Skip to main content

Developing a Clinical Workflow That Fits Your Needs

  • Chapter
  • First Online:
Whole Slide Imaging
  • 901 Accesses

Abstract

Although digital pathology is a relatively new entity, the digital pathology products have become a mature product. This maturity is evidenced by the approval from the Food Drug and Administration to market digital pathology systems for primary diagnosis. The recent COVID-19 pandemic crisis has highlighted the value that digital pathology can provide to the practice of pathology. There are many potential use cases that may justify a department’s efforts to adopt digital pathology. Besides these well-established use cases for digital pathology, newer sophisticated tools are being developed to aid the pathologist and to deliver a more complex and detailed report for patient care. In this manuscript, I will attempt to review the aspects of these use cases with associated efficiencies and expenses in order to inform a pathology department about how adoption of digital pathology may fit within their long-term strategy. Finding the right fit for your department will allow your department to draw the maximal benefit from this powerful technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murphy RL Jr, Bird KT. Telediagnosis: a new community health resource. Observations on the feasibility of telediagnosis based on 1000 patient transactions. Am J Public Health. 1974;64(2):113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pantanowitz L, et al. Experience with multimodality telepathology at the University of Pittsburgh Medical Center. J Pathol Inform. 2012;3:45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaplan KJ, et al. Use of robotic telepathology for frozen-section diagnosis: a retrospective trial of a telepathology system for intraoperative consultation. Mod Pathol. 2002;15(11):1197–204.

    Article  PubMed  Google Scholar 

  4. Weinstein RS, et al. Overview of telepathology, virtual microscopy, and whole slide imaging: prospects for the future. Hum Pathol. 2009;40(8):1057–69.

    Article  PubMed  Google Scholar 

  5. Ghosh A, Brown GT, Fontelo P. Telepathology at the Armed Forces Institute of Pathology: a retrospective review of consultations from 1996 to 1997. Arch Pathol Lab Med. 2018;142(2):248–52.

    Article  PubMed  Google Scholar 

  6. Farahani N, Pantanowitz L. Overview of telepathology. Surg Pathol Clin. 2015;8(2):223–31.

    Article  PubMed  Google Scholar 

  7. Dietz RL, et al. Review of the use of telepathology for intraoperative consultation. Expert Rev Med Devices. 2018;15(12):883–90.

    Article  CAS  PubMed  Google Scholar 

  8. Ekong D, et al. Evaluation of android smartphones for telepathology. J Pathol Inform. 2017;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dietz RL, Hartman DJ, Pantanowitz L. Systematic review of the use of telepathology during intraoperative consultation. Am J Clin Pathol. 2020;153(2):198–209.

    Article  PubMed  Google Scholar 

  10. Collins BT. Telepathology in cytopathology: challenges and opportunities. Acta Cytol. 2013;57(3):221–32.

    Article  PubMed  Google Scholar 

  11. Khurana KK. Telecytology and its evolving role in cytopathology. Diagn Cytopathol. 2012;40(6):498–502.

    Article  PubMed  Google Scholar 

  12. Archondakis S, et al. Telecytology: a tool for quality assessment and improvement in the evaluation of thyroid fine-needle aspiration specimens. Telemed J E Health. 2009;15(7):713–7.

    Article  PubMed  Google Scholar 

  13. Monaco SE, et al. Assessing competency for remote telecytology rapid on-site evaluation using pre-recorded dynamic video streaming. Cytopathology. 2019;31:411.

    Article  Google Scholar 

  14. Monaco SE, et al. Telecytology implementation: deployment of telecytology for rapid on-site evaluations at an Academic Medical Center. Diagn Cytopathol. 2019;47(3):206–13.

    Article  PubMed  Google Scholar 

  15. Heher YK, et al. Achieving high reliability in histology: an improvement series to reduce errors. Am J Clin Pathol. 2016;146(5):554–60.

    Article  PubMed  Google Scholar 

  16. Huisman A, et al. Creation of a fully digital pathology slide archive by high-volume tissue slide scanning. Hum Pathol. 2010;41(5):751–7.

