Skip to main content
Log in

Theta functions, modular invariance, and strings

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use Quillen's theorem and algebraic geometry to investigate the modular transformation properties of some quantities of interest in string theory. In particular, we show that the spin structure dependence of the chiral Dirac determinant on a Riemann surface is given by Riemann's theta function. We use this result to investigate the modular invariance of multiloop heterotic string amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwarz, J.: Superstrings: The first fifteen years, Vol. 5, I, II. New York: World Scientific 1985

    Google Scholar 

  2. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett.103B, 207 (1981); Quantum geometry of fermionic strings. Phys. Lett.103B, 211 (1981)

    Google Scholar 

  3. Friedan, D., Martinec, E., Shenker, S.: Conformal innvriance, supersymmetry, and strings. Princeton preprint

  4. Martinec, E.: Nonrenormalization theorems and fermionic string finiteness. Princeton preprint

  5. Gross, D.J., Harvey, J.A., Martinec, E., Rohm, R.: Phys. Rev. Lett.54, 502 (1985); Nucl. Phys. B256, 253 (1985), and Nucl. Phys. B (to appear)

    Google Scholar 

  6. Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds I. Nucl. Phys. B261, 651 (1985). Strings on orbifolds II. Princeton preprint

    Google Scholar 

  7. Farkas, H.M., Kra, I.: Riemann surfaces. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  8. See, for example J. Birman in W.J. Harvey (ed.), Discrete groups and automorphic functions. New York: Academic Press 1977; L. Greenberg (ed.), Discontinuous groups and Riemann surfaces, Princeton, NJ: Princeton University Press 1974

    Google Scholar 

  9. Magnus, Karras, Solitar: Combinatorial group theory. New York: Interscience 1966

    Google Scholar 

  10. Milnor, J.W., Stasheff, J.D.: Characteristic classes. Ann. Math. Studies, Vol. 76. Princeton, NJ: Princeton University Press 1974

    Google Scholar 

  11. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  12. Gunning, R.: Introduction to Riemann surfaces princeton Math. Notes. Princeton, NJ: Princeton University Press 1966

    Google Scholar 

  13. Mumford, D.: Tata lectures on theta, Vols. I, II. Boston: Birkhäuser 1983

    Google Scholar 

  14. Fay, J.: Theta functions on Riemann surfaces Springer notes in math., Vol. 352. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  15. Quillen, D.: Determinants of Cauchy-Riemann operators on Riemann surfaces. Funkts. Anal. Prilozh.19, 37 (1985)

    Google Scholar 

  16. Alvarez, O.: Conformal anomalies and the index theorem. Berkeley preprint

  17. Moore, G., Nelson, P., Polchinski, J.: Strings and supermoduli. Phys. Lett.169B, 47 (1986)

    Google Scholar 

  18. Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Landau Institute preprint; See also, Catenacci, R., Cornalba, M., Martellini, M., Reina, C.: Algebraic geometry and path integrals for closed strings; Bost, J.B., Jolicoeur, J.: A holomorphy property and critical dimension in string theory from an index theorem. Saclay PhT/86-28

  19. Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys. B234, 269 (1984)

    Google Scholar 

  20. Actually, this particular example is well-known to physicists. See, for example, Jackiw, R.: Topological methods in field theory. Les Houches lectures 1983. What is new here is the better geometrical understanding in terms of holomorphic line bundles, and the idea that holomorphy is a powerful tool for understanding determinants

  21. The generalization of Quillen's theorem has been independently derived by Belavin and Knizhnik. We thank Stephen Della Pietra for pointing out an error in an earlier version of Eq. (4.15). We also thank Phil Nelson and Joe Polchinski for discussions on the application of Eq. (4.15) to holomorphic factorization on moduli space, and on the important difference between Eq. (4.15) and Eq. (4.16)

  22. Bismut, J.-M., Freed, D.S.: Geometry of elliptic families: Anomalies and determinants. M.I.T. preprint; The analysis of elliptic families: Metrics and connections on determinant bundles. Commun. Math. Phys. (in press); The analysis of elliptic families: Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. (in press)

  23. This can also be understood from the point of view of Wolpert, S.: On obtaining a positive line bundle from the Weil-Petersson class. Am. J. Math.107, 1485 (1985)

    Google Scholar 

  24. Bers, L.: Finite dimensional Teichmüller spaces and generalizations. Bull. Am. Math. Soc.5, 131 (1981)

    Google Scholar 

  25. Friedan, D.: Introduction to Polyakov's string theory. In: Zuber, J.-B., Stora, R. (eds.). Les Houches 1982. Recent advances in field theory and statistical mechanics. Amsterdam: Elsevier 1984

    Google Scholar 

  26. We owe this observation to Phil Nelson

  27. Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. Ec. Norm. Super.4 (1971)

  28. In fact, more is true: thenumber of zero modes is given by the multiplicity of the zero of ϑ. See [14] and Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. Éc. Norm. Supér.4, 24 (1971)

    Google Scholar 

  29. Hitchin, N.: Harmonic spinors. Adv. Math.14, 1–55 (1974)

    Google Scholar 

  30. Witten, E.: Global anomalies in string theory. In: Geometry anomalies topology. Bardeen, W.A., White, A.R. (eds.). New York: World Scientific 1985

    Google Scholar 

  31. Seiberg, N., Witten, E.: Spin structures in string theory. Princeton preprint

  32. Alvarez-Gaumé, L., Ginsparg, P., Moore, G., Vafa, C.: AnO(16) ×O(16) heterotic string. Harvard preprint HUTP-86/AO13

  33. For a pedagogical treatment and further references to the literature see Nelson, P., Moore, G.: Heterotic geometry. Harvard preprint HUTP-86/A014

  34. Alvarez, O.: Theory of strings with boundary: Topology, fluctuations, geometry. Nucl. Phys. B216, 125 (1983)

    Google Scholar 

  35. Polchinski, J.: Evaluation of the one loop string path integral. Commun. Math. Phys.104, 37 (1986)

    Google Scholar 

  36. Moore, G., Nelson, P.: Measure for moduli: The Polyakov string has no nonlocal anomalies. Nucl. Phys. B266, 58 (1986)

    Google Scholar 

  37. D'Hoker, E., Phong, D.: Multiloop amplitudes for the bosonic string. Nucl. Phys. B269, 205 (1986)

    Google Scholar 

  38. D'Hoker, E., Phong, D.: Loop amplitudes for the fermionic string. CU-TP-340

  39. Shapiro, J.: Loop graph in the dual-tube model. Phys. Rev. D5, 1945 (1972); Rohm, R.: Spontaneous supersymmetry breaking in supersymmetric string theories. Nucl. Phys. B237, 553 (1984)

    Google Scholar 

  40. Gliozzi, F., Scherk, J., Olive, D.: Supersymmetry, supergravity theories and the dual spinor model. Nucl. Phys. B122, 253 (1977)

    Google Scholar 

  41. In preparation

  42. Igusa, J.: Theta functions. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  43. Vafa, C.: Modular invariance and discrete torsion on orbifolds

  44. Dixon, L., Harvey, J.: String theories in ten dimensions without spacetime supersymmetry. Princeton preprint

  45. After this work was completed we received a preprint in which this question is answered in the affirmative. See Manin, Yu.I.: The partition function of the Polyakov string can be expressed in terms of theta functions. Phys. Lett. (submitted)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Gaumé, L., Moore, G. & Vafa, C. Theta functions, modular invariance, and strings. Commun.Math. Phys. 106, 1–40 (1986). https://doi.org/10.1007/BF01210925

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210925

Keywords

Navigation