Skip to main content

Crossed Cerebellar Diaschisis

  • Chapter
  • First Online:
Hybrid PET/MR Neuroimaging

Abstract

Brain PET/MRI is a relatively novel imaging modality which offers inherent advantages over traditional hybrid imaging techniques, such as PET/CT, in the evaluation of the central nervous system, particularly cognitively impaired patients with clinically suspected dementia and neurodegenerative disease [1]. Specifically, the advent of simultaneous PET with MRI allows for precise anatomic localization and superior soft tissue contrast and reduces exposure to ionizing radiation. Furthermore, hybrid PET/MR scanners with simultaneous imaging capabilities allow for PET and MR images to be obtained in a single, convenient session, which optimizes image fusion and co-registration capabilities. This seamless incorporation of multimodality functional and structural images, acquired simultaneously, allows for higher quality interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ADC:

Apparent diffusion coefficient

agPPA:

Agrammatic variant primary progressive aphasia

AIs:

Asymmetry indices

bvFTD:

Behavioral variant frontotemporal dementia

CBD:

Corticobasal degeneration

CCD:

Crossed cerebellar diaschisis

DLB:

Dementia with Lewy bodies

DWI:

Diffusion weighted imaging

FDG:

2-[Fluorine 18] Fluoro-2-deoxy-D-glucose

FLAIR:

Fluid attenuated inversion recovery

FOV:

Field of view

FTD:

Frontotemporal dementia

GABA:

Gamma aminobutyric acid

Glu:

Glutamate

LMN:

Lower motor neuron

lvPPA:

Logopenic variant primary progressive aphasia

MCI:

Mild cognitive impairment

MRI:

Magnetic Resonance Imaging

PET:

Positron emission tomography

PSP:

Progressive supranuclear palsy

SUV:

Standardized uptake value

svPPA:

Semantic variant primary progressive aphasia

SWI:

Susceptibility weighted image

UMN:

Upper motor neuron

References

  1. Ehman EC, Johnson GB, Villanueva-Meyer JE, et al. PET/MRI: where might it replace PET/CT? J Magn Reson Imaging. 2017;46(5):1247–62. https://doi.org/10.1002/jmri.25711.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gallucci M, Limbucci N, Catalucci A, et al. Neurodegenerative diseases. Radiol Clin N Am. 2008;46(4):799–817. vii

    Article  Google Scholar 

  3. Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol. 2007;80(2):S160–7.

    Article  Google Scholar 

  4. Brown RK, Bohnen NI, Wong KK, Minoshima S, Frey KA. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics. 2014;34(3):684–701.

    Article  Google Scholar 

  5. Broski SM, Hunt CH, Johnson GB, Morreale RF, Lowe VJ, Peller PJ. Structural and functional imaging in parkinsonian syndromes. Radiographics. 2014;34:1273–92.

    Article  Google Scholar 

  6. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

    Article  CAS  Google Scholar 

  7. Oikonen V. "Standardized uptake value (SUV)". Turku PET Centre, University of Turku. PET Modeling, 2009-07-22.

    Google Scholar 

  8. Choo ILH, Youn JC, et al. Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Dis Assoc Disord. 2007;21(2):77–84.

    Article  Google Scholar 

  9. Sole D. Clerici F, Chiti a, et al. "individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study.". Eur J Nucl Med Mol Imaging. 2008;35(7):1357.

    Article  Google Scholar 

  10. Jagust RB, Mungas D, et al. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871–7.

    Article  CAS  Google Scholar 

  11. Diehl-Schmid J, Grimmer T, Drzezga A, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging. 2007;28(1):42–50.

    Article  CAS  Google Scholar 

  12. Jeong Y, Cho SS, Park JM, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med. 2005;46(2):233–9.

    PubMed  Google Scholar 

  13. Kanda IK, Uemura T, et al. Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging. 2008;35(12):2227–34.

    Article  Google Scholar 

  14. Franceschi AM, Naser-Tavakolian K, Clifton M, Ahmed O, Stoffers K, Bangiyev L, Cruciata G, Clouston S, Franceschi D. Hybrid imaging in dementia: A semi-quantitative (18F)-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging approach in clinical practice. World J Nucl Med. 2020;20(1):23–31. https://doi.org/10.4103/wjnm.WJNM_27_20. PMID: 33850486; PMCID: PMC8034794.

  15. Luo W, Airriess C, Albright J. The NeuroQuant normative database: comparing individual brain structures. CorTechs Labs. 2015;

    Google Scholar 

  16. Pantano P, Baron JC, et al. Crossed cerebellar Diaschisis. Brain. 1986;109:677–94.

    Article  Google Scholar 

  17. Akiyama H, Harrop R, McGeer PL, Peppard R, McGeer EG. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease. Neurology. 1989;39(4):541–8.

    Article  CAS  Google Scholar 

  18. Sui R, Zhang L. Cerebellar dysfunction may play an important role in vascular dementia. Med Hypotheses. 2012;78(1):162–5. https://doi.org/10.1016/j.mehy.2011.10.017. Epub 2011 Nov 8

    Article  PubMed  Google Scholar 

  19. Al-Faham Z, Zein RK, Wong CY. 18F-FDG PET assessment of Lewy body dementia with cerebellar diaschisis. J Nucl Med Technol. 2014;42(4):306–7. https://doi.org/10.2967/jnmt.114.139295. Epub 2014 Sep 4

    Article  PubMed  Google Scholar 

  20. Franceschi AM, Clifton M, Naser-Tavakolian K, Cruciata G, Ahmed O, Bangiyev L, Franceschi D. Visual detection of crossed cerebellar Diaschisis in dementia patients utilizing [F18]-FDG PET/MRI. AJR – Am J Roentgenol. (in press)

    Google Scholar 

  21. Klein AP, et al. Non motor functions of the cerebellum: an introduction AJNR. Funct Vignettes Sect. 2016;37:1005–9.

    CAS  Google Scholar 

  22. Gluhbegvoic N. General form and topography of the human cerebellar nuclei: a micro dissectional study. Neurosci Lett. (Suppl. 18):382.

    Google Scholar 

  23. Babinski J. Expose des Travaux Sciientifiques: syndrome Ce’ cerebelleux. Paris: Masson; 1913.

    Google Scholar 

  24. Fine EJ, Ionita CC, Lohr L. The history of the development of the cerebellar examination. Semin Neurol. 2002;22(4):375–84.

    Article  Google Scholar 

  25. Leiner HC. Solving the mystery of the human cerebellum. Neuropsychol Rev. 2010;20:229–35.

    Article  Google Scholar 

  26. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    Article  CAS  Google Scholar 

  27. Leiner HC, Leiner AL, Dow RS. Cerebro-cerebellar learning loops in apes and humans. Ital J Neurol Sci. 1987;8:425–36.

    Article  CAS  Google Scholar 

  28. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–28.

    Article  CAS  Google Scholar 

  29. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the cerebellum. Trends Neurosci. 1993;16:444–7.

    Article  CAS  Google Scholar 

  30. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103:998–1008.

    Article  CAS  Google Scholar 

  31. Leiner HC, Leiner AL. How fibers subserve computing capabilities: similatities between brains and machines. Int Rev Neurobiol. 1997;41:535–53.

    Article  CAS  Google Scholar 

  32. Dow RS. Cerebellar cognition. Neurology. 1995;45:1785–6.

    Article  CAS  Google Scholar 

  33. Barton RA, Chris V. Rapid evolution of the cerebellum in humans and other great apes. Curr Biol. 2014;24(20):2440–4. https://doi.org/10.1016/j.cub/2014.08.056.

    Article  CAS  PubMed  Google Scholar 

  34. Mello AM, Gabriele JD, Derek EN. Evidence of hierarchical cognitive control in human cerebellum. Current Biol. 2020;30(10):1881–92. https://doi.org/10.1016/j.cub.2020.03.028.

    Article  CAS  Google Scholar 

  35. Smithsonian, National Museum of Natural History, Washington D.C. Human characteristics: Brain. Humanorigins.si.edu

  36. Strick PL, et al. (University of Pittsburgh). Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  Google Scholar 

  37. Holmes G. Symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:401–534.

    Article  Google Scholar 

  38. Brodal P. The corticopontine projection in the rhesus monkey: origin and principles. Brain. 1978;101:251–83.

    Article  CAS  Google Scholar 

  39. Raymond J, et al. The cerebellum: a neuronal imaging machine? Sci New Series. 1996;272(5265):1126–31.

    CAS  Google Scholar 

  40. Brostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Science. 2013;17:241–54.

    Article  Google Scholar 

  41. Evarts EV, Thach WT. (NIH). Motor mechanism of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.

    Article  CAS  Google Scholar 

  42. SD’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: form circuit operations to cognition. Front Neural Circuits. 2012;6:116.

    Google Scholar 

  43. Marien P, et al. Cerebellum and apraxia. Cerebellum. 2015;14(1):39–42.

    Article  Google Scholar 

  44. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar cognitive affective syndrome. J Neuorpsychiatry Clin Neurosci. 2004;16:367–78.

    Article  Google Scholar 

  45. Schmahmann JD. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  Google Scholar 

  46. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  Google Scholar 

  47. Mark L, et al. (Medical College of Wisconsin, Dept. Neuroradiology). ASNR 2020 lecture, essentials of neuroradiology, functional neuroanatomy.

    Google Scholar 

  48. Murayama N, Ota K, Kasanuki K, Kondo D, Fujishiro H, Fukase Y, Tagaya H, Sato K, Iseki E. Cognitive dysfunction in patients with very mild Alzheimer's disease and amnestic mild cognitive impairment showing hemispheric asymmetries of hypometabolism on 18F-FDG PET. Int J Geriatr Psychiatry. 2016;31(1):41–8. https://doi.org/10.1002/gps.4287. Epub 2015 Mar 27

    Article  PubMed  Google Scholar 

  49. Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, Na DL, Kim SE. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med. 2005;46(2):233–9.

    PubMed  Google Scholar 

  50. Whitwell JL, Xu J, Mandrekar J, Boeve BF, Knopman DS, Parisi JE, Senjem ML, Dickson DW, Petersen RC, Rademakers R, Jack CR Jr, Josephs KA. Frontal asymmetry in behavioral variant frontotemporal dementia: clinicoimaging and pathogenetic correlates. Neurobiol Aging. 2013;34(2):636–9. https://doi.org/10.1016/j.neurobiolaging.2012.03.009. Epub 2012 Apr 11

    Article  PubMed  Google Scholar 

  51. Thompson SA, Patterson K, Hodges JR. Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology. 2003;61(9):1196–203.

    Article  Google Scholar 

  52. Rogalski E, Cobia D, Martersteck A, Rademaker A, Wieneke C, Weintraub S, Mesulam MM. Asymmetry of cortical decline in subtypes of primary progressive aphasia. Neurology. 2014;83(13):1184–91. https://doi.org/10.1212/WNL.0000000000000824. Epub 2014 Aug 27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Clifton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clifton, M., Naser-Tavakolian, K., Franceschi, A.M. (2022). Crossed Cerebellar Diaschisis. In: Franceschi, A.M., Franceschi, D. (eds) Hybrid PET/MR Neuroimaging. Springer, Cham. https://doi.org/10.1007/978-3-030-82367-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82367-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82366-5

  • Online ISBN: 978-3-030-82367-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics