Bulletin of Volcanology

, Volume 73, Issue 10, pp 1567–1582 | Cite as

Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina

  • Heather M. N. WrightEmail author
  • Chiara Lesti
  • Raymond A. F. Cas
  • Massimiliano Porreca
  • José G. Viramonte
  • Chris B. Folkes
  • Guido Giordano
Research Article


Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.


Pyroclastic flow Columnar joint Devitrification Vapor phase Welding Ignimbrite 



The authors wish to acknowledge Shan de Silva for thoughtful discussions that helped to clarify the manuscript. This work was funded by ARC grant DP0663560 to Cas and PICT 07-38131 ANPCyT to Viramonte. Reviews by J.L. LePennec and G. Keating and earlier reviews by K. Wohletz and C. Wilson provided helpful suggestions for revision.

Supplementary material

445_2011_524_MOESM1_ESM.pdf (3.8 mb)
ESM 1 (PDF 3915 kb)


  1. Ahlers CF, Liu HH (2000) Calibrated properties model. Report MDL-NBS-HS-000003 Lawrence Berkeley National Laboratory, Berkeley, CA. CRWMS M and O.Google Scholar
  2. Aydin A, DeGraff JM (1988) Evolution of polygonal fracture patterns in lava flows. Science 239:471–476. doi: 10.1126/science.239.4839.471 CrossRefGoogle Scholar
  3. Beard CN (1959) Quantitative study of columnar jointing. Bull Geol Soc Am 70:379–382CrossRefGoogle Scholar
  4. Budkewitsch P, Robin P-Y (1994) Modelling the evolution of columnar joints. J Volcanol Geotherm Res 59:219–239CrossRefGoogle Scholar
  5. Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen and Unwin, Boston, 528 pCrossRefGoogle Scholar
  6. DeGraff JM, Aydin A (1987) Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol Soc Am Bull 99:605–617CrossRefGoogle Scholar
  7. Degraff, JM, Aydin, A (1993) Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava. J Geophys Res 98:6411–6430Google Scholar
  8. Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449Google Scholar
  9. Dobson PF, Kneafsey TJ, Hulen J, Simmon A (2003) Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. J Volcanol Geotherm Res 123:313–324CrossRefGoogle Scholar
  10. Fedors RW, Winterle JR, Lilman WA, Dinwiddie CL, Hughson DL (2002) Unsaturated zone flow at Yucca Mountain, Nevada: effects of fracture heterogeneity and flow in the nonwelded Paintbrush tuff unit. US NRC Contract NRC-02-97-009 Center for Nuclear Waste Regulatory Analyses, San Antonio, TXGoogle Scholar
  11. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin, 472 pCrossRefGoogle Scholar
  12. Flint LE (1998) Characterization of hydrogeologic units using matrix properties of rock outcrop samples at Yucca Mountain, Nevada. Denver, ColoradoCrossRefGoogle Scholar
  13. Folkes CB, Wright HMN, Cas RAF, de Silva SL, Lesti C, Viramonte JG (2011) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galán Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0459-y
  14. Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash flow deposits. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, New York, pp 581–599Google Scholar
  15. Friedman I, Long W (1984) Volcanic glasses, their origins and alteration processes. Journal of Non-Crystalline Solids 67:127–133CrossRefGoogle Scholar
  16. Giordano D, Nichols ARL, Dingwell DB (2005) Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J Volcanol Geotherm Res 142:105–118CrossRefGoogle Scholar
  17. Goehring L, Morris SW (2008) Scaling of columnar joints in basalt. J Geophys Res 113:B10203. doi: 10.1029/2007JB005018 CrossRefGoogle Scholar
  18. Goehring L, Morris SW, Lin Z (2006) Experimental investigation of the scaling of columnar joints. Physical Review E 74:036115. doi: 10.1103/PhysRevE.74.036115 CrossRefGoogle Scholar
  19. Gottsmann J, Giordano D, Dingwell DB (2002) Predicting shear viscosity during volcanic processes at the glass transition: a calorimetric calibration. Earth Planet Sci Lett 198:417–427. doi: 10.1016/S0012-821X(02)00522-8 CrossRefGoogle Scholar
  20. Guest JE, Rogers PS (1967) The sintering of glass and its relationship to welding in ignimbrites. Proceedings of the Geological Society of London 1641:174–177Google Scholar
  21. Holt EW, Taylor HP Jr (1998) 18O/16O mapping and hydrogeology of a short-lived (≈10 years) fumarolic (>500°C) meteoric-hydrothermal event in the upper part of the 0.76 Ma Bishop Tuff outflow sheet, California. J Volcanol Geotherm Res 83:115–139CrossRefGoogle Scholar
  22. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462. doi: 10.1007/BF01078811 CrossRefGoogle Scholar
  23. Judd JW (1903) Volcanoes: what they are and what they teach. Kegan Paul, Trench, Trübner, London, 381 pGoogle Scholar
  24. Kattenhorn SA, Schaefer CJ (2008) Thermal-mechanical modeling of cooling history and fracture development in inflationary basalt lava flows. J Volcanol Geotherm Res 170:181–197. doi: 10.1016/j.jvolgeores.2007.10.002 CrossRefGoogle Scholar
  25. Kay SM, Coira B, Wörner G, Kay RW, Singer BS (2011) Geochemical, isotopic, and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. In: Cas RAF, Cashman K (eds) The Cerro Galán Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-010-0410-7
  26. Keating GN (2005) The role of water in cooling ignimbrites. J Volcanol Geotherm Res 142:145–171CrossRefGoogle Scholar
  27. Le Pennec JL, Fernandez A (1992) Fragmental lava versus welded ignimbrite on Mount Etna: arguments inferred from crystal preferred orientation. J Volcanol Geotherm Res 51:323–337CrossRefGoogle Scholar
  28. Le Pennec JL, Temel A, Froger JL, Sen S, Gourgaud A, Bourdier J-L (2005) Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paleontologic, radiochronologic, geochemical and paleomagnetic data. J Volcanol Geotherm Res 141:45–64. doi: 10.1016/j.jvolgeores.2004.09.004 CrossRefGoogle Scholar
  29. Lesti C, Porreca M, Giordano G, Mattei M, Cas RAF, Wright H, Viramonte J (2011) High temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses. In: Cas RAF, Cashman K (eds) The Cerro Galán Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0536-2
  30. Marshall RR (1961) Devitrification of natural glass. Geol Soc Am Bull 72:1493–1520CrossRefGoogle Scholar
  31. Martel C, Bourdier J-L, Pichavant M, Traineau H (2000) Textures, water content and degassing of silicic andesites from recent plinian and dome-forming eruptions at Mount Pelée volcano (Martinique, Lesser Antilles arc). J Volcanol Geotherm Res 96:191–206CrossRefGoogle Scholar
  32. McBirney AR (1968) Second additional theory of origin of fiamme in ignimbrites. Nature 217:938CrossRefGoogle Scholar
  33. McClelland E, Wilson CJN, Bardot L (2004) Paleotemperature determinations for the 1.8 ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high velocity pyroclastic flow. Bull Volcanol 66:492–513CrossRefGoogle Scholar
  34. McPhie J, Doyle M, Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Center for Ore Deposit and Exploration Studies, University of Tasmania, 198 pGoogle Scholar
  35. Moon VG (1993) Geotechnical characteristics of ignimbrite: a soft pyroclastic rock type. Eng Geol 35:33–48CrossRefGoogle Scholar
  36. Mues-Schumacher U, Schumacher R (1996) Problems of stratigraphic correlation and new K-Ar data for ignimbrites from Cappadocia, Central Turkey. Int Geol Rev 38:737–746CrossRefGoogle Scholar
  37. Peluso F, Arienzo I (2007) Experimental determination of permeability of Neapolitan Yellow Tuff. J Volcanol Geotherm Res 160:125–136. doi: 10.1016/j.jvolgeores.2006.09.004 CrossRefGoogle Scholar
  38. Pioli L, Rosi M (2005) Rheomorphic structures in a high-grade ignimbrite: the Nuraxi tuff, Sulcis volcanic district (SW Sardinia, Italy). J Volcanol Geotherm Res 142:11–28. doi: 10.1016/j.jvolgeores.2004.10.011 CrossRefGoogle Scholar
  39. Quane SL, Russell JK (2005) Ranking welding intensity in pyroclastic deposits. Bull Volcanol 67:129–143CrossRefGoogle Scholar
  40. Quane SL, Russell JK, Friedlander EA (2009) Timescales of compaction in volcanic systems. Geology 37(5):471–474CrossRefGoogle Scholar
  41. Ragan DM, Sheridan MF (1972) Compaction of the Bishop Tuff, California. Geol Soc Am Bull 83:95–106CrossRefGoogle Scholar
  42. Riehle JR (1973) Calculated compaction profiles of rhyolitic ash-flow tuffs. Geol Soc Am Bull 84:2193–2216CrossRefGoogle Scholar
  43. Riehle JR, Miller TF, Bailey RA (1995) Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model. Bull Volcanol 57:319–336Google Scholar
  44. Ryan MP, Banks NG, Hoblitt RP, Blevins JYK (1990) The in-situ thermal transport properties and the thermal structure of Mount St. Helens eruptive units. In: Ryan MP (ed) Magma transport and storage. Wiley, New York, pp 137–155Google Scholar
  45. Schmincke H-U, Fisher RV, Waters AC (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574CrossRefGoogle Scholar
  46. Selby MJ, Augustinus P, Moon VG, Stevenson RJ (1988) Slopes on strong rock masses: modelling and influences of stress distributions and geomechanical properties. In: Anderson MG (ed) Modelling geomorphological systems. Wiley, New York, pp 341–374Google Scholar
  47. Sheridan MF (1970) Fumarolic mounds and ridges of the Bishop Tuff, California. Geol Soc Am Bull 81:851–868CrossRefGoogle Scholar
  48. Sheridan MF, Ragan DM (1976) Compaction of ash-flow tuffs. In: Chilingarian GV, Wolf KH (eds) Compaction of coarse-grained sediments, II. Elsevier, Amsterdam, pp 677–717Google Scholar
  49. Smith RL (1960) Zones and zonal variations in ash-flows. U.S. Geological Survey Professional Paper 354-FGoogle Scholar
  50. Sosman RB (1916) Types of prismatic structure in igneous rocks. J Geol 24:215–234CrossRefGoogle Scholar
  51. Sowerby J, Keppler H (1999) Water speciation in rhyolitic melt determined by in-situ infrared spectroscopy. Am Mineral 84:1843–1849Google Scholar
  52. Sparks RSJ, Tait SR, Yanev Y (1999) Dense welding caused by volatile resorption. J Geol Soc 156:217–225CrossRefGoogle Scholar
  53. Sporli KB, Rowland JV (2006) 'Column on column' structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand. J Volcanol Geotherm Res 157:294–310. doi: 10.1016/j.jvolgeores.2006.04.004 CrossRefGoogle Scholar
  54. Spry A (1962) The origin of columnar jointing, particularly in basalt flows. Australian Journal of Earth Sciences 8:191–216. doi: 10.1080/14400956208527873 CrossRefGoogle Scholar
  55. Stevenson RJ, Dingwell DB, Webb SL, Bagdassarov NS (1995) The equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the liquid-glass transition in volcanic processes. J Volcanol Geotherm Res 68:297–306CrossRefGoogle Scholar
  56. Summer NS, Ayalon A (1995) Dike intrusion into unconsolidated sandstone and the development of quartzite contact zones. J Struct Geol 17:997–1010CrossRefGoogle Scholar
  57. Tomkins JQ (1965) Polygonal sandstone features in Bundary Butte Anticline Area, San Juan County, Utah. Geol Soc Am Bull 76:1075–1080CrossRefGoogle Scholar
  58. Toramaru A, Matsumoto T (2004) Columnar joint morphology and cooling rate: a starch-water mixture experiment. J Geophys Res 109:02205. doi: 10.1029/2003JB002686 CrossRefGoogle Scholar
  59. Vaniman D (2006) Tuff mineralogy. In: Heiken G (ed) Tuffs: their properties, uses, hydrology, and resources. Geological Society of America Special Paper 408 pp 11–15Google Scholar
  60. Vatin-Perignon N, Poupeau G, Oliver RA, Lavenu A, Labrin E, Keller F, Bellot-Gurlet L (1996) Trace and rare-earth element characteristics of acidic tuffs from Southern Peru and Northern Bolivia and a fission-track age for the Sillar of Arequipa. Journal of South American Earth Sciences 9:91–109CrossRefGoogle Scholar
  61. Wallace PJ, Dufek J, Anderson AT, Zhang Y (2003) Cooling rates of Plinian-fall and pyroclastic-flow deposits in the Bishop Tuff: inferences from water speciation in quartz-hosted glass inclusions. Bull Volcanol 65:105–123Google Scholar
  62. Weinberger R (2001) Joint nucleation in layered rocks with non-uniform distribution of cavities. J Struct Geol 23:1241–1254CrossRefGoogle Scholar
  63. Williams H (1942) The geology of Crater Lake National Park. Oregon, Washington, 162 pGoogle Scholar
  64. Wilson JE, Goodwin LB, Lewis CJ (2003) Deformation bands in nonwelded ignimbrites: petrophysical controls on fault-zone deformation and evidence of preferential fluid flow. Geology 31(suppl 831):837–840CrossRefGoogle Scholar
  65. Wohletz K (2006) Fractures in welded tuff. In: Heiken G (ed) Tuffs-their properties, uses, hydrology, and resources. Geological Society of America Special Paper 408. pp 17–31Google Scholar
  66. Wright HMN (2006) Physical and chemical signatures of degassing in volcanic systems. Ph.D. thesis. Geological Sciences. University of Oregon, Eugene, 173 pGoogle Scholar
  67. Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011) Heterogeneous pumice populations in the 2.08 Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large volume silicic eruption. In: Cas RAF, Cashman K (eds) The Cerro Galán Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi: 10.1007/s00445-011-0525-5

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Heather M. N. Wright
    • 1
    Email author
  • Chiara Lesti
    • 2
  • Raymond A. F. Cas
    • 1
  • Massimiliano Porreca
    • 2
  • José G. Viramonte
    • 3
  • Chris B. Folkes
    • 1
  • Guido Giordano
    • 2
  1. 1.School of GeosciencesMonash UniversityClaytonAustralia
  2. 2.Dipartimento di Scienze GeologicheUniversità degli Studi di Roma TreRomeItaly
  3. 3.Instituto GEONORTE and CONICETUniversidad Nacional de SaltaSaltaArgentina

Personalised recommendations