Skip to main content

Lava Channel

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

On Earth, “a long open trough, on or in a lava flow, occupied or formerly occupied by a lava stream” (Larson 1992).

Category

A type of lava flow.

Synonyms

Channelized lava flow

Description

“A channel on the upper surface of a partly or completely solidified body of lava through which liquid lava has flowed” (Masursky et al. 1978; Larson 1992). Lava channels are contained within marginal zones of solid and stationary lava, or raised rims (lava levees) (Fig. 1). Incipient channels may lack levees (Harris et al. 2009). Lava channels are commonly accompanied with volcanic sources and terminal lava flows (Kargel 1994). They may be straight or sinuous. Complex channels, as defined on Venus, have braiding or anastomosing reaches.

Lava Channel, Fig. 1
figure 1238 figure 1238

Leveed channels in lava flow showing ridges in Western Arsia Mons near Mangala Fossa, Mars near 17°S, 212°E. CTX: B20_017625_1641_XI_15S147W (NASA/JPL/MSSS)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker VR, Komatsu G, Gulick VC, Kargel JS (1991) Channels on Venus: an overview. Lunar Planet Sci Conf XXII:15–16, Houston

    Google Scholar 

  • Baker VR, Komatsu G, Parker TJ, Gulick VC, Kargel JS, Lewis JS (1992) Channels and valleys on Venus: preliminary analysis of Magellan data. J Geophys Res 97(E8):13421–13444

    Article  Google Scholar 

  • Baker VR, Komatsu G, Gulick VC, Parker TJ (1997) Channels and valleys. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 757–793

    Google Scholar 

  • Bleacher JE, de Wet AP, Garry WP, Zimbelman JR, Trumble ME (2010) Volcanic or fluvial: comparison of an Ascraeus Mons, Mars, braided and sinuous channel with features of the 1859 Mauna Loa flow and Mare Imbrium flows. 41st Lunar Planet Sci Conf, abstract #1612, Houston

    Google Scholar 

  • Bray VJ, Bussey DBJ, Ghail RC, Jones AP, Pickering KT (2007) Meander geometry of Venusian canali: constraints on flow regime and formation time. J Geophys Res 112:E04S05. doi:10.1029/2006JE002785

    Google Scholar 

  • Byrne PK, Klimczak C, Williams DA, Hurwitz DM, Solomon SC, Head JW, Preusker F, Oberst J (2013) An assemblage of lava flow features on Mercury. J Geophys Res Planet 118:1303. doi:10.1002/jgre.20052

    Article  Google Scholar 

  • Crumpler LS, Head JW, Aubele JC, Guest J, Saunders RS (1992) Venus volcanism: global distribution and classification from Magellan data. Lunar Planet Sci Conf XXIII:277–278, Houston

    Google Scholar 

  • Dawson JB, Pinkerton GE, Norton GE, Pyle DM (1990) Physicochemical properties of alkali carbonatite lavas: data from the 1988 eruption of Oldoinyo Lengai Tanzania. Geology 18:260–263

    Article  Google Scholar 

  • Gioia G, Chakraborty P, Kieffer S (2006) Lava channel formation via the viscoplastic indentation of hot substrates. Geophys Res Lett 33: L19305. doi:10.1029/2006GL027248

    Article  Google Scholar 

  • Gulick VC, Baker VR (1990) Origin and evolution of valleys on Martian volcanoes. J Geophys Res 95(B9):14325–14344. doi:10.1029/JB095iB09p14325

    Article  Google Scholar 

  • Gulick VC, Komatsu G, Baker VR, Strom RG, Parker TJ (1991) Channels on Venus: a preliminary morphological assessment and classification. Lunar Planet Sci Conf 22:507, Houston

    Google Scholar 

  • Gulick VC, Baker VR, Komatsu G (1992) Channel and valley morphology on Venus: an updated classification. Lunar Planet Sci Conf 23:465–466, Houston

    Google Scholar 

  • Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44

    Article  Google Scholar 

  • Harris AJL, Favalli M, Mazzarini F, Hamilton CW (2009) Construction dynamics of lava channels. Bull Volcanol 71:459–474

    Article  Google Scholar 

  • Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geotherm Res 185:69–95

    Article  Google Scholar 

  • Hon K, Gansecki C, Kauahikaua J (2003) The transition from ‘A‘ä to Pähoehoe crust on flows emplaced during the Pu‘u ‘Ö‘ö-Küpaianaha eruption. U.S. Geol Surv Prof Pap 1676:89–104

    Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Roy Astron Soc 39:361–384

    Article  Google Scholar 

  • Hurwitz DM, Fassett CI, Head JW, Wilson L (2010) Formation of an eroded lava channel within an Elysium Planitia impact crater: distinguishing between a mechanical and thermal origin. Icarus 210:626–634

    Article  Google Scholar 

  • Hurwitz DM, Head JW, Wilson L, Hiesinger H (2012) Origin of lunar sinuous rilles: modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz. J Geophys Res 117:E00H14–E00H15. doi:10.1029/2011JE004000

    Google Scholar 

  • Jaeger WL, Keszthelyi LP, Skinner JA, Milazzo MP, McEwen AS, Titus TN, Rosiek MR, Galuszka DM, Howington-Kraus E, Kirk RL, Team HRISE (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243

    Article  Google Scholar 

  • Kargel JS (1994) An alluvial depositional analog for some volcanic plains on Venus. Lunar Planet Sci Conf XXV:667, Houston

    Google Scholar 

  • Kargel JS, Kirk RL, Fegly B Jr, Treiman AH (1994) Carbonate-sulfate volcanism on Venus? Icarus 112:219–252

    Article  Google Scholar 

  • Keszthelyi L, Jaeger W, McEwen A, Tornabene L, Beyer RA, Dundas C, Milazzo M (2008) High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter primary science phase. J Geophys Res 113:E04005. doi:10.1029/2007JE002968

    Google Scholar 

  • Komatsu G, Baker VR, Gulick VC, Parker TJ (1993) Venusian channels and valleys: distribution and volcanological implications. Icarus 102:1–25

    Article  Google Scholar 

  • Komatsu G, Gulick VC, Baker VR (2001) Valley networks on Venus. Geophys J Roy Astron Soc 37:225–240

    Google Scholar 

  • Krauskopf KB (1948) Lava movement at Parícutin volcano, Mexico. Geol Soc Am Bull 59(12):1267–1284

    Article  Google Scholar 

  • Lang NP, Hansen VL (2006) Venusian channel formation as a subsurface process. J Geophys Res 111: E04001. doi:10.1029/2005JE002629

    Google Scholar 

  • Larson CV (1992) Nomenclature of lava tube features. In: Rea GT (ed) 6th international symposium of vulcanospeleology, National Speleological Society, Hilo, Aug 1991

    Google Scholar 

  • Leverington DW (2004) Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J Geophys Res 109:E10011. doi:10.1029/2004JE002311

    Article  Google Scholar 

  • Leverington DW (2011) A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geophys J Roy Astron Soc 132(3–4):51–75

    Google Scholar 

  • Leverington DW (2014) Did large volcanic channel systems develop on Earth during the Hadean and Archean? Precambrian Res 246:226–239

    Article  Google Scholar 

  • Masursky H, Colton GW, El-Baz F (eds) (1978) Apollo over the Moon: a view from orbit. NASA Scientific And Technical Information Office SP-362, Washington, DC. http://history.nasa.gov/SP-362/

  • Parker TJ, Komatsu G, Baker VR, Gulick V, Saunders R, Weitz C (1991) An outflow channel in Lada Terra Venus. Lunar Planet Sci Conf 22:1035–1036, Houston

    Google Scholar 

  • Rowland SK, Walker GPL (1988) Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows. J Volcanol Geotherm Res 35:55–66

    Article  Google Scholar 

  • Schenk PM, Williams DA (2004) A potential thermal erosion lava channel on Io. Geophys Res Lett 31: L23702. doi:10.1029/2004GL021378

    Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Tivey MA, Ridley WI, Schouten H (2005) Channelized lava flows at the East Pacific Rise crest 9–10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust. Geochem Geophys Geosyst 6(8):Q08005. doi:10.1029/2005GC000912

    Article  Google Scholar 

  • Thomas RJ (2013) Identification of possible recent water/lava source vents in the Cerberus plains: stratigraphic and crater count age constraints. J Geophys Res Planet 118:789–802

    Article  Google Scholar 

  • Williams D, Greeley R, Lopes R, Davies A (2001a) Evaluation of sulfur flows on Io from Galileo data and numerical models. J Geophys Res 106:33161–33174

    Article  Google Scholar 

  • Williams DA, Kerr RC, Lesher CM, Barnes SJ (2001b) Analytical/numerical modeling of komatiite lava emplacement and thermal erosion at Perseverance, Western Australia. J Volcanol Geotherm Res 110:27–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H. (2015). Lava Channel. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_221

Download citation

Publish with us

Policies and ethics