    Article  PubMed  Google Scholar 

  17. Finn WG. Diagnostic pathology and laboratory medicine in the age of "omics": a paper from the 2006 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn. 2007;9(4):431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutman DA, et al. The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research. Cancer Res. 2017;77(21):e75–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pantanowitz L, et al. Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. J Pathol Inform. 2018;9:40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marques Godinho T, et al. An efficient architecture to support digital pathology in standard medical imaging repositories. J Biomed Inform. 2017;71:190–7.

    Article  PubMed  Google Scholar 

  21. Evans AJ, et al. US Food and Drug Administration approval of whole slide imaging for primary diagnosis: a key milestone is reached and new questions are raised. Arch Pathol Lab Med. 2018;142(11):1383–7.

    Article  PubMed  Google Scholar 

  22. Mills AM, et al. Diagnostic efficiency in digital pathology: a comparison of optical versus digital assessment in 510 surgical pathology cases. Am J Surg Pathol. 2018;42(1):53–9.

    Article  PubMed  Google Scholar 

  23. Jen KY, et al. Reliability of whole slide images as a diagnostic modality for renal allograft biopsies. Hum Pathol. 2013;44(5):888–94.

    Article  PubMed  Google Scholar 

  24. Kent MN, et al. Diagnostic accuracy of virtual pathology vs traditional microscopy in a large dermatopathology study. JAMA Dermatol. 2017;153(12):1285–91.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Glatz-Krieger K, et al. Factors to keep in mind when introducing virtual microscopy. Virchows Arch. 2006;448(3):248–55.

    Article  PubMed  Google Scholar 

  26. Hanna MG, et al. Comparison of glass slides and various digital-slide modalities for cytopathology screening and interpretation. Cancer Cytopathol. 2017;125(9):701–9.

    Article  PubMed  Google Scholar 

  27. Sarewitz SJ. Subspecialization in community pathology practice. Arch Pathol Lab Med. 2014;138(7):871–2.

    Article  PubMed  Google Scholar 

  28. Huber AR, et al. Accuracy of vascular invasion reporting in hepatocellular carcinoma before and after implementation of subspecialty surgical pathology sign-out. Indian J Pathol Microbiol. 2017;60(4):501–4.

    Article  PubMed  Google Scholar 

  29. Iezzoni JC, et al. Selective pathology fellowships: diverse, innovative, and valuable subspecialty training. Arch Pathol Lab Med. 2014;138(4):518–25.

    Article  PubMed  Google Scholar 

  30. Sharma M, et al. Effects of subspecialty signout and group consensus on the diagnosis of microscopic colitis. Virchows Arch. 2019;475(5):573–8.

    Article  CAS  PubMed  Google Scholar 

  31. Leong AS, Braye S, Bhagwandeen B. Diagnostic 'errors' in anatomical pathology: relevance to Australian laboratories. Pathology. 2006;38(6):490–7.

    Article  PubMed  Google Scholar 

  32. Manion E, Cohen MB, Weydert J. Mandatory second opinion in surgical pathology referral material: clinical consequences of major disagreements. Am J Surg Pathol. 2008;32(5):732–7.

    Article  PubMed  Google Scholar 

  33. Strosberg C, et al. Second opinion reviews for cancer diagnoses in anatomic pathology: a comprehensive cancer center's experience. Anticancer Res. 2018;38(5):2989–94.

    PubMed  Google Scholar 

  34. Satta G, Edmonstone J. Consolidation of pathology services in England: have savings been achieved? BMC Health Serv Res. 2018;18(1):862.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gu J, Taylor CR. Practicing pathology in the era of big data and personalized medicine. Appl Immunohistochem Mol Morphol. 2014;22(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wood JP. Legal issues for pathologists. Adv Anat Pathol. 2011;18(6):466–72.

    Article  PubMed  Google Scholar 

  37. Martin SA, Styer PE. Assessing performance, productivity, and staffing needs in pathology groups: observations from the College of American Pathologists PathFocus pathology practice activity and staffing program. Arch Pathol Lab Med. 2006;130(9):1263–8.

    Article  PubMed  Google Scholar 

  38. Johnson P. Branding an anatomic pathology practice to build revenue. Clin Leadersh Manag Rev. 2004;18(4):220–5.

    PubMed  Google Scholar 

  39. Chorneyko K, et al. Canada's pathology. CMAJ. 2008;178(12):1523–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Digital Pathology Association Survey for Digital Pathology. May 22, 2020]; Available from: https://vr2.verticalresponse.com/emails/46179488376453?contact_id=46179491246273&sk=aXYQB2JgqjBIJQGhRANUF5NkdMNR7i4qbu1NmWr7QH9g=/aHR0cHM6Ly92cjIudmVydGljYWxyZXNwb25zZS5jb20vZW1haWxzLzQ2MTc5NDg4Mzc2NDUzP2NvbnRhY3RfaWQ9NDYxNzk0OTEyNDYyNzM=/3088BgyqSse7WoOHcuEdmw==.

  41. Pantanowitz L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2013;137(12):1710–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hanna MG, et al. Whole slide imaging equivalency and efficiency study: experience at a large academic center. Mod Pathol. 2019;32(7):916–28.

    Article  PubMed  Google Scholar 

  43. Vrekoussis T, et al. Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res. 2009;29(12):4995–8.

    CAS  PubMed  Google Scholar 

  44. Laurinavicius A, et al. Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol. 2012;7:27.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mofidi R, et al. Objective measurement of breast cancer oestrogen receptor status through digital image analysis. Eur J Surg Oncol. 2003;29(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  46. Lopez C, et al. Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression. Stud Health Technol Inform. 2012;179:155–71.

    PubMed  Google Scholar 

  47. Brugmann A, et al. Digital image analysis of membrane connectivity is a robust measure of HER2 immunostains. Breast Cancer Res Treat. 2012;132(1):41–9.

    Article  PubMed  Google Scholar 

  48. Koopman T, et al. What is the added value of digital image analysis of HER2 immunohistochemistry in breast cancer in clinical practice? A study with multiple platforms. Histopathology. 2019;74(6):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bankhead P, et al. Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer. Lab Investig. 2018;98(1):15–26.

    Article  PubMed  Google Scholar 

  50. Aeffner F, et al. Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. J Pathol Inform. 2019;10:9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Theodosiou Z, et al. Evaluation of FISH image analysis system on assessing HER2 amplification in breast carcinoma cases. Breast. 2008;17(1):80–4.

    Article  PubMed  Google Scholar 

  52. Hartman DJ, et al. Utility of CD8 score by automated quantitative image analysis in head and neck squamous cell carcinoma. Oral Oncol. 2018;86:278–87.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hartman DJ, et al. Automated quantitation of CD8-positive T cells predicts prognosis in colonic adenocarcinoma with mucinous, signet ring cell, or medullary differentiation independent of mismatch repair protein status. Am J Surg Pathol. 2020;44:991.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Monaco SE, et al. Quantitative image analysis for CD8 score in lung small biopsies and cytology cell-blocks. Cytopathology. 2020;31:393.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67(5):1883–6.

    Article  CAS  PubMed  Google Scholar 

  56. Pages F, et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29(8):1093–102.

    Article  CAS  PubMed  Google Scholar 

  57. Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article  CAS  PubMed  Google Scholar 

  58. Klebanoff CA, Gattinoni L, Restifo NP. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev. 2006;211:214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Indar A, et al. Current concepts in immunotherapy for the treatment of colorectal cancer. J R Coll Surg Edinb. 2002;47(2):458–74.

    CAS  PubMed  Google Scholar 

  60. Taube JM, et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol. 2018;31(2):214–34.

    Article  CAS  PubMed  Google Scholar 

  61. Schalper KA, et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst. 2015;107(3):dju435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jackson SR, Yuan J, Teague RM. Targeting CD8+ T-cell tolerance for cancer immunotherapy. Immunotherapy. 2014;6(7):833–52.

    Article  CAS  PubMed  Google Scholar 

  63. Yeo MK, et al. Clinical usefulness of the free web-based image analysis application ImmunoRatio for assessment of Ki-67 labelling index in breast cancer. J Clin Pathol. 2017;70(8):715–9.

    Article  PubMed  Google Scholar 

  64. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. October 22, 2019]; Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm604357.htm.

  66. Hartman DJ, et al. Value of public challenges for the development of pathology deep learning algorithms. J Pathol Inform. 2020;11:7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Litjens G, et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. Gigascience. 2018;7(6):giy065.

    Article  PubMed Central  Google Scholar 

  68. Choy G, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.

    Article  PubMed  Google Scholar 

  69. Dreyer KJ, Geis JR. When machines think: radiology's next frontier. Radiology. 2017;285(3):713–8.

    Article  PubMed  Google Scholar 

  70. Jara-Lazaro AR, et al. Digital pathology: exploring its applications in diagnostic surgical pathology practice. Pathology. 2010;42(6):512–8.

    Article  PubMed  Google Scholar 

  71. Romero Lauro G, et al. Digital pathology consultations-a new era in digital imaging, challenges and practical applications. J Digit Imaging. 2013;26(4):668–77.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Baidoshvili A, et al. Validation of a whole-slide image-based teleconsultation network. Histopathology. 2018;73(5):777–83.

    Article  PubMed  Google Scholar 

  73. Mosquera-Zamudio A, et al. Advantage of Z-stacking for teleconsultation between the USA and Colombia. Diagn Cytopathol. 2019;47(1):35–40.

    Article  PubMed  Google Scholar 

  74. Wilbur DC, et al. Whole-slide imaging digital pathology as a platform for teleconsultation: a pilot study using paired subspecialist correlations. Arch Pathol Lab Med. 2009;133(12):1949–53.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nahal A, et al. Setting up an ePathology service at Cleveland Clinic Abu Dhabi: joint collaboration with Cleveland Clinic, United States. Arch Pathol Lab Med. 2018;142(10):1216–22.

    Article  PubMed  Google Scholar 

  76. Zhao C, et al. International telepathology consultation: three years of experience between the University of Pittsburgh Medical Center and KingMed Diagnostics in China. J Pathol Inform. 2015;6:63.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Humphreys H, et al. Pathology in Irish medical education. J Clin Pathol. 2020;73(1):47–50.

    Article  PubMed  Google Scholar 

  78. Dee FR. Virtual microscopy in pathology education. Hum Pathol. 2009;40(8):1112–21.

    Article  PubMed  Google Scholar 

  79. Ford J, Pambrun C. Exit competencies in pathology and laboratory medicine for graduating medical students: the Canadian approach. Hum Pathol. 2015;46(5):637–42.

    Article  PubMed  Google Scholar 

  80. Chen CP, et al. Improving medical students' understanding of pediatric diseases through an innovative and tailored web-based digital pathology program with philips pathology tutor (Formerly PathXL). J Pathol Inform. 2019;10:18.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jajosky RP, et al. Fewer seniors from United States allopathic medical schools are filling pathology residency positions in the Main Residency Match, 2008-2017. Hum Pathol. 2018;73:26–32.

    Article  PubMed  Google Scholar 

  82. Magid MS, Cambor CL. The integration of pathology into the clinical years of undergraduate medical education: a survey and review of the literature. Hum Pathol. 2012;43(4):567–76.

    Article  PubMed  Google Scholar 

  83. Metter DM, et al. Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA Netw Open. 2019;2(5):e194337.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Hartman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartman, D.J. (2022). Developing a Clinical Workflow That Fits Your Needs. In: Parwani, A.V. (eds) Whole Slide Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-83332-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83332-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83331-2

  • Online ISBN: 978-3-030-83332-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics