Skip to main content
  • 1931 Accesses

Abstract

Immunohistochemistry plays a crucial role in the routine practice of breast pathology. This chapter answers questions regarding immunohistochemistry’s many applications to topics including stromal invasion, columnar cell lesions, intraductal proliferations, papillary lesions, sclerosing lesions, spindle cell lesions, nipple neoplasia and Paget’s disease, fibroepithelial lesions, prognostic and predictive factors and genomic phenotypes (luminal A, B, basal and Her-2). The application of GATA-3 in breast pathology is discussed and illustrated. Photomicrographs demonstrate the characteristic staining patterns of common stains such as nuclear and cytoplasmic myoepithelial markers, membranous E-cadherin and p120 catenin proteins in lobular neoplasia and D2-40 in lymphatic invasion. Images also show novel dual color staining techniques such as p63 and c-kit staining of adenoid cystic carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dabbs DJ. Diagnostic immunohistochemistry. 3rd ed. Philadelphia, PA: Churchill Livingstone Elsevier; 2010.

    Google Scholar 

  2. Rosen PP. Rosen's breast pathology. 3rd ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2008.

    Google Scholar 

  3. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of tumours of the breast. Lyon, France: IARC; 2012.

    Google Scholar 

  4. Collins LC. Surgical pathology clinics: current concepts in breast pathology, vol. 2. Philadelphia, PA: WB Saunders; 2009.

    Google Scholar 

  5. Yeh IT, Mies C. Application of immunohistochemistry to breast lesions. Arch Pathol Lab Med. 2008;132(3):349–58.

    Article  PubMed  Google Scholar 

  6. Lerwill MF. Current practical applications of diagnostic immunohistochemistry in breast pathology. Am J Surg Pathol. 2004;28(8):1076–91.

    Article  PubMed  Google Scholar 

  7. Böcker W, Bier B, Freytag G, Brömmelkamp B, Jarasch ED, Edel G, et al. An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part II: Epitheliosis and ductal carcinoma in situ. Virchows Arch A Pathol Anat Histopathol. 1992;421(4):323–30.

    Article  PubMed  Google Scholar 

  8. Böcker W, Bier B, Freytag G, Brömmelkamp B, Jarasch ED, Edel G, et al. An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part I: Normal breast and benign proliferative lesions. Virchows Arch A Pathol Anat Histopathol. 1992;421(4):315–22.

    Article  PubMed  Google Scholar 

  9. Liu H. Breast. In: Lin F, Prichard JW, Liu H, Wilkerson M, Schuerch C, editors. Handbook of practical immunohistochemistry: frequently asked questions. New York, NY: Springer; 2011. p. 225–47.

    Chapter  Google Scholar 

  10. Lacroix-Triki M, Mery E, Voigt JJ, Istier L, Rochaix P. Value of cytokeratin 5/6 immunostaining using D5/16 B4 antibody in the spectrum of proliferative intraepithelial lesions of the breast. A comparative study with 34betaE12 antibody. Virchows Arch. 2003;442(6):548–54.

    Article  CAS  PubMed  Google Scholar 

  11. Tse GM, Tan PH, Moriya T. The role of immunohistochemistry in the differential diagnosis of papillary lesions of the breast. J Clin Pathol. 2009;62(5):407–13.

    Article  CAS  PubMed  Google Scholar 

  12. Moriya T, Kasajima A, Ishida K, Kariya Y, Akahira J, Endoh M, et al. New trends of immunohistochemistry for making differential diagnosis of breast lesions. Med Mol Morphol. 2006;39(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  13. Tang P, Wang X, Schiffhauer L, Wang J, Bourne P, Yang Q, et al. Relationship between nuclear grade of ductal carcinoma in situ and cell origin markers. Ann Clin Lab Sci. 2006;36(1):16–22.

    PubMed  Google Scholar 

  14. Bhargava R, Dabbs DJ. Use of immunohistochemistry in diagnosis of breast epithelial lesions. Adv Anat Pathol. 2007;14(2):93–107.

    Article  PubMed  Google Scholar 

  15. Heatley M, Maxwell P, Whiteside C, Toner P. Cytokeratin intermediate filament expression in benign and malignant breast disease. J Clin Pathol. 1995;48(1):26–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Werling RW, Hwang H, Yaziji H, Gown AM. Immunohistochemical distinction of invasive from noninvasive breast lesions: a comparative study of p63 versus calponin and smooth muscle myosin heavy chain. Am J Surg Pathol. 2003;27(1):82–90.

    Article  PubMed  Google Scholar 

  17. Barbareschi M, Pecciarini L, Cangi MG, Macrì E, Rizzo A, Viale G, et al. p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol. 2001;25(8):1054–60.

    Article  CAS  PubMed  Google Scholar 

  18. Moritani S, Kushima R, Sugihara H, Bamba M, Kobayashi TK, Hattori T. Availability of CD10 immunohistochemistry as a marker of breast myoepithelial cells on paraffin sections. Mod Pathol. 2002;15(4):397–405.

    Article  PubMed  Google Scholar 

  19. Kovacs A, Walker RA. P-cadherin as a marker in the differential diagnosis of breast lesions. J Clin Pathol. 2003;56(2):139–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moriya T, Kozuka Y, Kanomata N, Tse GM, Tan PH. The role of immunohistochemistry in the differential diagnosis of breast lesions. Pathology. 2009;41(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  21. Dwarakanath S, Lee AK, Delellis RA, Silverman ML, Frasca L, Wolfe HJ. S-100 protein positivity in breast carcinomas: a potential pitfall in diagnostic immunohistochemistry. Hum Pathol. 1987;18(11):1144–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ribeiro-Silva A, Zambelli Ramalho LN, Britto Garcia S, Zucoloto S. The relationship between p63 and p53 expression in normal and neoplastic breast tissue. Arch Pathol Lab Med. 2003;127(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  23. Reis-Filho JS, Milanezi F, Amendoeira I, Albergaria A, Schmitt FC. Distribution of p63, a novel myoepithelial marker, in fine-needle aspiration biopsies of the breast: an analysis of 82 samples. Cancer. 2003;99(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  24. Stefanou D, Batistatou A, Nonni A, Arkoumani E, Agnantis NJ. p63 expression in benign and malignant breast lesions. Histol Histopathol. 2004;19(2):465–71.

    CAS  PubMed  Google Scholar 

  25. Kalof AN, Tam D, Beatty B, Cooper K. Immunostaining patterns of myoepithelial cells in breast lesions: a comparison of CD10 and smooth muscle myosin heavy chain. J Clin Pathol. 2004;57(6):625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dabbs DJ, Bhargava R, Chivukula M. Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol. 2007;31(3):427–37.

    Article  PubMed  Google Scholar 

  27. Dabbs DJ, Kaplai M, Chivukula M, Kanbour A, Kanbour-Shakir A, Carter GJ. The spectrum of morphomolecular abnormalities of the E-cadherin/catenin complex in pleomorphic lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2007;15(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  28. Dabbs DJ, Carter G, Fudge M, Peng Y, Swalsky P, Finkelstein S. Molecular alterations in columnar cell lesions of the breast. Mod Pathol. 2006;19(3):344–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gusterson BA, Warburton MJ, Mitchell D, Ellison M, Neville AM, Rudland PS. Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res. 1982;42(11):4763–70.

    CAS  PubMed  Google Scholar 

  30. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Sloane JP, et al. Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol. 2005;29(6):734–46.

    Article  PubMed  Google Scholar 

  31. Abdel-Fatah TM, Powe DG, Hodi Z, Reis-Filho JS, Lee AH, Ellis IO. Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am J Surg Pathol. 2008;32(4):513–23.

    Article  PubMed  Google Scholar 

  32. Dessauvagie BF, Zhao W, Heel-Miller KA, Harvey J, Bentel JM. Characterization of columnar cell lesions of the breast: immunophenotypic analysis of columnar alteration of lobules with prominent apical snouts and secretions. Hum Pathol. 2007;38(2):284–92.

    Article  CAS  PubMed  Google Scholar 

  33. Rosen PP. Columnar cell hyperplasia is associated with lobular carcinoma in situ and tubular carcinoma. Am J Surg Pathol. 1999;23(12):1561.

    Article  CAS  PubMed  Google Scholar 

  34. Fraser JL, Raza S, Chorny K, Connolly JL, Schnitt SJ. Columnar alteration with prominent apical snouts and secretions: a spectrum of changes frequently present in breast biopsies performed for microcalcifications. Am J Surg Pathol. 1998;22(12):1521–7.

    Article  CAS  PubMed  Google Scholar 

  35. Oyama T, Maluf H, Koerner F. Atypical cystic lobules: an early stage in the formation of low-grade ductal carcinoma in situ. Virchows Arch. 1999;435(4):413–21.

    Article  CAS  PubMed  Google Scholar 

  36. Kunju LP, Kleer CG. Significance of flat epithelial atypia on mammotome core needle biopsy: should it be excised? Hum Pathol. 2007;38(1):35–41.

    Article  PubMed  Google Scholar 

  37. Schnitt SJ. The diagnosis and management of pre-invasive breast disease: flat epithelial atypia–classification, pathologic features and clinical significance. Breast Cancer Res. 2003;5(5):263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Otterbach F, Bankfalvi A, Bergner S, Decker T, Krech R, Boecker W. Cytokeratin 5/6 immunohistochemistry assists the differential diagnosis of atypical proliferations of the breast. Histopathology. 2000;37(3):232–40.

    Article  CAS  PubMed  Google Scholar 

  39. Allred DC, Mohsin SK, Fuqua SA. Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer. 2001;8(1):47–61.

    Article  CAS  PubMed  Google Scholar 

  40. Collins LC, Carlo VP, Hwang H, Barry TS, Gown AM, Schnitt SJ. Intracystic papillary carcinomas of the breast: a reevaluation using a panel of myoepithelial cell markers. Am J Surg Pathol. 2006;30(8):1002–7.

    Article  PubMed  Google Scholar 

  41. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod Pathol. 2002;15(4):434–40.

    Article  PubMed  Google Scholar 

  42. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  43. Rabban JT, Chen YY. D2-40 expression by breast myoepithelium: potential pitfalls in distinguishing intralymphatic carcinoma from in situ carcinoma. Hum Pathol. 2008;39(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  44. Rodríguez-Pinilla SM, Rodríguez-Gil Y, Moreno-Bueno G, Sarrió D, Martín-Guijarro Mdel C, Hernandez L, et al. Sporadic invasive breast carcinomas with medullary features display a basal-like phenotype: an immunohistochemical and gene amplification study. Am J Surg Pathol. 2007;31(4):501–8.

    Article  PubMed  Google Scholar 

  45. Liu H, Shi J, Xu Y, Prichard J, Lin F. Reevaluation of diagnostic value of p120 catenin in differentiating lobular carcinoma from low-grade ductal carcinoma of the breast [CAP Poster 28]. Arch Pathol Lab Med. 2009;133(10):1635.

    Google Scholar 

  46. Holck S, Pedersen L, Schiodt T, Zedeler K, Mouridsen H. Vimentin expression in 98 breast cancers with medullary features and its prognostic significance. Virchows Arch A Pathol Anat Histopathol. 1993;422(6):475–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kajiwara M, Toyoshima S, Yao T, Tanaka M, Tsuneyoshi M. Apoptosis and cell proliferation in medullary carcinoma of the breast: a comparative study between medullary and non-medullary carcinoma using the TUNEL method and immunohistochemistry. J Surg Oncol. 1999;70(4):209–16.

    Article  CAS  PubMed  Google Scholar 

  48. Rosen PP, Lesser ML, Arroyo CD, Cranor M, Borgen P, Norton L. p53 in node-negative breast carcinoma: an immunohistochemical study of epidemiologic risk factors, histologic features, and prognosis. J Clin Oncol. 1995;13(4):821–30.

    Article  CAS  PubMed  Google Scholar 

  49. Marchetti A, Buttitta F, Pellegrini S, Campani D, Diella F, Cecchetti D, et al. p53 mutations and histological type of invasive breast carcinoma. Cancer Res. 1993;53(19):4665–9.

    CAS  PubMed  Google Scholar 

  50. Davidoff AM, Herndon JE 2nd, Glover NS, Kerns BJ, Pence JC, Iglehart JD, et al. Relation between p53 overexpression and established prognostic factors in breast cancer. Surgery. 1991;110(2):259–64.

    CAS  PubMed  Google Scholar 

  51. Xu R, Feiner H, Li P, Yee H, Inghirami G, Delgado Y, et al. Differential amplification and overexpression of HER-2/neu, p53, MIB1, and estrogen receptor/progesterone receptor among medullary carcinoma, atypical medullary carcinoma, and high-grade invasive ductal carcinoma of breast. Arch Pathol Lab Med. 2003;127(11):1458–64.

    Article  CAS  PubMed  Google Scholar 

  52. Jacquemier J, Padovani L, Rabayrol L, Lakhani SR, Penault-Llorca F, Denoux Y, et al. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol. 2005;207(3):260–8.

    Article  CAS  PubMed  Google Scholar 

  53. Flucke U, Flucke MT. Distinguishing medullary carcinoma of the breast from high-grade hormone receptor-negative invasive ductal carcinoma: an immunohistochemical approach. Histopathology. 2010;56(7):852–9.

    Article  PubMed  Google Scholar 

  54. Reyes C, Gomez-Fernández C, Nadji M. Metaplastic and medullary mammary carcinomas do not express mammaglobin. Am J Clin Pathol. 2012;137(5):747–52.

    Article  PubMed  Google Scholar 

  55. Kleer CG. Carcinoma of the breast with medullary-like features: diagnostic challenges and relationship with BRCA1 and EZH2 functions. Arch Pathol Lab Med. 2009;133(11):1822–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani B, et al. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res. 2007;9(2):R24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adélaïde J, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 2006;66(9):4636–44.

    Article  CAS  PubMed  Google Scholar 

  58. Wargotz ES, Deos PH, Norris HJ. Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol. 1989;20(8):732–40.

    Article  CAS  PubMed  Google Scholar 

  59. Pitts WC, Rojas VA, Gaffey MJ, Rouse RV, Esteban J, Frierson HF, et al. Carcinomas with metaplasia and sarcomas of the breast. Am J Clin Pathol. 1991;95(5):623–32.

    Article  CAS  PubMed  Google Scholar 

  60. Ellis IO, Bell J, Ronan JE, Elston CW, Blamey RW. Immunocytochemical investigation of intermediate filament proteins and epithelial membrane antigen in spindle cell tumours of the breast. J Pathol. 1988;154(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  61. Santeusanio G, Pascal RR, Bisceglia M, Costantino AM, Bosman C. Metaplastic breast carcinoma with epithelial phenotype of pseudosarcomatous components. Arch Pathol Lab Med. 1988;112(1):82–5.

    CAS  PubMed  Google Scholar 

  62. Meis JM, Ordonez NG, Gallager HS. Sarcomatoid carcinoma of the breast: an immunohistochemical study of six cases. Virchows Arch A Pathol Anat Histopathol. 1987;410(5):415–21.

    Article  CAS  PubMed  Google Scholar 

  63. Oberman HA. Metaplastic carcinoma of the breast. A clinicopathologic study of 29 patients. Am J Surg Pathol. 1987;11(12):918–29.

    Article  CAS  PubMed  Google Scholar 

  64. Leibl S, Moinfar F. Mammary NOS-type sarcoma with CD10 expression: a rare entity with features of myoepithelial differentiation. Am J Surg Pathol. 2006;30(4):450–6.

    Article  PubMed  Google Scholar 

  65. Leibl S, Moinfar F. Metaplastic breast carcinomas are negative for Her-2 but frequently express EGFR (Her-1): potential relevance to adjuvant treatment with EGFR tyrosine kinase inhibitors? J Clin Pathol. 2005;58(7):700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reis-Filho JS, Milanezi F, Carvalho S, Simpson PT, Steele D, Savage K, et al. Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res. 2005;7(6):R1028–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reis-Filho JS, Pinheiro C, Lambros MB, Milanezi F, Carvalho S, Savage K, et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol. 2006;209(4):445–53.

    Article  CAS  PubMed  Google Scholar 

  68. Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49(1):10–21.

    Article  CAS  PubMed  Google Scholar 

  69. Wheeler DT, Tai LH, Bratthauer GL, Waldner DL, Tavassoli FA. Tubulolobular carcinoma of the breast: an analysis of 27 cases of a tumor with a hybrid morphology and immunoprofile. Am J Surg Pathol. 2004;28(12):1587–93.

    Article  PubMed  Google Scholar 

  70. Esposito NN, Chivukula M, Dabbs DJ. The ductal phenotypic expression of the E-cadherin/catenin complex in tubulolobular carcinoma of the breast: an immunohistochemical and clinicopathologic study. Mod Pathol. 2007;20(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  71. Kuroda H, Tamaru J, Takeuchi I, Ohnisi K, Sakamoto G, Adachi A, et al. Expression of E-cadherin, alpha-catenin, and beta-catenin in tubulolobular carcinoma of the breast. Virchows Arch. 2006;448(4):500–5.

    Article  CAS  PubMed  Google Scholar 

  72. Bratthauer GL, Moinfar F, Stamatakos MD, Mezzetti TP, Shekitka KM, Man YG, et al. Combined E-cadherin and high molecular weight cytokeratin immunoprofile differentiates lobular, ductal, and hybrid mammary intraepithelial neoplasias. Hum Pathol. 2002;33(6):620–7.

    Article  CAS  PubMed  Google Scholar 

  73. Green I, McCormick B, Cranor M, Rosen PP. A comparative study of pure tubular and tubulolobular carcinoma of the breast. Am J Surg Pathol. 1997;21(6):653–7.

    Article  CAS  PubMed  Google Scholar 

  74. Deftereos G, Krishnamuriti U, Silverman JF. GATA3 expression in different subtypes of breast carcinoma and comparison with GCDFP15 and mammaglobin [abstract]. Mod Pathol. 2013;26(suppl 2):71A.

    Google Scholar 

  75. Kim MJ, Gong G, Joo HJ, Ahn SH, Ro JY. Immunohistochemical and clinicopathologic characteristics of invasive ductal carcinoma of breast with micropapillary carcinoma component. Arch Pathol Lab Med. 2005;129(10):1277–82.

    Article  PubMed  Google Scholar 

  76. Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R, et al. Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol. 2004;17(9):1045–50.

    Article  CAS  PubMed  Google Scholar 

  77. Paterakos M, Watkin WG, Edgerton SM, Moore DH 2nd, Thor AD. Invasive micropapillary carcinoma of the breast: a prognostic study. Hum Pathol. 1999;30(12):1459–63.

    Article  CAS  PubMed  Google Scholar 

  78. Nagi C, Guttman M, Jaffer S, Qiao R, Keren R, Triana A, et al. N-cadherin expression in breast cancer: correlation with an aggressive histologic variant–invasive micropapillary carcinoma. Breast Cancer Res Treat. 2005;94(3):225–35.

    Article  CAS  PubMed  Google Scholar 

  79. Marchio C, Iravani M, Natrajan R, Lambros MB, Savage K, Tamber N, et al. Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol. 2008;215(4):398–410.

    Article  CAS  PubMed  Google Scholar 

  80. Pettinato G, Manivel CJ, Panico L, Sparano L, Petrella G. Invasive micropapillary carcinoma of the breast: clinicopathologic study of 62 cases of a poorly recognized variant with highly aggressive behavior. Am J Clin Pathol. 2004;121(6):857–66.

    Article  PubMed  Google Scholar 

  81. Luna-More S, Gonzalez B, Acedo C, Rodrigo I, Luna C. Invasive micropapillary carcinoma of the breast. A new special type of invasive mammary carcinoma. Pathol Res Pract. 1994;190(7):668–74.

    Article  CAS  PubMed  Google Scholar 

  82. Li YS, Kaneko M, Sakamoto DG, Takeshima Y, Inai K. The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer. 2006;13(1):58–63.

    Article  PubMed  Google Scholar 

  83. Domfeh AB, Carley AL, Striebel JM, Karabakhtsian RG, Florea AV, McManus K, et al. WT1 immunoreactivity in breast carcinoma: selective expression in pure and mixed mucinous subtypes. Mod Pathol. 2008;21(10):1217–23.

    Article  CAS  PubMed  Google Scholar 

  84. O'Connell JT, Shao ZM, Drori E, Basbaum CB, Barsky SH. Altered mucin expression is a field change that accompanies mucinous (colloid) breast carcinoma histogenesis. Hum Pathol. 1998;29(12):1517–23.

    Article  CAS  PubMed  Google Scholar 

  85. Coady AT, Shousha S, Dawson PM, Moss M, James KR, Bull TB. Mucinous carcinoma of the breast: further characterization of its three subtypes. Histopathology. 1989;15(6):617–26.

    Article  CAS  PubMed  Google Scholar 

  86. Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol. 1999;17(5):1442–8.

    Article  CAS  PubMed  Google Scholar 

  87. Schmitt FC, Pereira MB, Reis CA. MUC 5 expression in breast carcinomas. Hum Pathol. 1999;30(10):1270–1.

    Article  CAS  PubMed  Google Scholar 

  88. Matsukita S, Nomoto M, Kitajima S, Tanaka S, Goto M, Irimura T, et al. Expression of mucins (MUC1, MUC2, MUC5AC and MUC6) in mucinous carcinoma of the breast: comparison with invasive ductal carcinoma. Histopathology. 2003;42(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  89. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol. 2005;18(10):1295–304.

    Article  CAS  PubMed  Google Scholar 

  90. Eusebi V, Betts C, Haagensen DE Jr, Gugliotta P, Bussolati G, Azzopardi JG. Apocrine differentiation in lobular carcinoma of the breast: a morphologic, immunologic, and ultrastructural study. Hum Pathol. 1984;15(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  91. Pagani A, Sapino A, Eusebi V, Bergnolo P, Bussolati G. PIP/GCDFP-15 gene expression and apocrine differentiation in carcinomas of the breast. Virchows Arch. 1994;425(5):459–65.

    Article  CAS  PubMed  Google Scholar 

  92. Leal C, Henrique R, Monteiro P, Lopes C, Bento MJ, De Sousa CP, et al. Apocrine ductal carcinoma in situ of the breast: histologic classification and expression of biologic markers. Hum Pathol. 2001;32(5):487–93.

    Article  CAS  PubMed  Google Scholar 

  93. Moriya T, Sakamoto K, Sasano H, Kawanaka M, Sonoo H, Manabe T, et al. Immunohistochemical analysis of Ki-67, p53, p21, and p27 in benign and malignant apocrine lesions of the breast: its correlation to histologic findings in 43 cases. Mod Pathol. 2000;13(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  94. Mossler JA, Barton TK, Brinkhous AD, McCarty KS, Moylan JA, McCarty KS Jr. Apocrine differentiation in human mammary carcinoma. Cancer. 1980;46(11):2463–71.

    Article  CAS  PubMed  Google Scholar 

  95. Miller WR, Telford J, Dixon JM, Hawkins RA. Androgen receptor activity in human breast cancer and its relationship with oestrogen and progestogen receptor activity. Eur J Cancer Clin Oncol. 1985;21(4):539–42.

    Article  CAS  PubMed  Google Scholar 

  96. Vranic S, Tawfik O, Palazzo J, Bilalovic N, Eyzaguirre E, Lee LM, et al. EGFR and HER-2/neu expression in invasive apocrine carcinoma of the breast. Mod Pathol. 2010;23(5):644–53.

    Article  CAS  PubMed  Google Scholar 

  97. Gatalica Z. Immunohistochemical analysis of apocrine breast lesions. Consistent over-expression of androgen receptor accompanied by the loss of estrogen and progesterone receptors in apocrine metaplasia and apocrine carcinoma in situ. Pathol Res Pract. 1997;193(11–12):753–8.

    Article  CAS  PubMed  Google Scholar 

  98. Bundred NJ, Stewart HJ, Shaw DA, Forrest AP, Miller WR. Relation between apocrine differentiation and receptor status, prognosis and hormonal response in breast cancer. Eur J Cancer. 1990;26(11–12):1145–7.

    Article  CAS  PubMed  Google Scholar 

  99. Hartman AW, Magrish P. Carcinoma of breast in children; case report: six-year-old boy with adenocarcinoma. Ann Surg. 1955;141(6):792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lamovec J, Bracko M. Secretory carcinoma of the breast: light microscopical, immunohistochemical and flow cytometric study. Mod Pathol. 1994;7(4):475–9.

    CAS  PubMed  Google Scholar 

  101. Akhtar M, Robinson C, Ali MA, Godwin JT. Secretory carcinoma of the breast in adults. Light and electron microscopic study of three cases with review of the literature. Cancer. 1983;51(12):2245–54.

    Article  CAS  PubMed  Google Scholar 

  102. Lae M, Freneaux P, Sastre-Garau X, Chouchane O, Sigal-Zafrani B, Vincent-Salomon A. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod Pathol. 2009;22(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  103. Mastropasqua MG, Maiorano E, Pruneri G, Orvieto E, Mazzarol G, Vento AR, et al. Immunoreactivity for c-kit and p63 as an adjunct in the diagnosis of adenoid cystic carcinoma of the breast. Mod Pathol. 2005;18(10):1277–82.

    Article  CAS  PubMed  Google Scholar 

  104. Azoulay S, Lae M, Freneaux P, Merle S, Al Ghuzlan A, Chnecker C, et al. KIT is highly expressed in adenoid cystic carcinoma of the breast, a basal-like carcinoma associated with a favorable outcome. Mod Pathol. 2005;18(12):1623–31.

    Article  CAS  PubMed  Google Scholar 

  105. Rabban JT, Swain RS, Zaloudek CJ, Chase DR, Chen YY. Immunophenotypic overlap between adenoid cystic carcinoma and collagenous spherulosis of the breast: potential diagnostic pitfalls using myoepithelial markers. Mod Pathol. 2006;19(10):1351–7.

    Article  CAS  PubMed  Google Scholar 

  106. Kasami M, Olson SJ, Simpson JF, Page DL. Maintenance of polarity and a dual cell population in adenoid cystic carcinoma of the breast: an immunohistochemical study. Histopathology. 1998;32(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  107. Due W, Herbst WD, Loy V, Stein H. Characterisation of adenoid cystic carcinoma of the breast by immunohistology. J Clin Pathol. 1989;42(5):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Morice WG, Ferreiro JA. Distinction of basaloid squamous cell carcinoma from adenoid cystic and small cell undifferentiated carcinoma by immunohistochemistry. Hum Pathol. 1998;29(6):609–12.

    Article  CAS  PubMed  Google Scholar 

  109. Adegbola T, Connolly CE, Mortimer G. Small cell neuroendocrine carcinoma of the breast: a report of three cases and review of the literature. J Clin Pathol. 2005;58(7):775–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Papotti M, Gherardi G, Eusebi V, Pagani A, Bussolati G. Primary oat cell (neuroendocrine) carcinoma of the breast. Report of four cases. Virchows Arch A Pathol Anat Histopathol. 1992;420(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  111. Shin SJ, DeLellis RA, Rosen PP. Small cell carcinoma of the breast–additional immunohistochemical studies. Am J Surg Pathol. 2001;25(6):831–2.

    Article  CAS  PubMed  Google Scholar 

  112. Bergman S, Hoda SA, Geisinger KR, Creager AJ, Trupiano JK. E-cadherin-negative primary small cell carcinoma of the breast. Report of a case and review of the literature. Am J Clin Pathol. 2004;121(1):117–21.

    Article  PubMed  Google Scholar 

  113. Shin SJ, DeLellis RA, Ying L, Rosen PP. Small cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol. 2000;24(9):1231–8.

    Article  CAS  PubMed  Google Scholar 

  114. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568–81.

    Article  PubMed  Google Scholar 

  115. Dabbs DJ, Chivukula M, Carter G, Bhargava R. Basal phenotype of ductal carcinoma in situ: recognition and immunohistologic profile. Mod Pathol. 2006;19(11):1506–11.

    Article  CAS  PubMed  Google Scholar 

  116. Bhargava R, Dabbs DJ. Luminal B breast tumors are not HER2 positive. Breast Cancer Res. 2008;10(5):404.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Laakso M, Loman N, Borg A, Isola J. Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol. 2005;18(10):1321–8.

    Article  CAS  PubMed  Google Scholar 

  118. Lerma E, Peiro G, Ramon T, Fernandez S, Martinez D, Pons C, et al. Immunohistochemical heterogeneity of breast carcinomas negative for estrogen receptors, progesterone receptors and Her2/neu (basal-like breast carcinomas). Mod Pathol. 2007;20:1200–7.

    Article  CAS  PubMed  Google Scholar 

  119. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19:264–71.

    Article  CAS  PubMed  Google Scholar 

  120. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10(16):5367–74.

    Article  CAS  PubMed  Google Scholar 

  121. Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, et al. Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res. 2007;67(2):501–10.

    Article  CAS  PubMed  Google Scholar 

  122. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368–76.

    Article  CAS  PubMed  Google Scholar 

  123. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11(14):5175–80.

    Article  CAS  PubMed  Google Scholar 

  124. Kuroda H, Ishida F, Nakai M, Ohnisi K, Itoyama S. Basal cytokeratin expression in relation to biological factors in breast cancer. Hum Pathol. 2008;39(12):1744–50.

    Article  CAS  PubMed  Google Scholar 

  125. Esposito NN, Dabbs DJ, Bhargava R. Are encapsulated papillary carcinomas of the breast in situ or invasive? A basement membrane study of 27 cases. Am J Clin Pathol. 2009;131(2):228–42.

    Article  PubMed  Google Scholar 

  126. Zhang C, Zhang P, Hao J, Quddus MR, Steinhoff MM, Sung CJ. High nuclear grade, frequent mitotic activity, cyclin D1 and p53 overexpression are associated with stromal invasion in mammary intracystic papillary carcinoma. Breast J. 2005;11(1):2–8.

    Article  PubMed  Google Scholar 

  127. Tan PH, Aw MY, Yip G, Bay BH, Sii LH, Murugaya S, et al. Cytokeratins in papillary lesions of the breast: is there a role in distinguishing intraductal papilloma from papillary ductal carcinoma in situ? Am J Surg Pathol. 2005;29(5):625–32.

    Article  PubMed  Google Scholar 

  128. Saddik M, Lai R. CD44s as a surrogate marker for distinguishing intraductal papilloma from papillary carcinoma of the breast. J Clin Pathol. 1999;52(11):862–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tse GM, Tan PH, Ma TK, Gilks CB, Poon CS, Law BK. CD44s is useful in the differentiation of benign and malignant papillary lesions of the breast. J Clin Pathol. 2005;58(11):1185–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hill CB, Yeh IT. Myoepithelial cell staining patterns of papillary breast lesions: from intraductal papillomas to invasive papillary carcinomas. Am J Clin Pathol. 2005;123(1):36–44.

    Article  PubMed  Google Scholar 

  131. Kleer CG, Giordano TJ, Braun T, Oberman HA. Pathologic, immunohistochemical, and molecular features of benign and malignant phyllodes tumors of the breast. Mod Pathol. 2001;14(3):185–90.

    Article  CAS  PubMed  Google Scholar 

  132. Kocova L, Skalova A, Fakan F, Rousarova M. Phyllodes tumour of the breast: immunohistochemical study of 37 tumours using MIB1 antibody. Pathol Res Pract. 1998;194(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  133. Kuenen-Boumeester V, Henzen-Logmans SC, Timmermans MM, Timmermans MM, van Staveren IL, van Geel A, et al. Altered expression of p53 and its regulated proteins in phyllodes tumours of the breast. J Pathol. 1999;189(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  134. Umekita Y, Yoshida H. Immunohistochemical study of MIB1 expression in phyllodes tumor and fibroadenoma. Pathol Int. 1999;49(9):807–10.

    Article  CAS  PubMed  Google Scholar 

  135. Shpitz B, Bomstein Y, Sternberg A, Klein E, Tiomkin V, Kaufman A, et al. Immunoreactivity of p53, Ki-67, and c-erbB-2 in phyllodes tumors of the breast in correlation with clinical and morphologic features. J Surg Oncol. 2002;79(2):86–92.

    Article  CAS  PubMed  Google Scholar 

  136. Millar EK, Beretov J, Marr P, Sarris M, Clarke RA, Kearsley JH, et al. Malignant phyllodes tumours of the breast display increased stromal p53 protein expression. Histopathology. 1999;34(6):491–6.

    Article  CAS  PubMed  Google Scholar 

  137. Feakins RM, Mulcahy HE, Nickols CD, Wells CA. p53 expression in phyllodes tumours is associated with histological features of malignancy but does not predict outcome. Histopathology. 1999;35(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  138. Tse GM, Putti TC, Kung FY, Scolyer RA, Law BK, Lau TS, et al. Increased p53 protein expression in malignant mammary phyllodes tumors. Mod Pathol. 2002;15(7):734–40.

    Article  PubMed  Google Scholar 

  139. Tse GM, Lui PC, Scolyer RA, Putti TC, Kung FY, Law BK, et al. Tumour angiogenesis and p53 protein expression in mammary phyllodes tumors. Mod Pathol. 2003;16(10):1007–13.

    Article  PubMed  Google Scholar 

  140. Tan PH, Jayabaskar T, Yip G, Tan Y, Hilmy M, Selvarajan S, et al. p53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: a tissue microarray study. Mod Pathol. 2005;18(12):1527–34.

    Article  CAS  PubMed  Google Scholar 

  141. Tse GM, Putti TC, Lui PC, Lo AW, Scolyer RA, Law BK, et al. Increased c-kit (CD117) expression in malignant mammary phyllodes tumors. Mod Pathol. 2004;17(7):827–31.

    Article  PubMed  Google Scholar 

  142. Esposito NN, Mohan D, Brufsky A, Lin Y, Kapali M, Dabbs DJ. Phyllodes tumor: a clinicopathologic and immunohistochemical study of 30 cases. Arch Pathol Lab Med. 2006;130(10):1516–21.

    Article  PubMed  Google Scholar 

  143. Tan PH. Galloway Memorial Lecture: breast phyllodes tumours–morphology and beyond. Ann Acad Med Singap. 2005;34(11):671–7.

    CAS  PubMed  Google Scholar 

  144. Giri D. Recurrent challenges in the evaluation of fibroepithelial lesions. Arch Pathol Lab Med. 2009;133(5):713–21.

    Article  PubMed  Google Scholar 

  145. Rosen PP. Adenomyoepithelioma of the breast. Hum Pathol. 1987;18(12):1232–7.

    Article  CAS  PubMed  Google Scholar 

  146. Weidner N, Levine JD. Spindle-cell adenomyoepithelioma of the breast. A microscopic, ultrastructural, and immunocytochemical study. Cancer. 1988;62(8):1561–7.

    Article  CAS  PubMed  Google Scholar 

  147. Vielh P, Thiery JP, Validire P, Annick de Maublanc M, Woto G. Adenomyoepithelioma of the breast: fine-needle sampling with histologic, immunohistologic, and electron microscopic analysis. Diagn Cytopathol. 1993;9(2):188–93.

    Article  CAS  PubMed  Google Scholar 

  148. Tamura G, Monma N, Suzuki Y, Satodate R, Abe H. Adenomyoepithelioma (myoepithelioma) of the breast in a male. Hum Pathol. 1993;24(6):678–81.

    Article  CAS  PubMed  Google Scholar 

  149. Erlandson RA, Rosen PP. Infiltrating myoepithelioma of the breast. Am J Surg Pathol. 1982;6(8):785–93.

    Article  CAS  PubMed  Google Scholar 

  150. Bigotti G, Di Giorgio CG. Myoepithelioma of the breast: histologic, immunologic, and electromicroscopic appearance. J Surg Oncol. 1986;32(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  151. Schurch W, Potvin C, Seemayer TA. Malignant myoepithelioma (myoepithelial carcinoma) of the breast: an ultrastructural and immunocytochemical study. Ultrastruct Pathol. 1985;8(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  152. Thorner PS, Kahn HJ, Baumal R, Lee K, Moffatt W. Malignant myoepithelioma of the breast. An immunohistochemical study by light and electron microscopy. Cancer. 1986;57(4):745–50.

    Article  CAS  PubMed  Google Scholar 

  153. Cartagena N Jr, Cabello-Inchausti B, Willis I, Poppiti R Jr. Clear cell myoepithelial neoplasm of the breast. Hum Pathol. 1988;19(10):1239–43.

    Article  PubMed  Google Scholar 

  154. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  156. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295(21):2492–502.

    Article  CAS  PubMed  Google Scholar 

  158. Rakha E, Reis-Filho JS. Basal-like breast carcinoma: from expression profiling to routine practice. Arch Pathol Lab Med. 2009;133(6):860–8.

    Article  PubMed  Google Scholar 

  159. Flanagan MB, Dabbs DJ, Brufsky AM, Beriwal S, Bhargava R. Histopathologic variables predict Oncotype DX recurrence score. Mod Pathol. 2008;21(10):1255–61.

    Article  CAS  PubMed  Google Scholar 

  160. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124(7):966–78.

    Article  CAS  PubMed  Google Scholar 

  161. Schmitz KJ, Grabellus F, Callies R, Wohlschlaeger J, Otterbach F, Kimmig R, et al. Relationship and prognostic significance of phospho-(serine 166)-murine double minute 2 and Akt activation in node-negative breast cancer with regard to p53 expression. Virchows Arch. 2006;448(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  162. Schmitz KJ, Otterbach F, Callies R, Levkau B, Hölscher M, Hoffmann O, et al. Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol. 2004;17(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  163. Lark AL, Livasy CA, Dressler L, Moore DT, Millikan RC, Geradts J, et al. High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Mod Pathol. 2005;18(10):1289–94.

    Article  CAS  PubMed  Google Scholar 

  164. Schmitz KJ, Callies R, Wohlschlaeger J, Kimmig R, Otterbach F, Bohr J, et al. Overexpression of cyclo-oxygenase-2 is an independent predictor of unfavourable outcome in node-negative breast cancer, but is not associated with protein kinase B (Akt) and mitogen-activated protein kinase (ERK1/2, p38) activation or with Her-2/neu signalling pathways. J Clin Pathol. 2006;59(7):685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shim JY, An HJ, Lee YH, Kim SK, Lee KP, Lee KS. Overexpression of cyclooxygenase-2 is associated with breast carcinoma and its poor prognostic factors. Mod Pathol. 2003;16(12):1199–204.

    Article  PubMed  Google Scholar 

  166. Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 2009;69(15):6131–40.

    Article  CAS  PubMed  Google Scholar 

  167. Jones RL, Salter J, A'Hern R, Nerurkar A, Parton M, Reis-Filho JS, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2009;116(1):53–68.

    Article  CAS  PubMed  Google Scholar 

  168. Moinfar F, Man YG, Bratthauer GL, Ratschek M, Tavassoli FA. Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium. Cancer. 2000;88(9):2072–81.

    Article  CAS  PubMed  Google Scholar 

  169. Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC. Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res. 2006;8(1):R6.

    Article  PubMed  CAS  Google Scholar 

  170. Moinfar F, Man YG, Lininger RA, Bodian C, Tavassoli FA. Use of keratin 35betaE12 as an adjunct in the diagnosis of mammary intraepithelial neoplasia-ductal type–benign and malignant intraductal proliferations. Am J Surg Pathol. 1999;23(9):1048–58.

    Article  CAS  PubMed  Google Scholar 

  171. Boecker W, Moll R, Dervan P, Buerger H, Poremba C, Diallo RI, et al. Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol. 2002;198(4):458–67.

    Article  PubMed  Google Scholar 

  172. Bankfalvi A, Ludwig A, De-Hesselle B, Buerger H, Buchwalow IB, Boecker W. Different proliferative activity of the glandular and myoepithelial lineages in benign proliferative and early malignant breast diseases. Mod Pathol. 2004;17(9):1051–61.

    Article  PubMed  Google Scholar 

  173. Rabban JT, Koerner FC, Lerwill MF. Solid papillary ductal carcinoma in situ versus usual ductal hyperplasia in the breast: a potentially difficult distinction resolved by cytokeratin 5/6. Hum Pathol. 2006;37(7):787–93.

    Article  CAS  PubMed  Google Scholar 

  174. Pinder SE, Ellis IO. The diagnosis and management of pre-invasive breast disease: ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH)–current definitions and classification. Breast Cancer Res. 2003;5(5):254–7.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Da Silva L, Parry S, Reid L, Keith P, Waddell N, Kossai M, et al. Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5):773–83.

    Article  PubMed  Google Scholar 

  176. Dabbs DJ, Schnitt SJ, Geyer FC, Weigelt B, Baehner FL, Decker T, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol. 2013;37(7):e1–11.

    Article  PubMed  Google Scholar 

  177. Acs G, Lawton TJ, Rebbeck TR, LiVolsi VA, Zhang PJ. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications. Am J Clin Pathol. 2001;115(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  178. Goldstein NS, Bassi D, Watts JC, Layfield LJ, Yaziji H, Gown AM. E-cadherin reactivity of 95 noninvasive ductal and lobular lesions of the breast. Implications for the interpretation of problematic lesions. Am J Clin Pathol. 2001;115(4):534–42.

    Article  CAS  PubMed  Google Scholar 

  179. Choi YJ, Pinto MM, Hao L, Riba AK. Interobserver variability and aberrant E-cadherin immunostaining of lobular neoplasia and infiltrating lobular carcinoma. Mod Pathol. 2008;21(10):1224–37.

    Article  CAS  PubMed  Google Scholar 

  180. Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules as diagnostic tools in tumor pathology. Int J Surg Pathol. 2000;8(3):191–200.

    Article  CAS  PubMed  Google Scholar 

  181. de Deus MR, Wludarski SC, Carvalho FM, Bacchi CE. Immunohistochemistry applied to the differential diagnosis between ductal and lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2013;21(1):1–12.

    Article  CAS  Google Scholar 

  182. Lehr HA, Folpe A, Yaziji H, Kommoss F, Gown AM. Cytokeratin 8 immunostaining pattern and E-cadherin expression distinguish lobular from ductal breast carcinoma. Am J Clin Pathol. 2000;114(2):190–6.

    Article  CAS  PubMed  Google Scholar 

  183. Joshi MG, Lee AK, Pedersen CA, Schnitt S, Camus MG, Hughes KS. The role of immunocytochemical markers in the differential diagnosis of proliferative and neoplastic lesions of the breast. Mod Pathol. 1996;9(1):57–62.

    CAS  PubMed  Google Scholar 

  184. Dabbs DJ, Gown AM. Distribution of calponin and smooth muscle myosin heavy chain in fine-needle aspiration biopsies of the breast. Diagn Cytopathol. 1999;20(4):203–7.

    Article  CAS  PubMed  Google Scholar 

  185. Flotte TJ, Bell DA, Greco MA. Tubular carcinoma and sclerosing adenosis: the use of basal lamina as a differential feature. Am J Surg Pathol. 1980;4(1):75–7.

    Article  CAS  PubMed  Google Scholar 

  186. Carter MR, Hornick JL, Lester S, Fletcher CD. Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 2006;30(3):300–9.

    Article  PubMed  Google Scholar 

  187. Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, Gown AM, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001;25(8):1009–16.

    Article  CAS  PubMed  Google Scholar 

  188. Koker MM, Kleer CG. p63 expression in breast cancer: a highly sensitive and specific marker of metaplastic carcinoma. Am J Surg Pathol. 2004;28(11):1506–12.

    Article  PubMed  Google Scholar 

  189. Wargotz ES, Weiss SW, Norris HJ. Myofibroblastoma of the breast. Sixteen cases of a distinctive benign mesenchymal tumor. Am J Surg Pathol. 1987;11(7):493–502.

    Article  CAS  PubMed  Google Scholar 

  190. Magro G, Bisceglia M, Michal M, Eusebi V. Spindle cell lipoma-like tumor, solitary fibrous tumor and myofibroblastoma of the breast: a clinico-pathological analysis of 13 cases in favor of a unifying histogenetic concept. Virchows Arch. 2002;440(3):249–60.

    Article  PubMed  Google Scholar 

  191. Magro G. Epithelioid-cell myofibroblastoma of the breast: expanding the morphologic spectrum. Am J Surg Pathol. 2009;33(7):1085–92.

    Article  PubMed  Google Scholar 

  192. Magro G. Mammary myofibroblastoma: a tumor with a wide morphologic spectrum. Arch Pathol Lab Med. 2008;132(11):1813–20.

    Article  PubMed  Google Scholar 

  193. Meguerditchian AN, Malik DA, Hicks DG, Kulkarni S. Solitary fibrous tumor of the breast and mammary myofibroblastoma: the same lesion? Breast J. 2008;14(3):287–92.

    Article  PubMed  Google Scholar 

  194. Lee AH, Paish EC, Marchio C, Sapino A, Schmitt FC, Ellis IO, et al. The expression of Wilms’ tumour-1 and Ca125 in invasive micropapillary carcinoma of the breast. Histopathology. 2007;51(6):824–8.

    Article  CAS  PubMed  Google Scholar 

  195. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  196. Mazoujian G, Bodian C, Haagensen DE Jr, Haagensen CD. Expression of GCDFP-15 in breast carcinomas. Relationship to pathologic and clinical factors. Cancer. 1989;63(11):2156–61.

    Article  CAS  PubMed  Google Scholar 

  197. Tornos C, Soslow R, Chen S, Akram M, Hummer AJ, Abu-Rustum N, et al. Expression of WT1, CA 125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol. 2005;29(11):1482–9.

    Article  PubMed  Google Scholar 

  198. Nonaka D, Chiriboga L, Soslow RA. Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol. 2008;32(10):1566–71.

    Article  PubMed  Google Scholar 

  199. Vanstapel MJ, Gatter KC, De Wolf-Peeters C, Millard PR, Desmet VJ, Mason DY. Immunohistochemical study of mammary and extra-mammary Paget's disease. Histopathology. 1984;8(6):1013–23.

    Article  CAS  PubMed  Google Scholar 

  200. Liegl B, Horn LC, Moinfar F. Androgen receptors are frequently expressed in mammary and extramammary Paget's disease. Mod Pathol. 2005;18(10):1283–8.

    Article  CAS  PubMed  Google Scholar 

  201. Ordonez NG, Awalt H, Mackay B. Mammary and extramammary Paget's disease. An immunocytochemical and ultrastructural study. Cancer. 1987;59(6):1173–83.

    Article  CAS  PubMed  Google Scholar 

  202. Jones RR, Spaull J, Gusterson B. The histogenesis of mammary and extramammary Paget's disease. Histopathology. 1989;14(4):409–16.

    Article  CAS  PubMed  Google Scholar 

  203. Chaudary MA, Millis RR, Lane EB, Miller NA. Paget's disease of the nipple: a ten year review including clinical, pathological, and immunohistochemical findings. Breast Cancer Res Treat. 1986;8(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  204. Shah KD, Tabibzadeh SS, Gerber MA. Immunohistochemical distinction of Paget's disease from Bowen's disease and superficial spreading melanoma with the use of monoclonal cytokeratin antibodies. Am J Clin Pathol. 1987;88(6):689–95.

    Article  CAS  PubMed  Google Scholar 

  205. Smith KJ, Tuur S, Corvette D, Lupton GP, Skelton HG. Cytokeratin 7 staining in mammary and extramammary Paget's disease. Mod Pathol. 1997;10(11):1069–74.

    CAS  PubMed  Google Scholar 

  206. Lundquist K, Kohler S, Rouse RV. Intraepidermal cytokeratin 7 expression is not restricted to Paget cells but is also seen in Toker cells and Merkel cells. Am J Surg Pathol. 1999;23(2):212–9.

    Article  CAS  PubMed  Google Scholar 

  207. Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TJ, Price P, et al. Immunohistochemical distribution of c-erbB-2 in infiltrating and in situ breast cancer. Int J Cancer. 1988;42(6):842–5.

    Article  CAS  PubMed  Google Scholar 

  208. Wolber RA, Dupuis BA, Wick MR. Expression of c-erbB-2 oncoprotein in mammary and extramammary Paget's disease. Am J Clin Pathol. 1991;96(2):243–7.

    Article  CAS  PubMed  Google Scholar 

  209. Meissner K, Riviere A, Haupt G, Loning T. Study of neu-protein expression in mammary Paget's disease with and without underlying breast carcinoma and in extramammary Paget's disease. Am J Pathol. 1990;137(6):1305–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Keatings L, Sinclair J, Wright C, Corbett IP, Watchorn C, Hennessy C, et al. c-erbB-2 oncoprotein expression in mammary and extramammary Paget's disease: an immunohistochemical study. Histopathology. 1990;17(3):243–7.

    Article  CAS  PubMed  Google Scholar 

  211. Lloyd J, Flanagan AM. Mammary and extramammary Paget's disease. J Clin Pathol. 2000;53(10):742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Reed W, Oppedal BR, Eeg LT. Immunohistology is valuable in distinguishing between Paget's disease, Bowen's disease and superficial spreading malignant melanoma. Histopathology. 1990;16(6):583–8.

    Article  CAS  PubMed  Google Scholar 

  213. Wood WS, Hegedus C. Mammary Paget's disease and intraductal carcinoma. Histologic, histochemical, and immunocytochemical comparison. Am J Dermatopathol. 1988;10(3):183–8.

    Article  CAS  PubMed  Google Scholar 

  214. Anderson JM, Ariga R, Govil H, Bloom KJ, Francescatti D, Reddy VB, et al. Assessment of Her-2/Neu status by immunohistochemistry and fluorescence in situ hybridization in mammary Paget disease and underlying carcinoma. Appl Immunohistochem Mol Morphol. 2003;11(2):120–4.

    Article  CAS  PubMed  Google Scholar 

  215. Bianco MK, Vasef MA. HER-2 gene amplification in Paget disease of the nipple and extramammary site: a chromogenic in situ hybridization study. Diagn Mol Pathol. 2006;15(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  216. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138(1):57–64.

    Article  PubMed  Google Scholar 

  217. Higgins JP, Kaygusuz G, Wang L, Montgomery K, Mason V, Zhu SX, et al. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. Am J Surg Pathol. 2007;31(5):673–80.

    Article  PubMed  Google Scholar 

  218. Liu H. Application of immunohistochemistry in breast pathology: a review and update. Arch Pathol Lab Med. 2014;138(12):1629–42.

    Article  PubMed  Google Scholar 

  219. Liu H, Shi J, Prichard JW, Gong Y, Lin F. Immunohistochemical evaluation of GATA-3 expression in ER-negative breast carcinomas. Am J Clin Pathol. 2014;141(5):648–55.

    Article  PubMed  Google Scholar 

  220. Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R, et al. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol. 2013;44(7):1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Schwartz LE, Begum S, Westra WH, Bishop JA. GATA3 immunohistochemical expression in salivary gland neoplasms. Head Neck Pathol. 2013;7(4):311–5.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Nonaka D, Wang BY, Edmondson D, Beckett E, Sun C-CJ. A study of Gata3 and Phox2b expression in tumors of the autonomic nervous system derivation. Am J Surg Pathol. 2013;37(8):1236–41.

    Article  PubMed  Google Scholar 

  223. Esheba GE, Longacre TA, Atkins KA, Higgins JP. Expression of the urothelial differentiation markers GATA3 and placental S100 (S100P) in female genital tract transitional cell proliferations. Am J Surg Pathol. 2009;33(3):347–53.

    Article  PubMed  Google Scholar 

  224. Chang A, Amin A, Gabrielson E, Illei P, Roden RB, Sharma R, et al. Utility of GATA3 immunohistochemistry in differentiating urothelial carcinoma from prostate adenocarcinoma and squamous cell carcinomas of the uterine cervix, anus, and lung. Am J Surg Pathol. 2012;36(10):1472–6.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Gruver AM, Amin MB, Luthringer DJ, Westfall D, Arora K, Farver CF, et al. Selective immunohistochemical markers to distinguish between metastatic high-grade urothelial carcinoma and primary poorly differentiated invasive squamous cell carcinoma of the lung. Arch Pathol Lab Med. 2012;136(11):1339–46.

    Article  PubMed  Google Scholar 

  226. Ordóñez NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol. 2013;20(5):352–60.

    Article  PubMed  CAS  Google Scholar 

  227. Ordóñez NG. Value of GATA3 immunostaining in the diagnosis of parathyroid tumors. Appl Immunohistochem Mol Morphol. 2014;22(10):756–61.

    Article  PubMed  CAS  Google Scholar 

  228. Gonzalez-Roibon N, Faraj SF, Munari E, Bezerra SM, Albadine R, Sharma R, et al. Comprehensive profile of GATA binding protein 3 immunohistochemical expression in primary and metastatic renal neoplasms. Hum Pathol. 2014;45(2):244–8.

    Article  CAS  PubMed  Google Scholar 

  229. Al-Nafussi A. Spindle cell tumours of the breast: practical approach to diagnosis. Histopathology. 1999;35(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  230. Lee AH. Recent developments in the histological diagnosis of spindle cell carcinoma, fibromatosis and phyllodes tumour of the breast. Histopathology. 2008;52(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  231. Dunne B, Lee AH, Pinder SE, Bell JA, Ellis IO. An immunohistochemical study of metaplastic spindle cell carcinoma, phyllodes tumor and fibromatosis of the breast. Hum Pathol. 2003;34(10):1009–15.

    Article  CAS  PubMed  Google Scholar 

  232. Davis WG, Hennessy B, Babiera G, Hunt K, Valero V, Buchholz TA, et al. Metaplastic sarcomatoid carcinoma of the breast with absent or minimal overt invasive carcinomatous component: a misnomer. Am J Surg Pathol. 2005;29(11):1456–63.

    Article  PubMed  Google Scholar 

  233. Gobbi H, Simpson JF, Jensen RA, Olson SJ, Page DL. Metaplastic spindle cell breast tumors arising within papillomas, complex sclerosing lesions, and nipple adenomas. Mod Pathol. 2003;16(9):893–901.

    Article  PubMed  Google Scholar 

  234. Rungta S, Kleer CG. Metaplastic carcinomas of the breast: diagnostic challenges and new translational insights. Arch Pathol Lab Med. 2012;136(8):896–900.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Adem C, Reynolds C, Adlakha H, Roche PC, Nascimento AG. Wide spectrum screening keratin as a marker of metaplastic spindle cell carcinoma of the breast: an immunohistochemical study of 24 patients. Histopathology. 2002;40(6):556–62.

    Article  CAS  PubMed  Google Scholar 

  236. Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Park BH, et al. Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum Pathol. 2013;44(6):959–65.

    Article  CAS  PubMed  Google Scholar 

  237. Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science. 1994;263(5146):526–9.

    Article  CAS  PubMed  Google Scholar 

  238. Popnikolov NK, Ayala AG, Graves K, Gatalica Z. Benign myoepithelial tumors of the breast have immunophenotypic characteristics similar to metaplastic matrix-producing and spindle cell carcinomas. Am J Clin Pathol. 2003;120(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  239. Lele SM, Graves K, Gatalica Z. Immunohistochemical detection of maspin is a useful adjunct in distinguishing radial sclerosing lesion from tubular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2000;8(1):32–6.

    CAS  PubMed  Google Scholar 

  240. Reis-Filho JS, Milanezi F, Paredes J, Silva P, Pereira EM, Maeda SA, et al. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2003;11(1):1–8.

    CAS  PubMed  Google Scholar 

  241. Dewar R, Fadare O, Gilmore H, Gown AM. Best practices in diagnostic immunohistochemistry: myoepithelial markers in breast pathology. Arch Pathol Lab Med. 2011;135(4):422–9.

    Article  PubMed  Google Scholar 

  242. Umekita Y, Ohi Y, Sagara Y, Yoshida H. Expression of maspin predicts poor prognosis in breast-cancer patients. Int J Cancer. 2002;100(4):452–5.

    Article  CAS  PubMed  Google Scholar 

  243. Umekita Y, Yoshida H. Expression of maspin is up-regulated during the progression of mammary ductal carcinoma. Histopathology. 2003;42(6):541–5.

    Article  CAS  PubMed  Google Scholar 

  244. Mohsin SK, Zhang M, Clark GM, Craig AD. Maspin expression in invasive breast cancer: association with other prognostic factors. J Pathol. 2003;199(4):432–5.

    Article  CAS  PubMed  Google Scholar 

  245. Kanner WA, Galgano MT, Atkins KA. Podoplanin expression in basal and myoepithelial cells: utility and potential pitfalls. Appl Immunohistochem Mol Morphol. 2010;18(3):226–30.

    Article  CAS  PubMed  Google Scholar 

  246. Ren S, Abuel-Haija M, Khurana JS, Zhang X. D2-40: an additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lymphovascular invasion. Int J Clin Exp Pathol. 2011;4(2):175–82.

