Skip to main content

Understanding Digital Twins for Cyber-Physical Systems: A Conceptual Model

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends (ISoLA 2020)

Abstract

Digital Twins (DTs) are revolutionizing Cyber-Physical Systems (CPSs) in many ways, including their development and operation. The significant interest of industry and academia in DTs has led to various definitions of DTs and related concepts, as seen in many recently published papers. Thus, there is a need for precisely defining different DT concepts and their relationships. To this end, we present a conceptual model that captures various DT concepts and their relationships, some of which are from the published literature, to provide a unified understanding of these concepts in the context of CPSs. The conceptual model is implemented as a set of Unified Modeling Language (UML) class diagrams and the concepts in the conceptual model are explained with a running example of an automated warehouse case study from published literature and based on the authors’ experience of working with the real CPS case study in previous projects.

The work is supported by the National Natural Science Foundation of China under Grant No. 61872182. The work is also partially supported by the Co-evolver project (No. 286898/F20) funded by the Research Council of Norway under the FRIPRO program. Paolo Arcaini is supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST; Funding Reference number: 10.13039/501100009024 ERATO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://euroocs.eu/funding-opportunities/eu-fet-proact-eic-07-2020-digital-twins-for-the-life-sciences/.

  2. 2.

    https://ec.europa.eu/digital-single-market/en/destination-earth-destine/.

  3. 3.

    https://www.ansys.com/products/systems/digital-twin.

  4. 4.

    https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465.

  5. 5.

    https://www.ge.com/digital/applications/digital-twin.

References

  1. The FMI Standard. https://fmi-standard.org/

  2. Asare, P., et al.: Cyber-Physical Systems - A Concept Map. http://cyberphysicalsystems.org/

  3. Bandyszak, T., Daun, M., Tenbergen, B., Weyer, T.: Model-based documentation of context uncertainty for cyber-physical systems. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pp. 1087–1092. IEEE (2018)

    Google Scholar 

  4. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In: 2010 18th IEEE International Requirements Engineering Conference, pp. 125–134. IEEE (2010)

    Google Scholar 

  5. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P., Bradley, D. (eds.) Mechatronic Futures, pp. 59–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32156-1_5

    Chapter  Google Scholar 

  6. Cameron, D.B., Waaler, A., Komulainen, T.M.: Oil and gas digital twins after twenty years. How can they be made sustainable, maintainable and useful? In: Proceedings of the 59th Conference on Simulation and Modelling (SIMS 59), 26–28 September 2018, Oslo Metropolitan University, Norway, pp. 9–16. Linköping University Electronic Press (2018)

    Google Scholar 

  7. Camilli, M., Bellettini, C., Gargantini, A., Scandurra, P.: Online model-based testing under uncertainty. In: 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE), pp. 36–46. IEEE (2018)

    Google Scholar 

  8. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach to develop requirements of an adaptive system with environmental uncertainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_36

    Chapter  Google Scholar 

  9. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents and digital twins in healthcare. J. Med. Syst. 44(9), 1–8 (2020)

    Article  Google Scholar 

  10. Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., Yamu, C.: Urban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability 12(6), 2307 (2020). https://doi.org/10.3390/su12062307

    Article  Google Scholar 

  11. Fonseca, Í.A., Gaspar, H.M.: Challenges when creating a cohesive digital twin ship: a data modelling perspective. In: Ship Technology Research, pp. 1–14 (2020)

    Google Scholar 

  12. Golomb, S.W.: Mathematical models: uses and limitations. IEEE Trans. Reliab. R-20(3), 130–131 (1971)

    Google Scholar 

  13. Havard, V., Jeanne, B., Lacomblez, M., Baudry, D.: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. Prod. Manuf. Res. 7(1), 472–489 (2019)

    Google Scholar 

  14. Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T., Achiche, S.: Design, modelling, simulation and integration of cyber physical systems: methods and applications. Comput. Ind. 82, 273–289 (2016). https://doi.org/10.1016/j.compind.2016.05.006

    Article  Google Scholar 

  15. Iglesias, A., Lu, H., Arellano, C., Yue, T., Ali, S., Sagardui, G.: Product line engineering of monitoring functionality in industrial cyber-physical systems: a domain analysis. In: Proceedings of the 21st International Systems and Software Product Line Conference - Volume A, SPLC 2017, pp. 195–204. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3106195.3106223

  16. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. (2020). https://doi.org/10.1016/j.cirpj.2020.02.002

    Article  Google Scholar 

  17. Josifovska, K., Yigitbas, E., Engels, G.: Reference framework for digital twins within cyber-physical systems. In: Proceedings of the 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS 2019, pp. 25–31. IEEE Press (2019). https://doi.org/10.1109/SEsCPS.2019.00012

  18. Lee, E.: The past, present and future of cyber-physical systems: a focus on models. Sensors (Basel, Switzerland) 15, 4837–4869 (2015). https://doi.org/10.3390/s150304837

    Article  Google Scholar 

  19. Ma, T., Ali, S., Yue, T., Elaasar, M.: Testing self-healing cyber-physical systems under uncertainty: a fragility-oriented approach. Softw. Qual. J. 27(2), 615–649 (2019)

    Article  Google Scholar 

  20. Moreno, G.A., Cámara, J., Garlan, D., Klein, M.: Uncertainty reduction in self-adaptive systems. In: Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems, pp. 51–57 (2018)

    Google Scholar 

  21. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017). https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  22. Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

    Article  Google Scholar 

  23. Safdar, S.A., Yue, T., Ali, S., Lu, H.: Evaluating variability modeling techniques for supporting cyber-physical system product line engineering. In: Grabowski, J., Herbold, S. (eds.) SAM 2016. LNCS, vol. 9959, pp. 1–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46613-2_1

    Chapter  Google Scholar 

  24. Tao, F., Qi, Q., Wang, L., Nee, A.: Digital twins and cyber–physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering 5(4), 653–661 (2019). https://doi.org/10.1016/j.eng.2019.01.014

  25. Tao, F., Zhang, H., Liu, A., Nee, A.Y.: Digital twin in industry: state-of-the-art. IEEE Trans. Ind. Inform. 15(4), 2405–2415 (2018)

    Article  Google Scholar 

  26. Wagg, D.: Asset Management using the Digital Twin concept. https://www.thefuturefactory.com/blog/26. Accessed 4 Sept 2020

  27. Xiaodong, W., Feng, L., Junhua, R., Rongyu, L.: A survey of digital twin technology for PHM. In: Jain, V., Patnaik, S., Popentiu Vlădicescu, F., Sethi, I.K. (eds.) Recent Trends in Intelligent Computing, Communication and Devices. AISC, vol. 1006, pp. 397–403. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9406-5_48

    Chapter  Google Scholar 

  28. Zhang, M., Ali, S., Yue, T.: Uncertainty-wise test case generation and minimization for cyber-physical systems. J. Syst. Softw. 153, 1–21 (2019). https://doi.org/10.1016/j.jss.2019.03.011

    Article  Google Scholar 

  29. Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O.: Uncertainty-wise cyber-physical system test modeling. Softw. Syst. Model. 18(2), 1379–1418 (2019). https://doi.org/10.1007/s10270-017-0609-6

    Article  Google Scholar 

  30. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42061-5_16

    Chapter  Google Scholar 

  31. Zhang, M., et al.: Specifying uncertainty in use case models. J. Syst. Softw. 144, 573–603 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Yue , Paolo Arcaini or Shaukat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, T., Arcaini, P., Ali, S. (2021). Understanding Digital Twins for Cyber-Physical Systems: A Conceptual Model. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Tools and Trends. ISoLA 2020. Lecture Notes in Computer Science(), vol 12479. Springer, Cham. https://doi.org/10.1007/978-3-030-83723-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83723-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83722-8

  • Online ISBN: 978-3-030-83723-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics