Skip to main content

Infectious Diseases

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

Many infectious organisms can be detected in routine histological sections, but when faced with the proverbial “bug hunt” that yields nothing, immunohistochemical testing can prove helpful. Along with polymerase chain reaction and direct fluorescent antibody testing, immunohistochemistry is establishing a valuable position in the diagnosis of infectious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacchi CE, Gown AM, Bacchi MM. Detection of infectious disease agents in tissue by immunocytochemistry. Braz J Med Biol Res. 1994;27(12):2803–20.

    CAS  PubMed  Google Scholar 

  2. Molina-Ruiz A, Cerroni L, Kutzner H, Requena L. Immunohistochemistry in the diagnosis of cutaneous bacterial infections. Am J Dermatopathol. 2015;37:179–96.

    Article  PubMed  Google Scholar 

  3. Tatti KM, Greer P, White E, Shieh WJ, Guarner J, Ferebee-Harris T, Bartlett J, Ashford D, Hoffmaster A, Gallucci G, Vafai A, Popovic T, Zaki SR. Morphologic, immunologic, and molecular methods to detect bacillus anthracis in formalin-fixed tissues. Appl Immunohistochem Mol Morphol. 2006;14(2):234–43.

    Article  PubMed  Google Scholar 

  4. Ghosh N, Tomar I, Goel AK. A field usable qualitative anti-protective antigen enzyme-linked immunosorbent assay for serodiagnosis of human anthrax. Microbiol Immunol. 2013;57(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  5. Semenova VA, Schiffer J, Steward-Clark E, Soroka S, Schmidt DS, Brawner MM, Lyde F, Thompson R, Brown N, Foster L, Fox S, Patel N, Freeman AE, Quinn CP. Validation and long term performance characteristics of a quantitative enzyme linked immunosorbent assay (ELISA) for human anti-PA IgG. J Immunol Methods. 2012;376(1–2):97–107.

    Article  CAS  PubMed  Google Scholar 

  6. Shieh W-J, Guarner J, Paddock C, Greer P, Tatti K, Fischer M, Layton M, Philips M, Bresnitz E, Quinn CP, Popovic T, Perkins BA, Zaki SR, the Anthrax Bioterrorism Investigation Team. The critical role of pathology in the investigation of bioterrorism-related cutaneous anthrax. Am J Pathol. 2003;163:1901–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guarner J, Jernigan J, Shieh W, Tatti K, Flannagan L, Stephens D, Popovic T, et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol. 2003;163:701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsuruoka K, Tsuneoka H, Kawano M, Yanagihara M, Nojima J, Tanaka T, Yamamoto M, Ichihara K. Evaluation of IgG ELISA using N-lauroyl-sarcosine-soluble proteins of Bartonella henselae for highly specific serodiagnosis of cat scratch disease. Diagn Microbiol Infect Dis. 2012;74(3):230–5.

    Article  CAS  PubMed  Google Scholar 

  9. Pérez C, Maggi RG, Diniz PP, Breitschwerdt EB. Molecular and serological diagnosis of Bartonella infection in 61 dogs from the United States. J Vet Intern Med. 2011;25(4):805–10.

    Article  PubMed  Google Scholar 

  10. Caponetti GC, Pantanowitz L, Marconi S, Havens JM, Lamps LW, Otis CN. Evaluation of immunohistochemistry in identifying Bartonella henselae in cat-scratch disease. Am J Clin Pathol. 2009;131(2):250–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ilhan F, Yener Z. Immunohistochemical detection of Brucella melitensis antigens in cases of naturally occurring abortions in sheep. J Vet Diagn Invest. 2008;20(6):803–6.

    Article  PubMed  Google Scholar 

  12. Markowicz M, Grilnberger E, Huber F, Leibl G, Abrahamian H, Gartner M, Huber M, Chott A, Reiter M, Stanek G. Case report: lymphogranuloma venereum proctitis-from rapid screening to molecular confirmation of a masked sexually transmitted disease. Diagn Microbiol Infect Dis. 2013;76(4):516–7.

    Article  CAS  PubMed  Google Scholar 

  13. Li ZY, Huang QL, Su SM, Zhong GM, Wu YM. Development of ELISAs for the detection of urogenital chlamydia trachomatis infection targeting the pORF5 protein. Biomed Environ Sci. 2013;26(3):169–75.

    CAS  PubMed  Google Scholar 

  14. Zhou Z, Wu YM, Chen LL, Liu GC, Liu LZ, Zhou AW, Zhang JH. Development and evaluation of a MAb-based ELISA for detection of Chlamydophila pneumoniae infection with variable domain 2 and 3 of the major outer membrane protein. Biomed Environ Sci. 2012;25(6):690–6.

    CAS  PubMed  Google Scholar 

  15. Zeidner NS, Carter LG, Monteneiri JA, Petersen JM, Schriefer M, Gage KL, Hall G, Chu MC. An outbreak of Francisella tularensis in captive prairie dogs: an immunohistochemical analysis. J Vet Diagn Invest. 2004;16(2):150–2.

    Article  PubMed  Google Scholar 

  16. Wabing HR. Comparison of immunohistochemical and modified Giemsa stains for demonstration of Helicobacter pylori infection in an African population. Afr Health Sci. 2002;2(2):52–5.

    Google Scholar 

  17. Ashton-Key M, Diss TC, Isaacson PG. Detection of Helicobacter pylori in gastric biopsy and resection specimens. J Clin Pathol. 1996;49(2):107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciesielska U, Dziegiel P, Jagoda E, Podhorska-Okołów M, Zabel M. The detection of Helicobacter pylori in paraffin sections using the PCR technique and various primers as compared to histological techniques. Folia Morphol (Warsz). 2004;63(2):229–31.

    PubMed  Google Scholar 

  19. Jonkerst D, Stobberingh E, de Bruine A, Arends JW, Stockbrüg R. Evaluation of immunohistochemistry for the detection of Helicobacter pylori in gastric mucosal biopsies. J Infect. 1997;35:149–54.

    Article  Google Scholar 

  20. Wild CJ, Greenlee JJ, Bolin CA, Barnett JK, Haake DA, Cheville NF. An improved immunohistochemical diagnostic technique for canine leptospirosis using antileptospiral antibodies on renal tissue. J Vet Diagn Invest. 2002;14(1):20–4.

    Article  PubMed  Google Scholar 

  21. Saglam YS, Yener Z, Temur A, Yalcin E. Immunohistochemical detection of leptospiral antigens in cases of naturally occurring abortions in sheep. Small Ruminant Research. 2008;74(1–3):119–22.

    Article  Google Scholar 

  22. Lebech A, Clemmensen O, Hansen K. Comparison of in vitro culture, immunohistochemical staining, and PCR for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J Clin Microbiol. 1995;33(9):2328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Galan A, Kupernik P, Cowper SE. Detection of Borrelia in Ixodes scapularis ticks by silver stain, immunohistochemical and direct immunofluorescent methods. J Cutan Pathol. 2018;45(7):473–7.

    Article  PubMed  Google Scholar 

  24. Gidney MA, Plested JS, Lacelle S, et al. Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect Immun. 2004;72:559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmengler K, Goldmann T, Brade L, Sánchez Carballo PM, Albrecht S, Brade H, Kosma P, Sahly H, Hauber HP, Länger F, Meyer R, Welte T, Zähringer U. Monoclonal antibody S60-4-14 reveals diagnostic potential in the identification of Pseudomonas aeruginosa in lung tissues of cystic fibrosis patients. Eur J Cell Biol. 2010;89(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  26. White WL, Patrick JD, Miller LR. Evaluation of immunoperoxidase techniques to detect Rickettsia rickettsii in fixed tissue sections. Am J Clin Pathol. 1994;101(6):747–52.

    Article  CAS  PubMed  Google Scholar 

  27. Guarner J, Bartlett J, Reagan S, et al. Immunohistochemical evidence of Clostridium sp, Staphylococcus aureus, and group A Streptococcus in severe soft tissue infections related to injection drug use. Hum Pathol. 2006;37:1482–8.

    Article  PubMed  Google Scholar 

  28. Jensen LK, Henriksen NL, Bjarnsholt T, Kragh KN, Jensen HE. Combined Staining Techniques for Demonstration of Staphylococcus aureus Biofilm in Routine Histopathology. J Bone Jt Infect. 2018;3(1):27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Behrhof W, Springer E, Bräuninger W, Kirkpatrick CJ, Weber A. PCR testing for Treponema pallidum in paraffin-embedded skin biopsy specimens: test design and impact on the diagnosis of syphilis. J Clin Pathol. 2008;61(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  30. Buffet M, Grange PA, Gerhardt P, et al. Diagnosing treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol. 2007;127(10):2345–50.

    Article  CAS  PubMed  Google Scholar 

  31. Hoang MP, High WA, Molberg KH. Secondary syphilis: a histologic and immunohistochemical evaluation. J Cutan Pathol. 2004;31(9):595–9.

    Article  PubMed  Google Scholar 

  32. Putri I, Mercer SE, Phelps RG, Levitt JO. False-negative anti-treponemal immunohistochemistry in secondary syphilis. Int J Dermatol. 2013;52(2):172–6.

    Article  PubMed  Google Scholar 

  33. Aparicio MA, Santos-Briz A. Unexpected immunostaining of Mycobaterium leprae with a polyclonal antibody against Treponema pallidum. Am J Dermatopathol. 2012;34(5):559–61.

    Article  PubMed  Google Scholar 

  34. Guarner J, Shieh WJ, Greer PW, Gabastou JM, Chu M, Hayes E, Nolte KB, Zaki SR. Immunohistochemical detection of Yersinia pestis in formalin-fixed, paraffin-embedded tissue. Am J Clin Pathol. 2002;117(2):205–9.

    Article  PubMed  Google Scholar 

  35. Szeredi L, Glávits R, Tenk M, Jánosi S. Application of anti-BCG antibody for rapid immunohistochemical detection of bacteria, fungi and protozoa in formalin-fixed paraffin-embedded tissue samples. Acta Vet Hung. 2008;56(1):89–99.

    Article  PubMed  Google Scholar 

  36. Prinz BM, Michaelis S, Kettelhack N, Mueller B, Burg G, Kempf W. Subcutaneous infection with Mycobacterium abscessus in a renal transplant recipient. Dermatology. 2004;208(3):259–61.

    Article  CAS  PubMed  Google Scholar 

  37. Schettini AP, Ferreira LC, Milagros R, Schettini MC, Pennini SN, Rebello PB. Enhancement in the histological diagnosis of leprosy in patients with only sensory loss by demonstration of mycobacterial antigens using anti-BCG polyclonal antibodies. Int J Lepr Other Mycobact Dis. 2001;69(4):335–40.

    CAS  PubMed  Google Scholar 

  38. Okuni JB, Kateete DP, Okee M, Nanteza A, Joloba M, Ojok L. Application of antibodies to recombinant heat shock protein 70 in immunohistochemical diagnosis of mycobacterium avium subspecies paratuberculosis in tissues of naturally infected cattle. Ir Vet J. 2017;70:10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Martinson SA, Hanna PE, Ikede BO, Lewis JP, Miller LM, Keefe GP, Mckenna SLB. Comparison of bacterial culture, histopathology, and immunohistochemistry for the diagnosis of Johne's disease in culled dairy cows. J Vet Diagn Invest. 2008;20:51–7.

    Article  PubMed  Google Scholar 

  40. Huntley JFJ, Whitlock RH, Bannantine JP, Stabel JR. Comparison of diagnostic detection methods for Mycobacterium avium subsp. paratuberculosis in North American Bison. Vet Pathol. 2005;42:42–51.

    Article  CAS  PubMed  Google Scholar 

  41. Wen Y, Xing Y, Yuan LC, Liu J, Zhang Y, Li HY. Whole-blood nested-PCR amplification of M. leprae-specific DNA for early diagnosis of leprosy. Am J Trop Med Hyg. 2013;88(5):918–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Medeiros MF, Jardim MR, Vital RT, Costa Nery JA, Sales AM, Moraes MO, Chimelli LM, Pessolani MC, Ferreira H, Sarno EN, Antunes SL. An attempt to improve pure neural leprosy diagnosis using immunohistochemistry tests in peripheral nerve biopsy specimens. Appl Immunohistochem Mol Morphol. 2013. [Epub ahead of print] PubMed PMID: 23702646.

    Google Scholar 

  43. Adegboye DS, Rasberry U, Halbur PG, Andrews JJ, Rosenbusch RF. Monoclonal antibody-based immunohistochemical technique for the detection of Mycoplasma bovis in formalin-fixed, paraffin-embedded calf lung tissues. J Vet Diagn Invest. 1995;7(2):261–5.

    Article  CAS  PubMed  Google Scholar 

  44. Mustafa T, Wiker HG, Mfinanga SG, Mørkve O, Sviland L. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Mod Pathol. 2006;19(12):1606–14.

    Article  CAS  PubMed  Google Scholar 

  45. Goel MM, Budhwar P. Immunohistochemical localization of Mycobacterium tuberculosis complex antigen with antibody to 38 kda antigen versus Ziehl Neelsen staining in tissue granulomas of extrapulmonary tuberculosis. Indian J Tuberc. 2007;54:24–9.

    PubMed  Google Scholar 

  46. Molina-Ruiz AM, Santonja C, Rütten A, Cerroni L, Kutzner H, Requena L. Immunohistochemistry in the diagnosis of cutaneous viral infections--part I. Cutaneous viral infections by herpesviruses and papillomaviruses. Am J Dermatopathol. 2015;37(1):1–14.

    Article  PubMed  Google Scholar 

  47. Molina-Ruiz AM, Santonja C, Rütten A, Cerroni L, Kutzner H, Requena L. Immunohistochemistry in the diagnosis of cutaneous viral infections- part II: cutaneous viral infections by parvoviruses, poxviruses, paramyxoviridae, picornaviridae, retroviruses and filoviruses. Am J Dermatopathol. 2015;37(2):93–106.

    Article  PubMed  Google Scholar 

  48. Wilkens L, Werner M, Nolte M, Wasielewski RV, Verhagen W, Flik J, Klempnauer J, Georgii A. Influence of formalin fixation on the detection of cytomegalovirus by polymerase chain reaction in immunocompromised patients and correlation to in situ hybridization, immunohistochemistry, and serological data. Diagn Mol Pathol. 1994;3(3):156–62.

    Article  CAS  PubMed  Google Scholar 

  49. Strickler J, Manivel J, Copenhaver C, Kubic V. Comparison of in situ hybridization and immunohistochemistry for detection of cytomegalovirus and herpes simplex virus. Human Pathol. 1990;21:443–8.

    Article  CAS  Google Scholar 

  50. Thomas Bajanowski1, Peter Wiegand1 and Bernd Brinkmann1. Comparison of different methods for CMV detection. Int J Legal Med. 1994;106:219–22.

    Google Scholar 

  51. Mills AM, Guo FP, Copland AP, Pai RK, Pinsky BA. A comparison of CMV detection in gastrointestinal mucosal biopsies using immunohistochemistry and PCR performed on formalin-fixed, paraffin-embedded tissue. Am J Surg Pathol. 2013;37(7):995–1000.

    Article  PubMed  Google Scholar 

  52. Lu DY, Qian J, Easley KA, Waldrop SM, Cohen C. Automated in situ hybridization and immunohistochemistry for cytomegalovirus detection in paraffin-embedded tissue sections. Appl Immunohistochem Mol Morphol. 2009;17(2):158–64.

    Article  CAS  PubMed  Google Scholar 

  53. Samuelson A, Forsgren M, Sällberg M. Characterization of the recognition site and diagnostic potential of an enterovirus group-reactive monoclonal antibody. Clin Diagn Lab Immunol. 1995;2:385–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Truong CD, Feng W, Li W, Khoury T, Li Q, Alrawi S, Yu Y, Xie K, Yao J, Tan D. Characteristics of Epstein-Barr virus-associated gastric cancer: a study of 235 cases at a comprehensive cancer center in U.S.A. J Exp Clin Cancer Res. 2009;28:14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fanaian NK, Cohen C, Waldrop S, Wang J, Shehata BM. Epstein-Barr virus (EBV)-encoded RNA: automated in-situ hybridization (ISH) compared with manual ISH and immunohistochemistry for detection of EBV in pediatric lymphoproliferative disorders. Pediatr Dev Pathol. 2009;12(3):195–9.

    Article  PubMed  Google Scholar 

  56. Suh N, Liapis H, Misdraji J, Brunt EM, Wang HL. Epstein-Barr virus hepatitis: diagnostic value of in situ hybridization, polymerase chain reaction, and immunohistochemistry on liver biopsy from immunocompetent patients. Am J Surg Pathol. 2007;31(9):1403–9.

    Article  PubMed  Google Scholar 

  57. van Hemel BM, Suurmeijer AJ. Effective application of the methanol-based PreservCyt(™) fixative and the Cellient(™) automated cell block processor to diagnostic cytopathology, immunocytochemistry, and molecular biology. Diagn Cytopathol. 2013;41(8):734–41.

    Article  PubMed  Google Scholar 

  58. Benkoël L, Biagini P, Dodero F, De Lamballerie X, De Micco P, Chamlian A. Immunohistochemical detection of C-100 hepatitis C virus antigen in formaldehyde-fixed paraffin-embedded liver tissue. Correlation with serum, tissue and in situ RT-PCR results. Eur J Histochem. 2004;48(2):185–90.

    Article  PubMed  Google Scholar 

  59. Qian X, Guerrero RB, Plummer TB, Alves VF, Lloyd RV. Detection of hepatitis C virus RNA in formalin-fixed paraffin-embedded sections with digoxigenin-labeled cRNA probes. Diagn Mol Pathol. 2004;13(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  60. González-Peralta RP, Fang JW, Davis GL, Gish R, Tsukiyama-Kohara K, Kohara M, Mondelli MU, Lesniewski R, Phillips MI, Mizokami M, et al. Optimization for the detection of hepatitis C virus antigens in the liver. J Hepatol. 1994;20(1):143–7.

    Article  PubMed  Google Scholar 

  61. Pitalia AK, Liu-Yin JA, Freemont AJ, Morris DJ, Fitzmaurice RJ. Immunohistological detection of human herpes virus 6 in formalin-fixed, paraffin-embedded lung tissues. J Med Virol. 1993;41(2):103–7.

    Article  CAS  PubMed  Google Scholar 

  62. Hasui K, Wang J, Tanaka Y, et al. Development of ultra-super sensitive immunohistochemistryanditsapplicationtotheetiologicalstudyofadultTcell leukemia/lymphoma. Acta Histochem Cytochem. 2012;45:83–106.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. Mod Pathol. 2004;17(4):456–60.

    Article  PubMed  Google Scholar 

  64. Haltas H, Bayrak R, Yenidunya S, Yildirim U. The immunohistochemical detection of P16 and HPV L1 capsid protein on cell block sections from residual PapSpin liquid-based gynecology cytology specimens as a diagnostic and prognostic tool. Eur Rev Med Pharmacol Sci. 2012;16(11):1588–95.

    CAS  PubMed  Google Scholar 

  65. Jeon JH, Shin DM, Cho SY, Song KY, Park NH, Kang HS, Kim YD, Kim IG. Immunocytochemical detection of HPV16 E7 in cervical smear. Exp Mol Med. 2007;39(5):621–8.

    Article  CAS  PubMed  Google Scholar 

  66. Mulvany NJ, Allen DG, Wilson SM. Diagnostic utility of p16INK4a: a reappraisal of its use in cervical biopsies. Pathology. 2008;40(4):335–44.

    Article  CAS  PubMed  Google Scholar 

  67. Oda Y, Katsuda S, Okada Y, Kawahara EI, Ooi A, Kawashima A, Nakanishi I. Detection of human cytomegalovirus, Epstein-Barr virus, and herpes simplex virus in diffuse interstitial pneumonia by polymerase chain reaction and immunohistochemistry. Am J Clin Pathol. 1994;102(4):495–502.

    Article  CAS  PubMed  Google Scholar 

  68. He F, Du Q, Ho Y, Kwang J. Immunohistochemical detection of Influenza virus infection in formalin-fixed tissues with anti-H5 monoclonal antibody recognizing FFWTILKP. J Virol Methods. 2009;155(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  69. Samsioe A, Papadogiannakis N, Hultman T, Sjöholm A, Klitz W, Niklasson B. Ljungan virus present in intrauterine fetal death diagnosed by both immunohistochemistry and PCR. Birth Defects Res A Clin Mol Teratol. 2009;85(3):227–9.

    Article  CAS  PubMed  Google Scholar 

  70. Liersch J, Omaj R, Schaller J. Histopathological and immunohistochemical characteristics of measles exanthema: a study of a series of 13 adult cases and review of the literature. Am J Dermatopathol. 2019. doi: 10.1097/DAD.0000000000001431. [Epub ahead of print] PubMed PMID: 31021834.

    Google Scholar 

  71. Zaki SA. Detection of human parvovirus B19 in cancer patients using ELISA and real-time PCR. Indian J Med Microbiol. 2012;30(4):407–10.

    Article  CAS  PubMed  Google Scholar 

  72. Santonja C, Nieto-González G, Santos-Briz Á, Gutiérrez Zufiaurre Mde L, Cerroni L, Kutzner H, Requena L. Immunohistochemical detection of parvovirus B19 in "gloves and socks" papular purpuric syndrome: direct evidence for viral endothelial involvement. Report of three cases and review of the literature. Am J Dermatopathol. 2011;33(8):790–5.

    Article  PubMed  Google Scholar 

  73. Escher F, Kuhl U, Sabi T, Suckau L, Lassner D, Poller W, Schultheiss HP, Noutsias M. Immunohistological detection of Parvovirus B19 capsid proteins in endomyocardial biopsies from dilated cardiomyopathy patients. Med Sci Monit. 2008;14(6):CR333–8.

    PubMed  Google Scholar 

  74. Grabowski JM, Tsetsarkin KA, Long D, Scott DP, Rosenke R, Schwan TG, Mlera L, Offerdahl DK, Pletnev AG, Bloom ME. Flavivirus infection of ixodes scapularis (black-legged tick) ex vivo organotypic cultures and applications for disease control. MBio. 2017;22:8(4).

    Google Scholar 

  75. Ogawa T, Gamoh K, Aoki H, Kobayashi R, Etoh M, Senda M, Hirayama N, Nishimura M, Shiraishi R, Servat A, Cliquet F. Validation and standardization of virus neutralizing test using indirect immunoperoxidase technique for the quantification of antibodies to rabies virus. Zoonoses Public Health. 2008 Aug;55(6):323–7.

    Article  CAS  PubMed  Google Scholar 

  76. Lembo T, Niezgoda M, Velasco-Villa A, Cleaveland S, Ernest E, Rupprecht CE. Evaluation of a direct, rapid immunohistochemical test for rabies diagnosis. Emerg Infect Dis. 2006;12(2):310–3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Inoue S, Sato Y, Hasegawa H, Noguchi A, Yamada A, Kurata T, Iwasaki T. Cross-reactive antigenicity of nucleoproteins of lyssaviruses recognized by a monospecific antirabies virus nucleoprotein antiserum on paraffin sections of formalin-fixed tissues. Pathol Int. 2003;53(8):525–33.

    Article  CAS  PubMed  Google Scholar 

  78. Wacharapluesadee S, Ruangvejvorachai P, Hemachudha T. A simple method for detection of rabies viral sequences in 16-year old archival brain specimens with one-week fixation in formalin. J Virol Methods. 2006;134(1–2):267–71.

    Article  CAS  PubMed  Google Scholar 

  79. Donaldson KA, Kramer MF, Lim DV. A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosens Bioelectron. 2004;20(2):322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson DA, Yen-Lieberman B, Schindler S, Asamoto K, Schold JD, Procop GW. Should varicella-zoster virus culture be eliminated? A comparison of direct immunofluorescence antigen detection, culture, and PCR, with a historical review. J Clin Microbiol. 2012;50(12):4120–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nikkels AF, Debrus S, Sadzot-Delvaux C, Piette J, Rentier B. Piérard GE Immunohistochemical identification of varicella-zoster virus gene 63-encoded protein (IE63) and late (gE) protein on smears and cutaneous biopsies: implications for diagnostic use. J Med Virol. 1995;47(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  82. Chan EL, Brandt K, Horsman GB. Comparison of Chemicon SimulFluor direct fluorescent antibody staining with cell culture and shell vial direct immunoperoxidase staining for detection of herpes simplex virus and with cytospin direct immunofluorescence staining for detection of varicella-zoster virus. Clin Diagn Lab Immunol. 2001;8(5):909–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zaki S, Shieh W, Greer P, Goldsmith C, Ferebee T, Katshitshi J, Tshioko F, et al. A novel immunohistochemical assay for the detection of ebola virus in skin: implications for diagnosis, spread, and surveillance of ebola hemorrhagic fever. J Infect Dis. 1999;179S:36–47.

    Article  Google Scholar 

  84. Smedley RC, Patterson JS, Miller R, Massey JP, Wise AG, Maes RK, Wu P, Kaneene JB, Kiupel M. Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos). BMC Infect Dis. 2007;7:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bhatnagar J, Guarner J, Paddock CD, Shieh WJ, Lanciotti RS, Marfin AA, Campbell GL, Zaki SR. Detection of West Nile virus in formalin-fixed, paraffin-embedded human tissues by RT-PCR: a useful adjunct to conventional tissue-based diagnostic methods. J Clin Virol. 2007;38(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  86. Bollweg BC, Silva-Flannery L, Spivey P, Hale GL. Optimization of commercially available Zika virus antibodies for use in a laboratory-developed immunohistochemical assay. J Pathol Clin Res. 2017;4(1):19–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bialek R, Ernst F, Dietz K, Najvar LK, Knobloch J, Graybill JR, Schaumburg-Lever G. Comparison of staining methods and a nested PCR assay to detect Histoplasma capsulatum in tissue sections. Am J Clin Pathol. 2002;117(4):597–603.

    Article  CAS  PubMed  Google Scholar 

  88. Verweij PE, Smedts F, Poot T, Bult P, Hoogkamp-Korstanje JA, Meis JF. Immunoperoxidase staining for identification of Aspergillus species in routinely processed tissue sections. J Clin Pathol. 1996;49(10):798–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schuetz AN, Cohen C. Aspergillus Immunohistochemistry of Culture-proven Fungal Tissue Isolates Shows High Cross-reactivity. Appl Immunohistochem Mol Morphol. 2009. [Epub ahead of print] PubMed PMID: 19602969.

    Google Scholar 

  90. Fukuzawa M, Inaba H, Hayama M, Sakaguchi N, Sano K, Ito M, Hotchi M. Improved detection of medically important fungi by immunoperoxidase staining with polyclonal antibodies. Virchows Arch. 1995;427(4):407–14.

    Article  CAS  PubMed  Google Scholar 

  91. Yohannan B, Feldman M. Fatal Balamuthia mandrillaris Encephalitis. Case Rep Infect Dis. 2019;2019:9315756.

    PubMed  PubMed Central  Google Scholar 

  92. Hayden RT, Qian X, Roberts GD, Lloyd RV. In situ hybridization for the identification of yeast-like organisms in tissue sections. Diagn Mol Pathol. 2001;10(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  93. Hayden RT, Qian X, Procop GW, et al. In situ hybridization for the identification of filamentous fungi in tissue sections. Diagn Mol Pathol. 2002;11(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  94. Azevedo PHR, Xavier MAP, Silva GND, Costa PAD, Carneiro CM, Brasileiro FG. Anti-serum validation for use in immunohistochemistry for Trypanosoma cruzi detection. Rev Soc Bras Med Trop. 2018;51(4):467–74. https://doi.org/10.1590/0037-8682-0011-2018.

    Article  PubMed  Google Scholar 

  95. Blumenfeld W, Kovacs JA. Use of a monoclonal antibody to detect Pneumocystis carinii in induced sputum and bronchoalveolar lavage fluid by immunoperoxidase staining. Arch Pathol Lab Med. 1988;112(12):1233–6.

    CAS  PubMed  Google Scholar 

  96. Arastéh KN, Simon V, Musch R, Weiss RO, Przytarski K, Futh UM, Pleuger F, Huhn D, L'age MP. Sensitivity and specificity of indirect immunofluorescence and Grocott-technique in comparison with immunocytology (alkaline phosphatase anti alkaline phosphatase = APAAP) for the diagnosis of Pneumocystis carinii in broncho-alveolar lavage (BAL). Eur J Med Res. 1998;3(12):559–63.

    PubMed  Google Scholar 

  97. Amato VS, Tuon FF, de Andrade HF Jr, Bacha H, Pagliari C, Fernandes ER, Duarte MI, Neto VA, Zampieri RA, Floeter-Winter LM, Celeste BJ, Oliveira J, Quiroga MM, Mascheretti M, Boulos M. Immunohistochemistry and polymerase chain reaction on paraffin-embedded material improve the diagnosis of cutaneous leishmaniasis in the Amazon region. Int J Dermatol. 2009;48(10):1091–5.

    Article  CAS  PubMed  Google Scholar 

  98. de Arruda MM, Figueiredo FB, Cardoso FA, Hiamamoto RM, Brazuna JC, de Oliveira MR, Noronha EF, Romero GA. Validity and reliability of enzyme immunoassays using Leishmania major or L. infantum antigens for the diagnosis of canine visceral leishmaniasis in Brazil. PLoS One. 2013;8(7):e69988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Silva LA, Romero HD, Fagundes A, Nehme N, Fernandes O, Rodrigues V, Costa RT, Prata A. Use of the polymerase chain reaction for the diagnosis of asymptomatic Leishmania infection in a visceral leishmaniasis-endemic area. Rev Inst Med Trop Sao Paulo. 2013;55(2):101–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk M. Elston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elston, D.M., Gibson, L.E., Kutzner, H. (2022). Infectious Diseases. In: Lin, F., Prichard, J.W., Liu, H., Wilkerson, M.L. (eds) Handbook of Practical Immunohistochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83328-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83328-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83327-5

  • Online ISBN: 978-3-030-83328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics