Skip to main content

Volcanic Channels and Volcanic Features on Mars

  • Chapter
  • First Online:
Mars: A Volcanic World

Abstract

Volcanic channels are common features on the terrestrial planets. They have diverse morphologies including sinuous rilles, channelized flows, and potentially collapsed lava tubes. Many of these channels are a part of a typical igneous assemblage of landforms. In addition, some channels have an ambiguous origin, where a volcanic interpretation explains many of the observed features in some settings. This chapter describes volcanically formed sinuous channels, pitted channels, channelized flows, streamlined forms, platy terrain, and discusses a potential volcanic context for outflow channels and some valley networks on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiaparelli GV (1879) Osservazioni astronomiche e fisiche sull’asse di rotazione e sulla topografia del pianeta Marte fatte nella Reale Specola di Brera in Milano coll’equatoriale di Merz. Memoria seconda. Brera

    Google Scholar 

  2. Lowell P (1907) Mars and its canals. Science 25(639):499–500

    Google Scholar 

  3. Öpik EJ (1950) Mars and the asteroids. Irish Astron J 1:22

    Google Scholar 

  4. McLaughlin DB (1955) Changes on Mars, as evidence of wind deposition and volcanism. Astron J. 60:261

    Google Scholar 

  5. Schmidt JFJ (1866) Über Rillen auf dem Monde. Verlag von JA Barth, Leipzig

    Google Scholar 

  6. Urey HC (1967) Water on the Moon. Nature 216:1094–1095

    Google Scholar 

  7. Schubert G, Lingenfelter RE, Peale SJ (1970) The morphology, distribution, and origin of lunar sinuous rilles. Rev Geophys. 8(1):199–224

    Google Scholar 

  8. Masursky H (1973) An overview of geological results from Mariner 9. J Geophys Res 78:4009–4030

    Article  Google Scholar 

  9. Carr MH (1973) Volcanism on Mars. 78:4049–4062

    Google Scholar 

  10. Carr MH (1974) The role of lava erosion in the formation of lunar rilles and Martian channels. Icarus 22:1–23

    Article  Google Scholar 

  11. Hodges CA, Moore HJ (1994) Atlas of volcanic landforms on Mars. Prof Pap 1534. https://doi.org/10.3133/PP1534

  12. Thomas RJ (2013) Identification of possible recent water/lava source vents in the Cerberus plains: stratigraphic and crater count age constraints. J Geophys Res E Planets. 118:789–802

    Google Scholar 

  13. Bleacher JE, de Wet AP, Garry WB, Zimbelman JR, Trumble ME (2010) Volcanic or fluvial; comparison of an Ascraeus Mons, Mars, braided and sinuous channel with features of the 1859 Mauna Loa flow and Mare Imbrium flows [abs.]. Lunar Planet. Sci. Conf. 41st, Abstr. v. 41

    Google Scholar 

  14. Leverington DW (2004) Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J Geophys Res 109:E10011

    Article  Google Scholar 

  15. Leverington DW (2011) A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132:51–75

    Article  Google Scholar 

  16. Leone G (2014) A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J Volcanol Geotherm Res. 277:1–8

    Google Scholar 

  17. Leone G (2017) Mangala Valles, Mars: a reassessment of formation processes based on a new geomorphological and stratigraphic analysis of the geological units. J Volcanol Geotherm Res 337:62–80

    Article  Google Scholar 

  18. Masursky H, El-Baz F, Doyle FJ, Kosofsky LJ (1978) Apollo over the Moon: a view from orbit. NASA SP 362:251

    Google Scholar 

  19. Larson CV (1991) Nomenclature of lava tube features. In: 6th international symposium on vulcanospeleology

    Google Scholar 

  20. Hargitai H (2015) Lava channel. Encycl Planet Landforms. https://doi.org/10.1007/978-1-4614-3134-3_221

    Article  Google Scholar 

  21. Gioia G, Chakraborty P, Kieffer S (2006) Lava channel formation via the viscoplastic indentation of hot substrates. Geophys Res Lett. 33:L19305

    Google Scholar 

  22. Greeley R, Fagents SA, Harris RS, Kadel SD, Williams DA, Guest JE (1998) Erosion by flowing lava: field evidence. J Geophys Res Solid Earth 103:27325–27345

    Article  Google Scholar 

  23. Head JW, Wilson L (2020) Rethinking lunar mare basalt regolith formation: new concepts of lava flow protolith and evolution of regolith thickness and internal structure. Geophys Res Lett. 47:e2020GL088334

    Google Scholar 

  24. Hurwitz DM, Fassett CI, Head JW, Wilson L (2010) Formation of an eroded lava channel within an Elysium Planitia impact crater: distinguishing between a mechanical and thermal origin. Icarus 210:626–634

    Article  Google Scholar 

  25. Lang NP, Hansen VL (2006) Venusian channel formation as a subsurface process. J Geophys Res.  111:E04001

    Google Scholar 

  26. Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geotherm Res. 185(1–2):69–95

    Google Scholar 

  27. Gasparri D, Leone G, Cataldo V, Punjabi V, Nandakumar S (2020) Lava filling of Gale crater from Tyrrhenus Mons on Mars. J Volcanol Geotherm Res 389:106743

    Google Scholar 

  28. Harris A, Rowland S (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol. 63:20–44

    Google Scholar 

  29. Roberts CE, Gregg TKP (2019) Rima Marius, the Moon: formation of lunar sinuous rilles by constructional and erosional processes. Icarus 317:682-688

    Google Scholar 

  30. ALGI Team (1972) Geologic setting of the Apollo 15 samples. Science 175(4020):407–415

    Google Scholar 

  31. Keszthelyi L, Jaeger W, McEwen A, Tornabene L, Beyer RA, Dundas C, Milazzo M (2008) High resolution imaging science experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars reconnaissance orbiter primary science phase. J Geophys Res E Planets. 113:E04005

    Google Scholar 

  32. Komatsu G, Hargitai H (2015) Sinuous Rille. Encycl Planet Landforms. https://doi.org/10.1007/978-1-4614-3134-3_351

    Article  Google Scholar 

  33. Hurwitz DM, Head JW, Hiesinger H (2013) Lunar sinuous rilles: distribution, characteristics, and implications for their origin. Planet Space Sci. 79–80:1–38

    Google Scholar 

  34. Hurwitz DM, Head JW, Wilson L, Hiesinger H (2012) Origin of lunar sinuous rilles: modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz. J Geophys Res Planets 117:E00H14

    Google Scholar 

  35. Cameron WS (1964) An interpretation of Schröter’s Valley and other lunar sinuous rills. J Geophys Res. 69(12):2423–2430

    Google Scholar 

  36. Greeley R (1971) Lunar Hadley Rille: considerations of its origin. Science 172(3984):722–725

    Google Scholar 

  37. Gornitz V (1973) The origin of sinuous rilles. The Moon 6:337–356

    Google Scholar 

  38. Hulme G (1982) A review of lava flow processes related to the formation of lunar sinuous rilles. Geophys Surv. 5:245–279

    Google Scholar 

  39. Williams DA, Fagents SA, Greeley R (2000) A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon. J Geophys Res Planets 105:20189–20205

    Article  Google Scholar 

  40. Baker VR, Komatsu G, Parker TJ, Gulick VC, Kargel JS, Lewis JS (1992) Channels and valleys on Venus: preliminary analysis of Magellan data. J Geophys Res 97:13421–13444

    Article  Google Scholar 

  41. Komatsu G, Baker VR, Gulick VC, Parker TJ (1993) Venusian channels and valleys: distribution and volcanological implications. Icarus 102:1–25

    Article  Google Scholar 

  42. Komatsu G, Baker VR (1994) Meander properties of Venusian channels. Geology 22(1):67–70

    Google Scholar 

  43. Oshigami S, Namiki N, Komatsu G (2009) Depth profiles of venusian sinuous rilles and valley networks. Icarus 199(2):250–263

    Google Scholar 

  44. Peale SJ, Schubert G, Lingenfelter RE (1968) Distribution of sinuous rilles and water on the Moon. Nature 220:1222–1225

    Google Scholar 

  45. Scott ED, Wilson L (1999) Evidence for a sill emplacement event on the upper flanks of the Ascraeus Mons shield volcano, Mars. J Geophys Res Planets 104:27079–27089

    Article  Google Scholar 

  46. Mouginis-Mark PJ, Christensen PR (2005) New observations of volcanic features on Mars from the THEMIS instrument. J Geophys Res Planets 110:E08007

    Google Scholar 

  47. Murray JB, van Wyk de Vries B, Marquez A, Williams DA, Byrne P, Muller J-P, Kim J-R (2010) Late-stage water eruptions from Ascraeus Mons volcano, Mars: implications for its structure and history. Earth Planet Sci Lett 294:479–491

    Google Scholar 

  48. Gulick VC, Baker VR (1989) Fluvial valleys and martian palaeoclimates. Nature 341:514–516

    Article  Google Scholar 

  49. Byrne PK, van Wyk de Vries B, Murray JB, Troll VR (2012) A volcanotectonic survey of Ascraeus Mons, Mars. J Geophys Res Planets. 117:E01004

    Google Scholar 

  50. Leone G (2020) The absence of an ocean and the fate of water all over the Martian history. Earth Sp Sci 7:1–16

    Google Scholar 

  51. Cushing GE, Okubo CH, Titus TN (2015) Atypical pit craters on Mars: new insights from THEMIS, CTX, and HiRISE observations. J Geophys Res Planets. 120:1023– 1043

    Google Scholar 

  52. Wyrick D, Ferrill DA, Morris AP, Colton SL, Sims DW (2004) Distribution, morphology, and origins of Martian pit crater chains. J Geophys Res E Planets. 109:E06005

    Google Scholar 

  53. Ferrill DA, Wyrick DY, Morris AP, Sims DW, Franklin NM (2004) Dilational fault slip and pit chain formation on Mars. GSA Today 14(10):4–12

    Google Scholar 

  54. Schultz RA (1998) Multiple-process origin of Valles Marineris basins and troughs, Mars. Planet Space Sci. 46(6-7):827–829, 831–834

    Google Scholar 

  55. Barta G, De Hon R, Hargitai H (2014) Sapping valley. Encycl Planet Landforms. https://doi.org/10.1007/978-1-4614-9213-9_642-1

    Article  Google Scholar 

  56. Leverington DW (2006) Volcanic processes as alternative mechanisms of landform development at a candidate crater-lake site near Tyrrhena Patera, Mars. J Geophys Res E Planets 111:E11002

    Article  Google Scholar 

  57. Hargitai HI, Gulick VC (2018) Late Amazonian–aged channel and island systems located East of Olympus Mons, Mars. In: Dynamic mars. Elsevier, pp 121–154

    Google Scholar 

  58. Crown DA, Bleamaster LF, Mest SC (2005) Styles and timing of volatile-driven activity in the eastern Hellas region of Mars. J Geophys Res 110:E12S22

    Google Scholar 

  59. Hargitai HI, Gulick VC, Glines NH (2017) Discontinuous drainage systems formed by highland precipitation and ground-water outflow in the Navua Valles and southwest Hadriacus Mons regions, Mars. Icarus 294:172–200

    Article  Google Scholar 

  60. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i. J Volcanol Geotherm Res. 183(3–4):139–156

    Google Scholar 

  61. Glaze LS, Baloga SM, Garry WB, Fagents SA, Parcheta C (2009) A hybrid model for leveed lava flows: implications for eruption styles on Mars. J Geophys Res 114:E07001

    Google Scholar 

  62. Dietterich HR, Cashman KV (2014) Channel networks within lava flows: formation, evolution, and implications for flow behavior. J Geophys Res Earth Surf 119:1704–1724

    Article  Google Scholar 

  63. Williams R (2014) Serpens, [Serpentes]. Encycl Planet Landforms. https://doi.org/10.1007/978-1-4614-9213-9_378-1

    Article  Google Scholar 

  64. Williams RME, Irwin RP, Burr DM, Harrison T, McClelland P (2013) Variability in martian sinuous ridge form: case study of Aeolis Serpens in the Aeolis Dorsa, Mars, and insight from the Mirackina paleoriver, South Australia. Icarus. 225(1):308–324

    Google Scholar 

  65. Williams RME, Moersch JE, Fergason RL (2018) Thermophysical properties of Martian fluvial sinuous ridges: inferences on “Inverted Channel” induration agent. Earth Sp Sci. 5:516–528

    Google Scholar 

  66. Bleacher JE, Orr TR, de Wet AP, Zimbelman JR, Hamilton CW, Brent Garry W, Crumpler LS, Williams DA (2017) Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. J Volcanol Geotherm Res 342:29–46

    Article  Google Scholar 

  67. Carr MH (1979) Formation of Martian flood features by release of water from confined aquifers. J Geophys Res. 84(B6):2995–3007

    Google Scholar 

  68. Gulick VC (1998) Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J Geophys Res E Planets. 103(E8):19365–19387

    Google Scholar 

  69. Burr DM, McEwen AS, Sakimoto SEH (2002) Recent aqueous floods from the Cerberus Fossae. Mars. Geophys Res Lett 29:1013

    Article  Google Scholar 

  70. Burr DM, Enga MT, Williams RME, Zimbelman JR, Howard AD, Brennand TA (2009) Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars. Icarus. 200(1):52–76

    Google Scholar 

  71. Hamilton CW, Mouginis-Mark PJ, Sori MM, Scheidt SP, Bramson AM (2018) Episodes of aqueous flooding and effusive volcanism associated with Hrad Vallis, Mars. J Geophys Res Planets. 123:1484–1510

    Google Scholar 

  72. Jaeger WL, Keszthelyi LP, McEwen AS, Dundas CM, Russell PS (2007) Athabasca Valles, Mars: a lava-draped channel system. Science 317:1709–1711

    Article  Google Scholar 

  73. Hopper JP, Leverington DW (2014) Formation of Hrad Vallis (Mars) by low viscosity lava flows. Geomorphology 207:96–113

    Article  Google Scholar 

  74. Cataldo V, Williams DA, Dundas CM, Keszthelyi LP (2015) Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars. J Geophys Res Planets 120:1800–1819

    Article  Google Scholar 

  75. Werner SC, van Gasselt S, Neukum G (2003) Continual geological activity in Athabasca Valles, Mars. J Geophys Res E Planets. 108:8081

    Google Scholar 

  76. Keske AL, Hamilton CW, McEwen AS, Daubar IJ (2015) Episodes of fluvial and volcanic activity in Mangala Valles, Mars. Icarus 245:333–347

    Article  Google Scholar 

  77. Leverington DW (2007) Was the Mangala Valles system incised by volcanic flows? J Geophys Res 112:E11005

    Article  Google Scholar 

  78. Leverington DW (2020) Incision of Ma’adim Vallis (Mars) by dry volcanic megafloods effused from multiple highland sources. Planet Space Sci 191:105021

    Google Scholar 

  79. Moyer EJ, Irion FW, Yung YL, Gunson MR (1996) ATMOS stratospheric deuterated water and implications for troposphere-stratosphere transport. Geophys Res Lett 23:2385–2388

    Article  Google Scholar 

  80. Byrne PK, Klimczak C, Williams DA, Hurwitz DM, Solomon SC, Head JW, Preusker F, Oberst J (2013) An assemblage of lava flow features on Mercury. J Geophys Res E Planets. 118:1303–1322

    Google Scholar 

  81. Leverington DW, Maxwell TA (2004) An igneous origin for features of a candidate crater-lake system in western Memnonia. Mars. J Geophys Res 109:E06006

    Article  Google Scholar 

  82. Leverington DW (2009) Reconciling channel formation processes with the nature of elevated outflow systems at Ophir and Aurorae Plana, Mars. J Geophys Res Planets 114:E10005

    Google Scholar 

  83. Dundas CM, Keszthelyi LP (2014) Emplacement and erosive effects of lava in south Kasei Valles, Mars. J Volcanol Geotherm Res 282:92–102

    Article  Google Scholar 

  84. McClenagan JD (2013) Streamlined erosional residuals and drumlins in central British Columbia, Canada. Geomorphology 189:41–54

    Google Scholar 

  85. Krabbendam M, Eyles N, Putkinen N, Bradwell T, Arbelaez-Moreno L (2016) Streamlined hard beds formed by palaeo-ice streams: a review. Sediment Geol. 338:24–50

    Google Scholar 

  86. Garry WB, Zimbelman JR, Gregg TKP (2007) Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars. J Geophys Res Planets. 112:E08007

    Google Scholar 

  87. Head JW (1976) Lunar volcanism in space and time. Rev Geophys. 14(2):265–300

    Google Scholar 

  88. Leone G (2016) Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J Volcanol Geotherm Res 309:78–95

    Article  Google Scholar 

  89. Ruff SW, Niles PB, Alfano F, Clarke AB (2014) Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology. 42(4):359–362

    Google Scholar 

  90. Chapman MG, Neukum G, Dumke A et al (2010) Noachian-Hesperian geologic history of the Echus Chasma and Kasei Valles system on Mars: New data and interpretations. Earth Planet Sci Lett. 294(3–4):256–271

    Google Scholar 

  91. Tanaka KL, Robbins SJ, Fortezzo CM, Skinner JA, Hare TM (2014) The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet Space Sci 95:11–24

    Article  Google Scholar 

  92. Page DP (2007) Recent low-latitude freeze–thaw on Mars. Icarus. 189(1):83–117

    Google Scholar 

  93. Dundas CM, Keszthelyi LP, Bray VJ, McEwen AS (2010) Role of material properties in the cratering record of young platy-ridged lava on Mars. Geophys Res Lett. 37:L12203

    Google Scholar 

  94. Woodworth-Lynas C, Guigné JY (2003) Ice keel scour marks on Mars: evidence for floating and grounding ice floes in Kasei Valles. Oceanography. https://doi.org/10.5670/oceanog.2003.15

    Article  Google Scholar 

  95. Keszthelyi L, Mcewen AS, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood lavas. J Geophys Res Planets 105:27–42

    Article  Google Scholar 

  96. Hartmann WK, Berman DC (2000) Elysium Planitia lava flows: crater count chronology and geological implications. J Geophys Res Planets 105:15011–15025

    Article  Google Scholar 

  97. Hargitai H, Korteniemi J, Diniega S (2015) Pressure ridge. Encycl Planet Landforms. https://doi.org/10.1007/978-1-4614-3134-3_285

    Article  Google Scholar 

  98. Timco GW, Johnston M (2004) Ice loads on the caisson structures in the Canadian Beaufort Sea. Cold Reg Sci Technol. 38(2–3):185–209

    Google Scholar 

  99. De La Rosa S, Maus S (2012) Laboratory study of frazil ice accumulation under wave conditions. Cryosphere. 6:173–191

    Google Scholar 

  100. Ryan AJ, Christensen PR (2012) Coils and polygonal crust in the Athabasca Valles region, Mars, as evidence for a volcanic history. Science 336(6080):449–452

    Google Scholar 

  101. Dundas CM, Cushing GE, Keszthelyi LP (2019) The flood lavas of Kasei Valles, Mars. Icarus. 321:346–357

    Google Scholar 

  102. Crown DA, Ramsey MS (2017) Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars. J Volcanol Geotherm Res 342:13–28

    Article  Google Scholar 

  103. Harmon JK, Nolan MC, Husmann DI, Campbell BA (2012) Arecibo radar imagery of Mars: the major volcanic provinces. Icarus 220:990–1030

    Article  Google Scholar 

  104. Pieri D (1976) Distribution of small channels on the Martian surface. Icarus 27:25–50

    Article  Google Scholar 

  105. Pieri DC (1980) Martian valleys: morphology, distribution, age, and origin. Science (80-) 210:895–897

    Google Scholar 

  106. Gulick VC (2001) Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37:241–268

    Article  Google Scholar 

  107. Carr MH, Clow GD (1981) Martian channels and valleys: their characteristics, distribution, and age. Icarus 48:91–117

    Article  Google Scholar 

  108. Sharp RP, Malin MC (1975) Channels on Mars. Geol Soc Am Bull 86:593

    Article  Google Scholar 

  109. Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez JAP (2015) Fluvial geomorphology on earth-like planetary surfaces: a review. Geomorphology 245:149–182

    Article  Google Scholar 

  110. Komatsu G, Gulick VC, Baker VR (2001) Valley networks on Venus. Geomorphology 37:225–240

    Article  Google Scholar 

  111. Dohm JM, Tanaka KL (1999) Geology of the Thaumasia region, Mars: plateau development, valley origins, and magmatic evolution. Planet Space Sci 47:411–431

    Article  Google Scholar 

  112. Madden MEE, Bodnar RJ, Rimstidt JD (2004) Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431:821–823

    Article  Google Scholar 

  113. Gulick VC, Baker VR (1990) Origin and evolution of valleys on Martian volcanoes. J Geophys Res 95:14325–14344

    Article  Google Scholar 

  114. Ivanov MA, Head JW (2006) Alba Patera, Mars: topography, structure, and evolution of a unique late Hesperian-early Amazonian shield volcano. J Geophys Res E Planets 111:E09003

    Article  Google Scholar 

  115. Mouginis-Mark PJ, Wilson L, Zimbelman JR (1988) Polygenic eruptions on Alba Patera, Mars. Bull Volcanol 50:361–379

    Article  Google Scholar 

  116. Kereszturi A, Petrik A (2020) Age determination for valley networks on Mars using tectonic-fluvial interaction. Planet Space Sci 180:104754

    Google Scholar 

  117. Hynek BM, Beach M, Hoke MRT (2010) Updated global map of Martian valley networks and implications for climate and hydrologic processes. J Geophys Res. 115:E09008

    Google Scholar 

  118. Leone G, Tackley PJ, Gerya TV, May DA, Zhu G (2014) Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the martian dichotomy. Geophys Res Lett 41:8736–8743

    Article  Google Scholar 

  119. Wordsworth R, Forget F, Millour E, Head JW, Madeleine J-B, Charnay B (2013) Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222:1–19

    Article  Google Scholar 

  120. Wordsworth RD, Kerber L, Pierrehumbert RT, Forget F, Head JW (2015) Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J Geophys Res Planets 120:1201–1219

    Article  Google Scholar 

  121. Wordsworth RD (2016) The climate of early Mars. Annu Rev Earth Planet Sci 44:381–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hargitai, H., Leone, G. (2021). Volcanic Channels and Volcanic Features on Mars. In: Leone, G. (eds) Mars: A Volcanic World. Springer, Cham. https://doi.org/10.1007/978-3-030-84103-4_5

Download citation

Publish with us

Policies and ethics