Skip to main content

Finite Temperature Schwinger Model

  • Chapter
  • First Online:
Statistical Approach to Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 992))

  • 2019 Accesses

Abstract

The study of exactly soluble field theories has always received a good deal of attention in the hope that they might shed some light on more realistic theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Local boundary conditions are in conflict with chiral symmetry. For example, if ψ obeys hermitian bag-boundary conditions, then γ ∗ ψ does not fulfill these conditions; see the analysis in [7].

  2. 2.

    More precisely: A μ defines a connection on a non-trivial U(1) bundle over the two-torus.

  3. 3.

    The explicit calculation of this factor is done in Problem 16.6.

  4. 4.

    if the global symmetry is non-compact then there exists a variant of the theorem.

  5. 5.

    A slightly different constant 0.4329 in place of 0.451 is given in [37].

References

  1. J. Schwinger, Gauge invariance and mass 2. Phys. Rev. 128, 2425 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Coleman, R. Jackiw, L. Susskind, Charge shielding and quark confinement in the massive Schwinger model. Annals Phys. 93, 267 (1975); L.S. Brown, Gauge invariance and mass in a two-dimensional model. Nuovo Cimento 29, 617 (1963)

    Google Scholar 

  3. J.H. Lowenstein, J.A. Swieca, Quantum electrodynamics in two-dimensions. Ann. Phys. 68, 172 (1971); A.Z. Capri, R. Ferrari, Schwinger model, chiral symmetry, anomaly and θ vacua. Nuovo Cimento A62, 273 (1981)

    Google Scholar 

  4. N.K. Nielsen, B. Schroer, Topological fluctuations and breaking of chiral symmetry in gauge theories involving massless fermions. Nucl. Phys. B120, 62 (1977); M. Hortacsu, K.D. Rothe, B. Schroer, Generalized QED in two-dimensions and functional determinants. Phys. Rev. D20, 3293 (1979)

    Google Scholar 

  5. C. Jayewardena, Schwinger model on S(2). Helv. Phys. Acta 61, 636 (1988)

    MathSciNet  Google Scholar 

  6. J. Balog, P. Hrasko, The fermion boundary condition and the θ-angle in QED2. Nucl. Phys. B245, 118 (1984)

    ADS  Google Scholar 

  7. S. Durr, A. Wipf, Gauge theories in a bag. Nucl. Phys. B443, 201 (1995)

    ADS  Google Scholar 

  8. S. Durr, A. Wipf, Finite temperature Schwinger model with chirality breaking boundary conditions. Annals Phys. 255, 333 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Joos, The geometric Schwinger model on the torus I. Helv. Phys. Acta 63, 670 (1990); H. Joos, S.I. Azakov, The geometric Schwinger model on the torus II. Helv. Phys. Acta 67, 723 (1994)

    Google Scholar 

  10. I. Sachs, A. Wipf, Finite temperature Schwinger model. Helv. Phys. Acta 65, 652 (1992)

    MathSciNet  Google Scholar 

  11. R. Narayanan, H. Neuberger, A construction of lattice chiral gauge theories. Nucl. Phys. B443, 305 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Orus, A practical introduction to tensor networks: matrix product states and projected entangled pair states. Annals Phys. 349, 117 (2014); J.C. Bridgeman, C.T. Chubb, Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A: Math. Theor. 50, 223001 (2017); S.J. Ran, E. Tirrito, C. Peng, X. Chen, L. Tagliacozzo, G. Su, M. Lewenstein, Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems. Lecture Notes in Physics vol. 964 (Springer, Berlin, 2020)

    Google Scholar 

  13. M.C. Bañuls, K. Cichy, K. Jansen, J.I. Cirac, The mass spectrum of the Schwinger model with matrix product states. JHEP 11, 158 (2013)

    Article  ADS  Google Scholar 

  14. G. t’Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432 (1976)

    ADS  Google Scholar 

  15. E. Witten, Constraints on supersymmetry breaking. Nucl. Phys. B202, 253 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.V. Vassilevich, Heat kernel expansion: user’s manual. Phys. Rept. 388, 279 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.B. Gilkey, The Index Theorem and the Heat Equation. (Publish or Perish, Boston, 1974)

    Google Scholar 

  18. M.F. Atiyah, I.M. Singer, The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc. 69, 422 (1963); The index of elliptic operators. Ann. Math. 87, 484 (1968); ibid. 546

    Google Scholar 

  19. G. t’Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8 (1976)

    Article  ADS  Google Scholar 

  20. J.S. Bell, R. Jackiw, A PCAC puzzle π 0 → Y Y  in the σ model. Phys. Lett. 59B, 85 (1969); S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 117, 2426 (1969)

    Google Scholar 

  21. S. Coleman, The use of instantons, in The Whys of Subnuclear Physics, vol. 15, ed. by A. Zichichi (Springer, Boston, 1979)

    Google Scholar 

  22. R.A. Bertlmann, in Anomalies in Quantum Field Theory. International Series of Monographs on Physics, vol. 91 (Clarendon Press, Oxford, 2000)

    Google Scholar 

  23. A. Fayyazuddin, T.H. Hansson, M.A. Nowak, J.J.M. Verbaarshot, I. Zahed, Finite temperature correlators in the Schwinger model. Nucl. Phys. B425, 553 (1994)

    Article  ADS  Google Scholar 

  24. S. Azakov, The Schwinger model on the torus. Fortsch. Phys. 45, 589 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Blau, M. Visser, A. Wipf, Determinants, Dirac operators, and one loop physics. Int. J. Mod. Phys. 6, 1467 (1989); Determinants of conformal wave operators in four dimensions. Phys. Lett. 209B, 2019 (1988)

    Google Scholar 

  26. I. Sachs, A. Wipf, Generalized Thirring models, Ann. Phys. 249, 380 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.M. Polyakov, Quantum Gravity in two dimensions. Mod. Phys. Lett. A2, 893 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. R.J. Riegert, A nonlocal action for the trace anomaly. Phys. Lett. 134B, 56 (1984); E.S. Fradkin, A.A. Tseytlin, Conformal anomaly in Weyl theory and anomaly free superconformal theories. Phys. Lett. 134B, 187 (1984); S.D. Odintsov, I.L. Shapiro, Perturbative approach to induced quantum gravity. Class. Quant. Grav. 8, L57 (1991); I. Antoniadis, P.O. Mazur, E. Mottola, Conformal symmetry and central charges in 4 dimensions. Nucl. Phys. B388, 627 (1992)

    Google Scholar 

  29. P. Epstein, Zur Theorie allgemeiner Zetafunktionen I, II. Math. Ann. 56, 615 (1903); 63, 205 (1907)

    Google Scholar 

  30. L. Alvarez-Gaumé, G. Moore, C. Vafa, Theta functions, modular invariance, and strings. Commun. Math. Phys. 106, 1–40 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Blau, M. Visser, A. Wipf, Analytical results for the effective action. Int. J. Mod. Phys. A6, 5408 (1992)

    Google Scholar 

  32. D. Mumford, Tata Lectures on Theta (Birkhäuser, Boston, 1983)

    Book  Google Scholar 

  33. N. Manton, The Schwinger model and its axial anomaly. Ann. Phys. 159, 220 (1985); J.E. Hetrick, Y. Hosotani, QED on a circle. Phys. Rev. D38, 2621 (1988)

    Google Scholar 

  34. S. Coleman, More about the massive Schwinger model. Ann. Phys. 101, 239 (1976)

    Article  ADS  Google Scholar 

  35. D.J. Gross, I.R. Klebanov, A.V. Maatytsin, A.V. Smilga, Screening versus confinement in (1+1) dimensions. Nucl. Phys. B461, 109 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. J.V. Steele, J.J.M. Verbaarschot, I. Zahed, The Invariant fermion correlator in the Schwinger model on the torus. Phys. Rev. D51, 5915 (1995)

    ADS  Google Scholar 

  37. J.E. Hetrick, Y. Hosotani, S. Iso, The massive multi-flavor Schwinger model. Phys. Lett. B350, 92 (1995)

    Article  ADS  Google Scholar 

  38. T. Misumi, Y. Tanizaki, M. Ünsal, Fractional θ angle, ‘t Hooft anomaly, and quantum instantons in charge-q multi-flavor Schwinger model. JHEP 07, 018 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Adam, Massive Schwinger model within mass perturbation theory. Ann. Phys. 259, 1 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.V. Smilga, On the fermion condensate in Schwinger model, Phys. Lett. 278, 371 (1992); Critical amplitudes in two-dimensional theories. Phys. Rev. D55, 443 (1996)

    Google Scholar 

  41. C. Gattringer, preprint hep-th/9503137

    Google Scholar 

  42. H. Leutwyler, A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD. Phys. Rev. D46, 5607 (1992)

    ADS  MathSciNet  Google Scholar 

  43. V. Azcoiti, E. Follana, E. Royo-Amondarain, G. Di Carlo, A. Vaquero Avilés-Casco, Massive Schwinger model at finite θ. Phys. Rev. D97, 014507 (2018)

    Google Scholar 

  44. T.M.R. Byrnes, P. Sriganesh, R.J. Bursill, C.J. Hamer, Density matrix renormalization group approach to the massive Schwinger model. Phys. Rev. D66 (2002) 013002

    ADS  MATH  Google Scholar 

  45. S. Durr, C. Hoelbling, Staggered versus overlap fermions: a study in the Schwinger model with N(f) = 0,  1,  2. Phys. Rev. D69, 034503 (2004)

    ADS  Google Scholar 

  46. S. Durr, C. Hoelbling, Scaling tests with dynamical overlap and rooted staggered fermions. Phys. Rev. D71, 054501 (2005)

    ADS  Google Scholar 

  47. P. Hasenfratz, V. Laliena, F. Niedermayer, The index theorem in QCD with a finite cutoff. Phys. Lett. B427, 125 (1998)

    Article  ADS  Google Scholar 

  48. M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation. Phys. Lett. B428, 342 (1998)

    Article  ADS  Google Scholar 

  49. T.W. Chiu, The Spectrum and topological charge of exactly massless fermions on the lattice. Phys. Rev. D58, 074511 (1998)

    ADS  Google Scholar 

  50. N. Christian, K. Jansen, K. Nagai, B. Pollakowski, Scaling test of fermion actions in the Schwinger model. Nucl. Phys. B739, 60 (2006)

    Article  ADS  Google Scholar 

  51. M.C. Bañuls, R. Blatt, J. Catani, A. Celi, J.I. Cirac, Simulating Lattice gauge theories with quantum technologies. Eur. Phys. J. D74, 165 (2020)

    ADS  Google Scholar 

  52. T. Banks, L. Susskind, J.B. Kogut, Strong coupling calculations of lattice gauge theories: (1+1) dimensional exercises. Phys. Rev. D13, 1043 (1976)

    ADS  Google Scholar 

  53. M.C. Bañuls, K, Cichy, K. Jansen, H. Saito, Chiral condensate in the Schwinger model with matrix product operators. Phys. Rev. D93, 094512 (2016)

    Google Scholar 

  54. F. Oberhettinger, Fourier Expansions (Academic, New York and London, 1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wipf, A. (2021). Finite Temperature Schwinger Model. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-83263-6_16

Download citation

Publish with us

Policies and ethics