135. https://www.sciencedirect.com/science/article/pii/S001910350700022X

  292. Fergason RL, Christensen PR (2008) Formation and erosion of layered materials: geologic and dust cycle history of eastern Arabia Terra, Mars. J Geophys Res E Planets [Internet] [cited 2020 Aug 24] 113(12). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JE002973

  293. Lewis KW, Aharonson O (2014) Occurrence and origin of rhythmic sedimentary rocks on Mars. J Geophys Res Planets [Internet] [cited 2020 Aug 24] 119(6):1432–1457. http://doi.wiley.com/10.1002/2013JE004404

  294. Annex AM, Lewis KW (2020) Regional correlations in the layered deposits of Arabia Terra, Mars. J Geophys Res Planets [Internet] [cited 2020 Aug 24] 125(6). https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JE006188

  295. Sullivan R, Arvidson R, Bell JF, Gellert R, Golombek M, Greeley R, et al (2008) Wind-driven particle mobility on Mars: insights from Mars exploration Rover observations at “El Dorado” and surroundings at Gusev Crater. J Geophys Res [Internet] [cited 2020 Aug 25] 113(E6). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008JE003101

  296. Adeli S, Hauber E, Kleinhans M, Le Deit L, Platz T, Fawdon P, et al (2016) Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars. Icarus [Internet] [cited 2019 Jul 7] 277:286–299. https://www.sciencedirect.com/science/article/abs/pii/S0019103516301786

  297. Michalski JR, Dobrea EZN, Niles PB, Cuadros J (2017) Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat Commun [Internet] [cited 2020 Aug 24] 8(1):1–10. www.nature.com/naturecommunications

  298. Grant JA, Wilson SA, Noe Dobrea E, Fergason RL, Griffes JL, Moore JM et al (2010) HiRISE views enigmatic deposits in the Sirenum Fossae region of Mars. Icarus 205(1):53–63

    Article  Google Scholar 

  299. Adeli S, Hauber E, Le Deit L, Jaumann R (2015) Geologic evolution of the eastern Eridania basin: implications for aqueous processes in the southern highlands of Mars. J Geophys Res Planets [Internet] [cited 2020 Aug 24] 120(11):1774–1799. http://doi.wiley.com/10.1002/2015JE004898

  300. Ehlmann BL, Mustard JF, Murchie SL (2010) Geologic setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201

    Article  Google Scholar 

  301. Che C, Glotch TD (2014) Thermal alteration: a possible reason for the inconsistency between OMEGA/CRISM and TES detections of phyllosilicates on Mars? Geophys Res Lett 41:321–327

    Article  Google Scholar 

  302. Niles PB, Michalski J, Ming DW, Golden DC (2017) Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat Commun [Internet] [cited 2020 Aug 28] 8(1):1–5. www.nature.com/naturecommunications

  303. Leverington DW (2020) Incision of Ma’adim Vallis (Mars) by dry volcanic megafloods effused from multiple highland sources. Planet Space Sci 191:105021

    Google Scholar 

  304. Leone G (2014) A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J Volcanol Geotherm Res 277:1–8

    Article  Google Scholar 

  305. Sakimoto SEH, Frey HV, Garvin JB, Roark JH (1999) Topography, roughness, layering, and slope properties of the Medusae Fossae formation from Mars Orbiter Laser Altimeter (MOLA) and Mars Orbiter Camera (MOC) data. J Geophys Res Planets [Internet] [cited 2020 Aug 25] 104(E10):24141–24154. http://doi.wiley.com/10.1029/1999JE001044

  306. Kerber L, Head JW (2010) The age of the Medusae Fossae formation: evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts. Icarus 206(2):669–684

    Article  Google Scholar 

  307. Harrison SK, Balme MR, Hagermann A, Murray JB, Muller JP (2010) Mapping Medusae Fossae formation materials in the southern highlands of Mars. Icarus 209(2):405–415

    Article  Google Scholar 

  308. de Silva SL, Bailey JE, Mandt KE, Viramonte JM (2010) Yardangs in terrestrial ignimbrites: synergistic remote and field observations on Earth with applications to Mars. Planet Space Sci [Internet] [cited 2019 Aug 14] 58(4):459–471. https://www.sciencedirect.com/science/article/pii/S0032063309003018

  309. Zimbelman JR, Griffin LJ (2010) HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae formation, Mars. Icarus 205:198–210

    Article  Google Scholar 

  310. Kerber L, Head JW (2012) A progression of induration in Medusae Fossae Formation transverse aeolian ridges: evidence for ancient aeolian bedforms and extensive reworking. Earth Surf Process Landforms [Internet] [cited 2020 Aug 25] 37(4):422–433. http://doi.wiley.com/10.1002/esp.2259

  311. Liu J, Di K, Gou S, Yue Z, Liu B, Xiao J, et al (2020) Mapping and spatial statistical analysis of Mars Yardangs. Planet Space Sci 192:105035

    Google Scholar 

  312. Schultz PH, Lutz AB (1988) Polar wandering of Mars. Icarus 73(1):91–141

    Article  Google Scholar 

  313. Forsythe RD, Zimbelman JR (1988) Is the Gordii Dorsum escarpment on Mars an exhumed transcurrent fault? Nature 336(6195):143–146

    Article  Google Scholar 

  314. Mouginis-Mark PJ, Zimbelman JR (2020) Rafted pumice: a new model for the formation of the Medusae Fossae formation, Mars. Icarus 343:113684

    Google Scholar 

  315. Bandfield JL (2002) Global mineral distributions on Mars. J Geophys Res 107(E6). doi:10.1029/2001JE001510

    Google Scholar 

  316. Ruff SW, Christensen PR (2002) Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data. J Geophys Res E Planets [Internet] [cited 2020 Aug 26] 107(12):2–1. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JE001580

  317. Ruff SW, Christensen PR (2007) Basaltic andesite, altered basalt, and a TES-based search for smectite clay minerals on Mars. Geophys Res Lett [Internet] [cited 2020 Aug 26] 34(10):L10204. http://doi.wiley.com/10.1029/2007GL029602

  318. Ody A, Poulet F, Langevin Y, Bibring JP, Bellucci G, Altieri F, et al (2012) Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. J Geophys Res E Planets [Internet] [cited 2020 Mar 5];117(9). http://doi.wiley.com/10.1029/2012JE004117

  319. Ody A, Poulet F, Bibring JP, Loizeau D, Carter J, Gondet B, et al (2013) Global investigation of olivine on Mars: insights into crust and mantle compositions. J Geophys Res E Planets [Internet] [cited 2020 Mar 5] 118(2):234–262. http://doi.wiley.com/10.1029/2012JE004149

  320. Harmon JK, Arvidson RE, Guinness EA, Campbell BA, Slade MA (1999) Mars mapping with delay-Doppler radar. J Geophys Res Planets [Internet] [cited 2020 Aug 26] 104(E6):14065–14089. http://doi.wiley.com/10.1029/1998JE900042

  321. Carter LM, Campbell BA, Watters TR, Phillips RJ, Putzig NE, Safaeinili A et al (2009) Shallow radar (SHARAD) sounding observations of the Medusae Fossae formation, Mars. Icarus 199(2):295–302

    Article  Google Scholar 

  322. Hood LL, Harrison KP, Langlais B, Lillis RJ, Poulet F, Williams DA (2010) Magnetic anomalies near Apollinaris Patera and the Medusae Fossae formation in Lucus Planum, Mars. Icarus 208(1):118–131

    Google Scholar 

  323. Wilson L, Head JW (2009) Tephra deposition on glaciers and ice sheets on Mars: influence on ice survival, debris content and flow behavior. J Volcanol Geotherm Res [Internet] [cited 2019 Apr 6] 185(4):290–297. https://www.sciencedirect.com/science/article/pii/S037702730800543X

  324. Banfield D, Spiga A, Newman C, Forget F, Lemmon M, Lorenz R, et al (2020) The atmosphere of Mars as observed by InSight. Nat Geosci [Internet] [cited 2020 Aug 28] 13:190–198.https://doi.org/10.1038/s41561-020-0534-0

  325. Lellouch E, Rosenqvist J, Goldstein JJ, Bougher SW, Paubert G (1991) First absolute wind measurements in the middle atmosphere of Mars. Astrophys J [Internet] [cited 2020 Aug 28] 383:401. https://ui.adsabs.harvard.edu/abs/1991ApJ...383..401L/abstract

  326. Moreno R, Lellouch E, Forget F, Encrenaz T, Guilloteau S, Millour E (2009) Wind measurements in Mars’ middle atmosphere: IRAM Plateau de Bure interferometric CO observations. Icarus 201(2):549–563

    Article  Google Scholar 

  327. Lee SW, Thomas PC, Veverka J (1982) Wind streaks in Tharsis and Elysium: implications for sediment transport by slope winds. J Geophys Res Solid Earth [Internet] [cited 2020 Aug 28] 87(B12):10025–10041. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB087iB12p10025%4010.1002/%28ISSN%292169-9356.MARS3

  328. Muhleman DO, Butler BJ, Grossman AW, Slade MA (1991) Radar images of mars. Science (80) [Internet] [cited 2020 Aug 28] 253(5027):1508–1513. https://science.sciencemag.org/content/253/5027/1508

  329. Edgett KS, Butler BJ, Zimbelman JR, Hamilton VE (1997) Geologic context of the Mars radar “Stealth” region in southwestern Tharsis. J Geophys Res Planets [Internet] [cited 2020 Aug 28] 102(E9):21545–21567. http://doi.wiley.com/10.1029/97JE01685

  330. Ojha L, Lewis K, Karunatillake S, Schmidt M (2018) The Medusae Fossae formation as the single largest source of dust on Mars. Nat Commun [Internet] [cited 2020 Aug 29] 9(1):1–7. www.nature.com/naturecommunications

  331. Boynton WV, Taylor GJ, Evans LG, Reedy RC, Starr R, Janes DM, et al (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J Geophys Res 112(E12):E12S99

    Google Scholar 

  332. Tanaka KL, Kolb EJ (2001) Geologic history of the polar regions of Mars based on Mars global survey data I. Noachian and Hesperian Periods. Icarus 154(1):3–21

    Article  Google Scholar 

  333. Bleacher JE, Sakimoto SEH, Garvin JB, Wong M (2003) Deflation/erosion rates for the Parva Member, Dorsa Argentea Formation and implications for the south polar region of Mars. J Geophys Res E Planets [Internet] [cited 2020 Aug 31] 108(7). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2001JE001535

  334. Ackiss S, Horgan B, Seelos F, Farrand W, Wray J (2018) Mineralogic evidence for subglacial volcanism in the Sisyphi Montes region of Mars. Icarus 1(311):357–370

    Article  Google Scholar 

  335. Wright HMN, Lesti C, Cas RAF, Porreca M, Viramonte JG, Folkes CB, et al (2011) Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina. Bull Volcanol [Internet] [cited 2020 Aug 31] 73(10):1567–1582. https://link.springer.com/article/10.1007/s00445-011-0524-6

  336. Lim C, Huh M, Yi K, Lee C (2015) Genesis of the columnar joints from welded Tuff in Mount Mudeung National Geopark, Republic of Korea. Earth Planets Sp [Internet] [cited 2020 Aug 31] 67(1):152. http://www.earth-planets-space.com/content/67/1/152

  337. Carter J, Poulet F, Bibring J-P, Mangold N, Murchie S (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planets 118:831–858. https://doi.org/10.1029/2012JE004145

  338. Hiesinger H, Head III JW (2002) Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history. Planet Space Sci [Internet] [cited 2019 Jul 7] 50(10–11):939–981. https://www.sciencedirect.com/science/article/pii/S0032063302000545

  339. Bernhardt H, Hiesinger H, Reiss D, Ivanov M, Erkeling G (2013) Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars. Planet Space Sci [Internet] [cited 2019 Jul 7] 85:261–278. https://www.sciencedirect.com/science/article/pii/S0032063313001633

  340. Kargel JS, Strom RG (1992) Ancient glaciation on Mars. Geology 20(1):3–7

    Article  Google Scholar 

  341. Zimbelman J, Edgett K (1992) The Tharsis Montes, Mars: comparison of volcanic and modified landforms. In: Proceedings of lunar and planetary science [Internet] [cited 2018 Nov 17] 31–44. https://repository.si.edu/bitstream/handle/10088/2735/199205.pdf

  342. Leverington DW (2009) Reconciling channel formation processes with the nature of elevated outflow systems at Ophir and Aurorae Plana, Mars. J Geophys Res Planets [Internet] [cited 2018 Oct 25] 114(E10). http://doi.wiley.com/10.1029/2009JE003398

  343. Michalski J, Niles PB (2012) Atmospheric origin of martian interior layered deposits: links to climate change and the global sulfur cycle. Geology 40(5):419–422

    Article  Google Scholar 

  344. Herkenhoff KE, Vasavada AR (1999) Dark material in the polar layered deposits and dunes on Mars. J Geophys Res Planets [Internet] [cited 2020 Sep 8] 104(E7):16487–16500. http://doi.wiley.com/10.1029/1998JE000589

  345. Paige DA, Bachman JE, Keegan KD (1994) Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region. J Geophys Res [Internet] [cited 2020 Sep 14] 99(E12):25959–25991. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/93JE03428

  346. Byrne S, Murray BC (2002) North polar stratigraphy and the paleo-erg of Mars. J Geophys Res E Planets [Internet] [cited 2020 Sep 14] 107(6):11–1. https://agupubs.pericles-prod.literatumonline.com/doi/full/10.1029/2001JE001615

  347. Tsoar H, Greeley R, Peterfreund AR (1979) MARS: the North Polar sand sea and related wind patterns. J Geophys Res Solid Earth [Internet] [cited 2020 Sep 14] 84(B14):8167–8180. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/JB084iB14p08167%4010.1002/%28ISSN%292169-9356.MARS2

  348. Garvin JB, Sakimoto SEH, Frawley JJ, Schnetzler CC, Wright HM (2000) Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus 145(2):648–652

    Article  Google Scholar 

  349. Ghatan GJ (2003) Cavi Angusti, Mars: characterization and assessment of possible formation mechanisms. J Geophys Res 108(E5):5045–5063

    Article  Google Scholar 

  350. Kolb EJ, Tanaka KL (2001) Geologic history of the polar regions of Mars based on Mars global surveyor data II. Amazonian period. Icarus 154(1):22–39

    Article  Google Scholar 

  351. Brothers TC, Holt JW, Spiga A (2013) Orbital radar, imagery, and atmospheric modeling reveal an aeolian origin for Abalos Mensa, Mars. Geophys Res Lett [Internet] [cited 2020 Sep 15] 40(7):1334–1339. http://doi.wiley.com/10.1002/grl.50293

  352. Brothers TC, Holt JW, Spiga A (2015) Planum Boreum basal unit topography, Mars: irregularities and insights from SHARAD. J Geophys Res Planets [Internet] [cited 2020 Sep 14] 120(7):1357–1375. http://doi.wiley.com/10.1002/2015JE004830

  353. Brothers SC, Kocurek G, Holt JW (2018) Sequence architecture of the cavi unit, Chasma Boreale, Mars. Icarus 1(308):42–60

    Article  Google Scholar 

  354. Fishbaugh KE, Head JW (2005) Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history. Icarus 174(2 SPEC. ISS.):444–474

    Google Scholar 

  355. Tanaka KL, Rodriguez JAP, Skinner JA, Bourke MC, Fortezzo CM, Herkenhoff KE et al (2008) North polar region of Mars: advances in stratigraphy, structure, and erosional modification. Icarus 196(2):318–358

    Google Scholar 

  356. Squyres SW, Arvidson RE, Blaney DL, Clark BC, Crumpler L, Farrand WH, et al (2006) Rocks of the Columbia Hills. J Geophys Res Planets [Internet] [cited 2019 Dec 9] 111(E2):E02S11. http://doi.wiley.com/10.1029/2005JE002562

  357. Farrand WH, Bell JF, Johnson JR, Squyres SW, Soderblom J, Ming DW (2006) Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: examinations using spectral mixture analysis and related techniques. J Geophys Res Planets 111:E02S15, http://doi.wiley.com/10.1029/2005JE002495

  358. Herkenhoff KE, Squyres SW, Anderson R, Archinal BA, Arvidson RE, Barrett JM, et al (2006) Overview of the microscopic imager investigation during spirit’s first 450 sols in Gusev crater. J Geophys Res Planets [Internet] [cited 2020 Sep 15] 111(E2). http://doi.wiley.com/10.1029/2005JE002574

  359. Steven WR, Paul BN, Fabrizio A, Amanda BC (2014) Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology 2014 42(4):359–362. https://doi.org/10.1130/G35508.1

  360. Lewis KW, Aharonson O, Grotzinger JP, Squyres SW, Bell JF, Crumpler LS, et al (2008) Structure and stratigraphy of home plate from the spirit mars exploration rover. J Geophys Res [Internet] [cited 2020 Sep 15] 113(E12):E12S36. http://doi.wiley.com/10.1029/2007JE003025

  361. Manga M, Patel A, Dufek J, Kite ES (2012) Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophys Res Lett [Internet] [cited 2020 Sep 15] 39(1). http://doi.wiley.com/10.1029/2011GL050192

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leone, G. (2021). Explosive Volcanism on Mars. In: Leone, G. (eds) Mars: A Volcanic World. Springer, Cham. https://doi.org/10.1007/978-3-030-84103-4_8

Download citation

Publish with us

Policies and ethics