    PubMed  PubMed Central  Google Scholar 

  247. Yang Z, Adams AL, Hameed O. Attenuated podoplanin staining in breast myoepithelial cells: a potential caveat in the diagnosis of lymphatic invasion. Appl Immunohistochem Mol Morphol. 2009;17(5):425–30.

    Article  PubMed  Google Scholar 

  248. Popnikolov NK, Cavone SM, Schultz PM, Garcia FU. Diagnostic utility of p75 neurotrophin receptor (p75NTR) as a marker of breast myoepithelial cells. Mod Pathol. 2005;18(12):1535–41.

    Article  CAS  PubMed  Google Scholar 

  249. Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M, et al. Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol. 2006;19(2):307–19.

    Article  CAS  PubMed  Google Scholar 

  250. Ordóñez NG. Value of SOX10 immunostaining in tumor diagnosis. Adv Anat Pathol. 2013;20(4):275–83.

    Article  PubMed  CAS  Google Scholar 

  251. Hsieh MS, Lee YH, Chang YL. SOX10-positive salivary gland tumors: a growing list, including mammary analogue secretory carcinoma of the salivary gland, sialoblastoma, low-grade salivary duct carcinoma, basal cell adenoma/adenocarcinoma, and a subgroup of mucoepidermoid carcinoma. 2016;56:134–42.

    Google Scholar 

  252. Yang GG, Minasyan A, Gordon J, Lacey M, Lundquist K. Rabbit polyclonal anti-SOX10 is a reliable IHC marker for melanoma and its mimics [USCAP abstract 514]. Mod Pathol. 2013;26(S2):124A–5A.

    Google Scholar 

  253. Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.

    Article  PubMed  Google Scholar 

  254. Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20(5):445–50.

    Article  CAS  PubMed  Google Scholar 

  255. Jäger D, Stockert E, Güre AO, Scanlan MJ, Karbach J, Jäger E, et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 2001;61(5):2055–61.

    PubMed  Google Scholar 

  256. Varga Z, Theurillat JP, Filonenko V, Sasse B, Odermatt B, Jungbluth AA, et al. Preferential nuclear and cytoplasmic NY-BR-1 protein expression in primary breast cancer and lymph node metastases. Clin Cancer Res. 2006;12(9):2745–51.

    Article  CAS  PubMed  Google Scholar 

  257. Theurillat JP, Zurrer-Hardi U, Varga Z, Storz M, Probst-Hensch NM, Seifert B, et al. NY-BR-1 protein expression in breast carcinoma: a mammary gland differentiation antigen as target for cancer immunotherapy. Cancer Immunol Immunother. 2007;56(11):1723–31.

    Article  CAS  PubMed  Google Scholar 

  258. Seil I, Frei C, Sültmann H, Knauer SK, Engels K, Jäger E, et al. The differentiation antigen NY-BR-1 is a potential target for antibody-based therapies in breast cancer. Int J Cancer. 2007;120(12):2635–42.

    Article  CAS  PubMed  Google Scholar 

  259. Jager D, Filonenko V, Gout I, Frosina D, Eastlake-Wade S, Castelli S, et al. NY-BR-1 is a differentiation antigen of the mammary gland. Appl Immunohistochem Mol Morphol. 2007;15(1):77–83.

    Article  PubMed  Google Scholar 

  260. Giger OT, Lacoste E, Honegger C, Padberg B, Moch H, Varga Z. Expression of the breast differentiation antigen NY-BR-1 in a phyllodes tumor of the vulva. Virchows Arch. 2007;450(4):471–4.

    Article  PubMed  Google Scholar 

  261. Giger O, Caduff R, O'Meara A, Diener PA, Knuth A, Jäger D, et al. Frequent expression of the breast differentiation antigen NY-BR-1 in mammary and extramammary Paget's disease. Pathol Int. 2010;60(11):726–34.

    Article  CAS  PubMed  Google Scholar 

  262. Woodard AH, Yu J, Dabbs DJ, Beriwal S, Florea AV, Elishaev E, et al. NY-BR-1 and PAX8 immunoreactivity in breast, gynecologic tract, and other CK7+ carcinomas: potential use for determining site of origin. Am J Clin Pathol. 2011;136(3):428–35.

    Article  PubMed  Google Scholar 

  263. Balafoutas D, zur Hausen A, Mayer S, Hirschfeld M, Jaeger M, Denschlag D, et al. Cancer testis antigens and NY-BR-1 expression in primary breast cancer: prognostic and therapeutic implications. BMC Cancer. 2013;13:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Berx G, Becker KF, Höfler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat. 1998;12:226–37.

    Article  CAS  PubMed  Google Scholar 

  265. De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, et al. Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol. 1997;183(4):404–11.

    Article  PubMed  Google Scholar 

  266. Becker KF, Reich U, Schott C, Becker I, Berx G, van Roy F, et al. Identification of eleven novel tumor-associated E-cadherin mutations. Mutations in brief No. 215. Online. Hum Mutat. 1999;13(2):171.

    Article  CAS  PubMed  Google Scholar 

  267. Handschuh G, Candidus S, Luber B, Reich U, Schott C, Oswald S, et al. Tumour-associated E-cadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility. Oncogene. 1999;18(30):4301–12.

    Article  CAS  PubMed  Google Scholar 

  268. Chan JK, Wong CS. Loss of e-cadherin is the fundamental defect in diffuse-type gastric carcinoma and infiltrating lobular carcinoma of the breast. Adv Anat Pathol. 2001;8(3):165–72.

    Article  CAS  PubMed  Google Scholar 

  269. Rakha EA, Patel A, Powe DG, Benhasouna A, Green AR, Lambros MB, et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34(10):1472–9.

    Article  PubMed  Google Scholar 

  270. Harigopal M, Shin SJ, Murray MP, Tickoo SK, Brogi E, Rosen PP. Aberrant E-cadherin staining patterns in invasive mammary carcinoma. World J Surg Oncol. 2005 Nov;14(3):73.

    Article  Google Scholar 

  271. Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR. p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo. Oncogene. 1992;7(12):2439–45.

    CAS  PubMed  Google Scholar 

  272. Anastasiadis PZ, Reynolds AB. The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci. 2000;113(Pt 8):1319–34.

    Article  CAS  PubMed  Google Scholar 

  273. Ohkubo T, Ozawa M. p120(ctn) binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J Biol Chem. 1999;274(30):21409–15.

    Article  CAS  PubMed  Google Scholar 

  274. Golenhofen N, Drenckhahn D. The catenin, p120ctn, is a common membrane-associated protein in various epithelial and non-epithelial cells and tissues. Histochem Cell Biol. 2000;114(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  275. Shibata T, Kokubu A, Sekine S, Kanai Y, Hirohashi S. Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. Am J Pathol. 2004;164(6):2269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Mastracci TL, Tjan S, Bane AL, O'Malley FP, Andrulis IL. E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol. 2005;18(6):741–51.

    Article  CAS  PubMed  Google Scholar 

  277. Sarrio D, Perez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23(19):3272–83.

    Article  CAS  PubMed  Google Scholar 

  278. Lin F, Zhu S, Deng H, Liu H. Identification of an effective immunohistochemical panel in distinction of breast carcinoma from lung adenocarcinoma [USCAP abstract 2012]. Mod Pathol. 2012;25(S2):482A–3A.

    Google Scholar 

  279. Acs G, Esposito NN, Rakosy Z, Laronga C, Zhang PJ. Invasive ductal carcinomas of the breast showing partial reversed cell polarity are associated with lymphatic tumor spread and may represent part of a spectrum of invasive micropapillary carcinoma. Am J Surg Pathol. 2010;34(11):1637–46.

    Article  PubMed  Google Scholar 

  280. Barbashina V, Corben AD, Akram M, Vallejo C, Tan LK. Mucinous micropapillary carcinoma of the breast: an aggressive counterpart to conventional pure mucinous tumors. Hum Pathol. 2013;44(8):1577–85.

    Article  PubMed  Google Scholar 

  281. Moritani S, Ichihara S, Hasegawa M, Endo T, Oiwa M, Yoshikawa K, et al. Serous papillary adenocarcinoma of the female genital organs and invasive micropapillary carcinoma of the breast. Are WT1, CA125, and GCDFP-15 useful in differential diagnosis? Hum Pathol. 2008;39(5):666–71.

    Article  CAS  PubMed  Google Scholar 

  282. Cabibi D, Giannone AG, Belmonte B, Aragona F, Aragona F. CD10 and HHF35 actin in the differential diagnosis between collagenous spherulosis and adenoid-cystic carcinoma of the breast. Pathol Res Pract. 2012;208(7):405–9.

    Article  CAS  PubMed  Google Scholar 

  283. Marchiò C, Weigelt B, Reis-Filho JS. Adenoid cystic carcinomas of the breast and salivary glands (or 'The strange case of Dr Jekyll and Mr Hyde' of exocrine gland carcinomas). J Clin Pathol. 2010;63(3):220–8.

    Article  PubMed  Google Scholar 

  284. Wetterskog D, Lopez-Garcia MA, Lambros MB, A'Hern R, Geyer FC, Milanezi F, et al. Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J Pathol. 2012;226(1):84–96.

    Article  CAS  PubMed  Google Scholar 

  285. Kim M, Lee DW, Im J, Suh KJ, Keam B, Moon HG, et al. Adenoid cystic carcinoma of the breast: a case series of six patients and literature review. Cancer Res Treat. 2014;46(1):93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Shin SJ, Rosen PP. Solid variant of mammary adenoid cystic carcinoma with basaloid features: a study of nine cases. Am J Surg Pathol. 2002;26(4):413–20.

    Article  PubMed  Google Scholar 

  287. Crisi GM, Marconi SA, Makari-Judson G, Goulart RA. Expression of c-kit in adenoid cystic carcinoma of the breast. Am J Clin Pathol. 2005;124(5):733–9.

    Article  CAS  PubMed  Google Scholar 

  288. Trendell-Smith NJ, Peston D, Shousha S. Adenoid cystic carcinoma of the breast: a tumour commonly devoid of oestrogen receptors and related proteins. Histopathology. 1999;35(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  289. Vranic S, Gurjeva O, Frkovic-Grazio S, Palazzo J, Tawfik O, Gatalica Z. IMP3, a proposed novel basal phenotype marker, is commonly overexpressed in adenoid cystic carcinomas but not in apocrine carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2011;19(5):413–6.

    Article  CAS  PubMed  Google Scholar 

  290. Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL, Khan A. IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol. 2009;40(11):1528–33.

    Article  CAS  PubMed  Google Scholar 

  291. Sidoni A, Cartaginese F. IMP3 expression in triple-negative breast carcinoma. Hum Pathol. 2010;41(9):1355–6. author reply 1356-1357

    Article  PubMed  Google Scholar 

  292. Vranic S, Bender R, Palazzo J, Gatalica Z. A review of adenoid cystic carcinoma of the breast with emphasis on its molecular and genetic characteristics. Hum Pathol. 2013;44(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  293. Reyes C, Jorda M, Gomez-Fernández C. Salivary gland-like tumors of the breast express basal-type immunohistochemical markers. Appl Immunohistochem Mol Morphol. 2013;21(4):283–6.

    Article  CAS  PubMed  Google Scholar 

  294. Foschini MP, Krausz T. Salivary gland-type tumors of the breast: a spectrum of benign and malignant tumors including "triple negative carcinomas" of low malignant potential. Semin Diagn Pathol. 2010;27(1):77–90.

    Article  PubMed  Google Scholar 

  295. Ge QD, Lv N, Cao Y, Wang X, Tang J, Xie ZM, et al. A case report of primary small cell carcinoma of the breast and review of the literature. Chin J Cancer. 2012;31(7):354–8.

    PubMed  PubMed Central  Google Scholar 

  296. An JK, Woo JJ, Kang JH, Kim EK. Small-cell neuroendocrine carcinoma of the breast. J Korean Surg Soc. 2012;82(2):116–9.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Latif N, Rosa M, Samian L, Rana F. An unusual case of primary small cell neuroendocrine carcinoma of the breast. Breast J. 2010;16(6):647–51.

    Article  PubMed  Google Scholar 

  298. Kitakata H, Yasumoto K, Sudo Y, Minato H, Takahashi Y. A case of primary small cell carcinoma of the breast. Breast Cancer. 2007;14(4):414–9.

    Article  PubMed  Google Scholar 

  299. Samli B, Celik S, Evrensel T, Orhan B, Tasdelen I. Primary neuroendocrine small cell carcinoma of the breast. Arch Pathol Lab Med. 2000;124(2):296–8.

    Article  CAS  PubMed  Google Scholar 

  300. Yamaguchi R, Tanaka M, Otsuka H, Yamaguchi M, Kaneko Y, Fukushima T, et al. Neuroendocrine small cell carcinoma of the breast: report of a case. Med Mol Morphol. 2009;42(1):58–61.

    Article  PubMed  Google Scholar 

  301. Christie M, Chin-Lenn L, Watts MM, Tsui AE, Buchanan MR. Primary small cell carcinoma of the breast with TTF-1 and neuroendocrine marker expressing carcinoma in situ. Int J Clin Exp Pathol. 2010;3(6):629–33.

    PubMed  PubMed Central  Google Scholar 

  302. Thike AA, Iqbal J, Cheok PY, Chong AP, Tse GM, Tan B, et al. Triple negative breast cancer: outcome correlation with immunohistochemical detection of basal markers. Am J Surg Pathol. 2010;34(7):956–64.

    Article  PubMed  Google Scholar 

  303. Haupt B, Ro JY, Schwartz MR. Basal-like breast carcinoma: a phenotypically distinct entity. Arch Pathol Lab Med. 2010;134(1):130–3.

    Article  PubMed  Google Scholar 

  304. Schnitt SJ. Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol. 2010;23(S2):S60–4.

    Article  PubMed  Google Scholar 

  305. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.

    Article  CAS  PubMed  Google Scholar 

  306. Costarelli L, Campagna D, Mauri M, Fortunato L. Intraductal proliferative lesions of the breast-terminology and biology matter: premalignant lesions or preinvasive cancer? Int J Surg Oncol. 2012;2012:501904.

    PubMed  PubMed Central  Google Scholar 

  307. Ueng SH, Mezzetti T, Tavassoli FA. Papillary neoplasms of the breast: a review. Arch Pathol Lab Med. 2009;133(6):893–907.

    Article  PubMed  Google Scholar 

  308. Grin A, O'Malley FP, Mulligan AM. Cytokeratin 5 and estrogen receptor immunohistochemistry as a useful adjunct in identifying atypical papillary lesions on breast needle core biopsy. Am J Surg Pathol. 2009;33(11):1615–23.

    Article  PubMed  Google Scholar 

  309. Moritani S, Ichihara S, Kushima R, Okabe H, Bamba M, Kobayashi TK, et al. Myoepithelial cells in solid variant of intraductal papillary carcinoma of the breast: a potential diagnostic pitfall and a proposal of an immunohistochemical panel in the differential diagnosis with intraductal papilloma with usual ductal hyperplasia. Virchows Arch. 2007;450(5):539–47.

    Article  PubMed  Google Scholar 

  310. Kurisu Y, Tsuji M, Akashi K, Kobayashi M, Sumiyoshi K, Nohara F, et al. Composite type of breast carcinoma with endocrine differentiation: a cytological and immunohistochemical study. Pathol Int. 2004;54(2):105–10.

    Article  PubMed  Google Scholar 

  311. Maluf HM, Koerner FC. Solid papillary carcinoma of the breast. A form of intraductal carcinoma with endocrine differentiation frequently associated with mucinous carcinoma. Am J Surg Pathol. 1995;19(11):1237–44.

    Article  CAS  PubMed  Google Scholar 

  312. Yang X, Kandil D, Cosar EF, Khan A. Fibroepithelial tumors of the breast: pathologic and immunohistochemical features and molecular mechanisms. Arch Pathol Lab Med. 2014;138(1):25–36.

    Article  PubMed  Google Scholar 

  313. Tse GM, Lui PC, Vong JS, Lau KM, Putti TC, Karim R, et al. Increased epidermal growth factor receptor (EGFR) expression in malignant mammary phyllodes tumors. Breast Cancer Res Treat. 2009;114(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  314. Tse GM, Tsang AK, Putti TC, Scolyer RA, Lui PC, Law BK, et al. Stromal CD10 expression in mammary fibroadenomas and phyllodes tumours. J Clin Pathol. 2005;58(2):185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Buza N, Zekry N, Charpin C, Tavassoli FA. Myoepithelial carcinoma of the breast: a clinicopathological and immunohistochemical study of 15 diagnostically challenging cases. Virchows Arch. 2010;457(3):337–45.

    Article  CAS  PubMed  Google Scholar 

  316. Santhosh R, Padu K, Singh TB, Sharma MB, Singh TS. Myoepithelial carcinoma of the breast. J Clin Diagn Res. 2013;7(6):1191–3.

    Google Scholar 

  317. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8(5):R76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Gerhard R, Ricardo S, Albergaria A, Gomes M, Silva AR, Logullo ÂF, et al. Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas. Breast. 2012;21(3):354–60.

    Article  PubMed  Google Scholar 

  319. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Lu S, Singh K, Mangray S, Tavares R, Noble L, Resnick MB, et al. Claudin expression in high-grade invasive ductal carcinoma of the breast: correlation with the molecular subtype. Mod Pathol. 2013;26(4):485–95.

    Article  CAS  PubMed  Google Scholar 

  321. Reis-Filho JS, Fulford LG, Crebassa B, Carpentier S, Lakhani SR. Collagenous spherulosis in an adenomyoepithelioma of the breast. J Clin Pathol. 2004;57(1):83–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Kuan SF, Montag AG, Hart J, Krausz T, Recant W. Differential expression of mucin genes in mammary and extramammary Paget's disease. Am J Surg Pathol. 2001;25(12):1469–77.

    Article  CAS  PubMed  Google Scholar 

  323. Kondo Y, Kashima K, Daa T, Fujiwara S, Nakayama I, Yokoyama S. The ectopic expression of gastric mucin in extramammary and mammary Paget's disease. Am J Surg Pathol. 2002;26(5):617–23.

    Article  PubMed  Google Scholar 

  324. Nofech-Mozes S, Hanna W. Toker cells revisited. Breast J. 2009;15(4):394–8.

    Article  PubMed  Google Scholar 

  325. James BA, Cranor ML, Rosen PP. Carcinoma of the breast arising in microglandular adenosis. Am J Clin Pathol. 1993;100(5):507–13.

    Article  CAS  PubMed  Google Scholar 

  326. Khalifeh IM, Albarracin C, Diaz LK, Symmans FW, Edgerton ME, Hwang RF, et al. Clinical, histopathologic, and immunohistochemical features of microglandular adenosis and transition into in situ and invasive carcinoma. Am J Surg Pathol. 2008;32(4):544–52.

    Article  PubMed  Google Scholar 

  327. Koenig C, Dadmanesh F, Bratthauer GL, Tavassoli FA. Carcinoma arising in microglandular adenosis: an immunohistochemical analysis of 20 intraepithelial and invasive neoplasms. Int J Surg Pathol. 2000;8(4):303–15.

    Article  PubMed  Google Scholar 

  328. Tavassoli FA, Bratthauer GL. Immunohistochemical profile and differential diagnosis of microglandular adenosis. Mod Pathol. 1999;6(3):318–22.

    Google Scholar 

  329. Salarieh A, Sneige N. Breast carcinoma arising in microglandular adenosis: a review of the literature. Arch Pathol Lab Med. 2007;131(9):1397–9.

    Article  PubMed  Google Scholar 

  330. Wen YH, Weigelt B, Reis-Filho JS. Microglandular adenosis: a non-obligate precursor of triple-negative breast cancer? Histo Histopathol. 2013;28(9):1099–108.

    Google Scholar 

  331. Laurent E, Begueret H, Bonhomme B, Veillone R, Thumerel M, Velasco V, et al. SOX10, GATA3, GCDFP15, androgen receptor, and mammaglobin for the differential diagnosis between triple-negative breast cancer and TTF1-negative lung adenocarcinoma. Am J Surg Pathol. 2019;43:293–302.

    Article  PubMed  Google Scholar 

  332. Harbhajanka A, Chahar S, Miskimen K, Silverman P, Harris L, Varadan V, et al. Clinicopathological, immunohistochemical and molecular correlation of neural crest transcription factor SOX10 expression in triple-negative breast carcinoma. Hum Pathol. 2018;80:163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Boto A, Harigopal M. Strong androgen receptor expression can aid in distinguishing GATA3+ metastases. Hum Pathol. 2018;75:63–70.

    Article  CAS  PubMed  Google Scholar 

  334. Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum Pathol. 2016;55:190–5.

    Article  CAS  PubMed  Google Scholar 

  335. Kensler KH, Regan MM, Heng YJ, Baker GM, Pyle ME, Schnitt SJ, et al. Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1–98. Breast Cancer Res. 2019;21(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  336. Safarpour D, Pakneshan S, Tavassoli FA. Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am J Cancer Res. 2014;4(4):353–68.

    PubMed  PubMed Central  Google Scholar 

  337. Zuo T, Wilson P, Cicek AF, Harigopal M. Androgen receptor expression is a favorable prognostic factor in triple-negative breast cancers. Hum Pathol. 2018;80:239–45.

    Article  CAS  PubMed  Google Scholar 

  338. Astvatsaturyan K, Yue Y, Walts AE, Bose S. Androgen receptor positive triple negative breast cancer: Clinicopathologic, prognostic, and predictive features. PLoS One. 2018;13(6):e0197827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Safarpour D, Tavassoli FA. A targetable androgen receptor-positive breast cancer subtype hidden among the triple-negative cancers. Arch Pathol Lab Med. 2015;139(5):612–7.

    Article  PubMed  Google Scholar 

  340. Tsutsumi Y. Apocrine carcinoma as triple-negative breast cancer: novel definition of apocrine-type carcinoma as estrogen/progesterone receptor-negative and androgen receptor-positive invasive ductal carcinoma. Jpn J Clin Oncol. 2012;42(5):375–86.

    Article  PubMed  Google Scholar 

  341. De Lara S, Nyqvist J, Werner Rönnerman E, Helou K, Kenne Sarenmalm E, Einbeigi Z, et al. The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10-year period (2004–2014). BMC Cancer. 2019;19(1):187.

    Article  PubMed  PubMed Central  Google Scholar 

  342. Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, et al. Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res. 2009;11(3):R40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Davis DG, Siddiqui MT, Opera-Ilies G, Stevens K, Osunkoya AO, Cohen C, et al. GATA-3 and FOXA1 espression is useful to differentiate breast carcinoma from other carcinomas. Hum Pathol. 2016;47(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  344. Hisamatsu Y, Tokunaga E, Yamashita N, Akiyoshi S, Okada S, Nakashima Y, et al. Impact of GATA-3 and FOXA1 expression in patients with hormone receptor-positive/HER2-negative breast cancer. Breast Cancer. 2015;22(5):520–8.

    Article  PubMed  Google Scholar 

  345. Rangel N, Fortunati N, Osella-Abate S, Annaratone L, Isella C, Catalano MG, et al. FOXA1 and AR in invasive breast cancer: new findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer. 2018;18(1):703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  346. Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, et al. The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat. 2010;120(3):603–12.

    Article  CAS  PubMed  Google Scholar 

  347. Dang DN, Rai G, Sarode V, Molberg KH, Vadlamudi RK, Peng Y. Significantly increased PELP1 protein expression in primary and metastatic triple-negative breast carcinoma: comparison with GATA3 expression and PELP1's potential role in triple-negative breast carcinoma. Hum Pathol. 2015;46(12):1829–35.

    Article  CAS  PubMed  Google Scholar 

  348. Canas-Marques R, Schnitt S. E-cadherin immunohistochemistry in breast pathology: uses and pitfalls. Histopathol. 2016;68(1):57–69.

    Article  Google Scholar 

  349. Martinez AP, Cohen C, Hanley KZ, Li XB. Estrogen receptor and cytokeratin 5 are reliable markers to separate usual ductal hyperplasia from atypical ductal hyperplasia and low-grade ductal carcinoma in situ. Arch Pathol Lab Med. 2016;140(7):686–9.

    Article  CAS  PubMed  Google Scholar 

  350. Liu X, Feng C, Liu J, Liu J, Li C, Xu C, et al. The importance of EGFR as a biomarker in molecular apocrine breast cancer. Hum Pathol. 2018;77:1–10.

    Article  PubMed  CAS  Google Scholar 

  351. Vranic S, Marchiò C, Castellano I, Botta C, Scalzo MS, Bender RP, et al. Immunohistochemical and molecular profiling of histologically defined apocrine carcinomas of the breast. Hum Pathol. 2015;46:1350–9.

    Article  CAS  PubMed  Google Scholar 

  352. Shousha S, Anscombe O, McFarlane T. All benign and malignant apocrine breast lesions overexpress claudin 1 and 3 and are negative for claudin 4. Pathol Oncol Res. 2020;26(2):1073–78; https://doi.org/10.1007/s12253-019-00662-9. Epub ahead of print.

  353. D’Arcy QCM. Apocrine lesions of the breast: part 2 of a two-part review. Invasive apocrine carcinoma, the molecular apocrine signature and utility of immunohistochemistry in the diagnosis of apocrine lesions of the breast. J Clin Pathol. 2019;72:7–11.

    Article  PubMed  CAS  Google Scholar 

  354. Krings G, Joseph NM, Bean GR, Solomon D, Onodera C, Talevich E, et al. Genomic profiling of breast secretory carcinomas reveals distinct genetics from other breast cancers and similarity to mammary analog secretory carcinomas. Mod Pathol. 2017;30:1086–99.

    Article  CAS  PubMed  Google Scholar 

  355. Strauss BL, Bratthauer MS, Tavassoli FA. STAT 5a expression in the breast is maintained in secretory carcinoma, in contrast to other histologic types. Hum Pathol. 2006;37:586–92.

    Article  CAS  PubMed  Google Scholar 

  356. Yang C, Zhang LX, Sanati S. SOX10 is a sensitive marker for breast and salivary gland adenoid cystic carcinoma: immunohistochemical characterization of adenoid cystic carcinomas. Breast Cancer Basic Clin Res. 2019;13:1–6.

    Article  Google Scholar 

  357. Poling JS, Yonescu R, Subhawong AP, Sharma R, Argani P, Ning Y, et al. MYB labeling by immunohistochemistry is more sensitive and specific for breast adenoid cystic carcinoma than MYB labeling by FISH. Am J Surg Pathol. 2017;41:973–9.

    Article  PubMed  Google Scholar 

  358. Baraban E, Zhang PJ, Jaffer S, Lubin D, Feldman M, Bleiweiss IJ, et al. MYB rearrangement and immunohistochemical expression in adenomyoepithelioma of the breast: a comparison with adenoid cystic carcinoma. Histopathology. 2018;73(6):897–903.

    Article  PubMed  Google Scholar 

  359. Bellezza G, Prosperi E, Del Sordo R, Colella R, Rulli A, Sidoni A. IMP3 Is strongly expressed in malignant phyllodes tumors of the breast: an immunohistochemical study. Int J Surg Pathol. 2016;24(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  360. Takizawa K, Yamamoto H, Taguchi K, Ohno S, Tokunaga E, Yamashita N, et al. Insulin-like growth factor II messenger RNA-binding protein-3 is an indicator of malignant phyllodes tumor of the breast. Hum Pathol. 2016;55:30–8.

    Article  CAS  PubMed  Google Scholar 

  361. Tan BY, Acs G, Apple SK, Badve S, Bleiweiss IJ, Brogi E, et al. Phyllodes tumours of the breast: a consensus review. Histopathology. 2016;68(1):5–21.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Rakha EA, Tan PH, Shaaban A, Tse GM, Esteller FC, van Deurzen CH, et al. Do primary mammary osteosarcoma and chondrosarcoma exist? A review of a large multi-institutional series of malignant matrix-producing breast tumours. Breast. 2013;22:13–8.

    Article  PubMed  Google Scholar 

  363. Tse GM, Tan PH, Chaiwun B, Putti TC, Lui PC, Tsang AK, et al. p63 is useful in the diagnosis of mammary metaplastic carcinomas. Pathology. 2006;38:16–20.

    Article  CAS  PubMed  Google Scholar 

  364. Chia Y, Thike AA, Cheok PY, Yong-Zheng Chong L, Man-Kit Tse G, et al. Stromal keratin expression in phyllodes tumours of the breast: a comparison with other spindle cell breast lesions. J Clin Pathol. 2012;65:339–47.

    Article  PubMed  Google Scholar 

  365. Cimino-Mathews A, Sharma R, Illei PB, Vang R, Argani P. A subset of malignant phyllodes tumors express p63 and p40: a diagnostic pitfall in breast core needle biopsies. Am J Surg Pathol. 2014;38:1689–96.

    Article  PubMed  PubMed Central  Google Scholar 

  366. Kim SK, Jung WH, Koo JS. p40 (DNp63) expression in breast disease and its correlation with p63 immunohistochemistry. Int J Clin Exp Pathol. 2014;7:1032–41.

    PubMed  PubMed Central  Google Scholar 

  367. D'Alfonso TM, Ross DS, Liu YF, Shin SJ. Expression of p40 and laminin 332 in metaplastic spindle cell carcinoma of the breast compared with other malignant spindle cell tumours. J Clin Pathol. 2015;68:516–21.

    Article  CAS  PubMed  Google Scholar 

  368. Noronha Y, Raza A, Hutchins B, Chase D, Garberoglio C, Chu P, et al. CD34, CD117, and Ki- 67 expression in phyllodes tumor of the breast: an immuno- histochemical study of 33 cases. Int J Surg Pathol. 2011;19:152–8.

    Article  PubMed  Google Scholar 

  369. Moore T, Lee AH. Expression of CD34 and bcl-2 in phyllodes tumours, fibroadenomas and spindle cell lesions of the breast. Histopathology. 2001;38:62–7.

    Article  CAS  PubMed  Google Scholar 

  370. Lee AHS. Recent developments in the histological diagnosis of spindle cell carcinoma, fibromatosis and phyllodes tumour of the breast. Histopathology. 2008;52:45–57.

    Article  CAS  PubMed  Google Scholar 

  371. Asleh-Aburaya K, Sheffield BS, Kos Z, Won JR, Wang XQ, Gao D, et al. Basal biomarkers nestin and INPP4b identify intrinsic subtypes accurately in breast cancers that are weakly positive for oestrogen receptor. Histopathology. 2017;70(2):185–94.

    Article  PubMed  Google Scholar 

  372. Won JR, Gao D, Chow C, Cheng J, Lau SY, Ellis MJ, et al. A survey of immunohistochemical biomarkers for basal-like breast cancer against a gene expression profile gold standard. Mod Pathol. 2013;26(11):1438–50.

    Article  CAS  PubMed  Google Scholar 

  373. Asleh K, Won JR, Gao D, Voduc KD, Nielsen TO. Nestin expression in breast cancer: association with prognosis and subtype on 3641 cases with long-term follow-up. Breast Cancer Res Treat. 2018;168(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  374. Asleh K, Lyck CS, Tykjaer Jørgensen CL, Burugu S, Gao D, Won JR, et al. Basal biomarkers nestin and INPP4B predict gemcitabine benefit in metastatic breast cancer: samples from the phase III SBG0102 clinical trial. Int J Cancer. 2019;144(10):2578–86.

    Article  CAS  PubMed  Google Scholar 

  375. Parry S, Savage K, Marchiò C, Reis-Filho JS. Nestin is expressed in basal-like and triple negative breast cancers. J Clin Pathol. 2008;61(9):1045–50.

    Article  CAS  PubMed  Google Scholar 

  376. Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Feasibility of classification of triple negative breast cancer by immunohistochemical surrogate markers. Clin Breast Cancer. 2018;18(5):e1123–32.

    Article  CAS  PubMed  Google Scholar 

  377. Johnson J, Choi M, Dadmanesh F, Han B, Qu Y, Yu-Rice Y, et al. FOXC1 identifies basal-like breast cancer in a hereditary breast cancer cohort. Oncotarget. 2016;7(46):75729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  378. Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B, et al. Diagnosis of basal-like breast cancer using a FOXC1-based assay. J Natl Cancer Inst. 2015;107(8)

    Google Scholar 

  379. Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE, Cui X. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene. 2017;36(28):3957–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget. 2017;9(8):8165–78.

    Article  PubMed  PubMed Central  Google Scholar 

  381. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Kos Z, Dabbs DJ. Biomarker assessment and molecular testing for prognostication in breast cancer. Histopathology. 2016;68(1):70–85.

    Article  PubMed  Google Scholar 

  383. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res. 2013;19(19):5505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Tawfik O, Kimler BF, Karnik T, Shehata P. Clinicopathological correlation of PD-L1 expression in primary and metastatic breast cancer and infiltrating immune cells. Hum Pathol. 2018;80:170–8.

    Article  CAS  PubMed  Google Scholar 

  385. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.

    Article  CAS  PubMed  Google Scholar 

  386. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34(21):2460–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Mai R, Zhou S, Zhou S, Zhong W, Hong L, Wang Y, et al. Transcriptome analyses reveal FOXA1 dysregulation in mammary and extramammary Paget's disease. Hum Pathol. 2018;77:152–8.

    Article  CAS  PubMed  Google Scholar 

  388. Tan PH, Ellis I, Allison K, Brogi E, Fox SB, Lakhani S, et al. The 2019 WHO classification of tumours of the breast. Histopathology. 2020;77(2):181–85; https://doi.org/10.1111/his.14091. Epub ahead of print.

  389. Hilson JB, Schnitt SJ, Collins LC. Phenotypic alterations in myoepithelial cells associated with benign sclerosing lesions of the breast. Am J Surg Pathol. 2010;34(6):896–900.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Geisinger Clinic

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Mehr, C.R. (2022). Breast. In: Lin, F., Prichard, J.W., Liu, H., Wilkerson, M.L. (eds) Handbook of Practical Immunohistochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83328-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83328-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83327-5

  • Online ISBN: 978-3-030-83328-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics