Skip to main content

Working as a Health AI Specialist

  • Chapter
  • First Online:
The Health Information Workforce

Abstract

Artificial intelligence and the sub-field of machine learning offer the potential to deliver data-driven healthcare solutions that can improve patient care and increase efficiency in healthcare services. Despite this, the methods and models are new and complicated, to those who work in healthcare. This chapter explores the implementation of such solutions in healthcare settings, through five real-world case studies of experts applying this technology in a variety of clinical settings and at different stages of implementation. These cases highlight the challenges and opportunities posed by implementing artificial intelligence and data-driven solutions, and the lessons learnt from colleagues pioneering its adoption in the healthcare sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agile Alliance. What is Agile software development? Agil. 101. What is Agil. 2020. https://www.agilealliance.org/agile101/. Accessed 25 Jan 2021.

  • Aimoni C, Ciorba A, Cerritelli L, Ceruti S, Skarżyński PH, Hatzopoulos S. Enlarged vestibular aqueduct: audiological and genetical features in children and adolescents. Int J Pediatr Otorhinolaryngol. 2017;101:254–8.

    Article  CAS  Google Scholar 

  • Alfaras M, Soriano MC, Ortín S. A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front Phys. 2019;7:1–11.

    Article  Google Scholar 

  • Belenky W, Madgy D, Leider J, Becker C, Hotaling A. The enlarged vestibular aqueduct syndrome (EVA syndrome). Ear Nose Throat J. 1993;72:746–51.

    Article  CAS  Google Scholar 

  • Bodenreider O, Cornet R, Vreeman DJ. Recent developments in clinical terminologies – SNOMED CT, LOINC, and RxNorm. Yearb Med Inform. 2018;27:129–39.

    Article  Google Scholar 

  • Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg. 2009;108(3):795–804.

    Article  CAS  Google Scholar 

  • Dauphinee WD. Building a core competency assessment program for all stakeholders: the design and building of sailing ships can inform core competency frameworks. Adv Heal Sci Educ. 2020;25:189–93.

    Article  Google Scholar 

  • Department of Health and Social Care. GOV.UK. In: Code conduct data-driven health care technology. 2020. https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology. Accessed 15 Sep 2020.

  • Eleftheriou I, Embury S, Brass A. Data journey modelling: predicting risk for IT developments. In: Pract. Enterp. Model. Skövde, Sweden: Springer Link; 2016a. p. 72–86.

    Google Scholar 

  • Eleftheriou I, Embury SM, Moden R, Dobinson P, Brass A. Data journeys: identifying social and technical barriers to data movement in large, complex organisations. Tech Report, Sch Comput Sci. 2016b.

    Google Scholar 

  • Eleftheriou I, Embury SM, Moden R, Dobinson P, Brass A. Data journeys: identifying social and technical barriers to data movement in large, complex organisations. J Biomed Inform. 2018;78:102–22.

    Article  Google Scholar 

  • Enders C. Applied missing data analysis. New York: Guildford Publications; 2010.

    Google Scholar 

  • European Commission. Shaping Europe’s digital future. In: Ethics Guide. Trust. AI. 2020. https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai. Accessed 16 Sep 2020.

  • Feather A, Randall D, Waterhouse M. Kumar and Clark’s Clinical Medicine. 10th ed. Elsevier; 2020.

    Google Scholar 

  • Getting It Right First Time. Getting it right first time. In: Anaesth. Perioper. Med. 2020. https://gettingitrightfirsttime.co.uk/medical-specialties/anaesthesia-perioperative-medicine/#. Accessed 22 Sep 2020.

  • Gonnelli S, Caffarelli C, Maggi S, et al. itail.pdf. Osteoporos Int. 2013;24:1151–9.

    Article  CAS  Google Scholar 

  • Grist JT, Withey S, MacPherson L, et al. Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: a multi-site study. NeuroImage Clin. 2020;25:102172.

    Article  Google Scholar 

  • Hildebrand MS, DeLuca AP, Taylor KR, Hoskinson DP, Hur IA, Tack D, McMordie SJ, Huygen PLM, Casavant TL, Smith RJH. A contemporary review of Audio Gene audio profiling: a machine-based candidate gene prediction tool for autosomal dominant nonsyndromic hearing loss. Laryngoscope. 2009;119:2211–5.

    Article  CAS  Google Scholar 

  • Howlett DC, Drinkwater KJ, Mahmood N, Illes J, Griffin J, Javaid K. Radiology reporting of osteoporotic vertebral fragility fractures on computed tomography studies: results of a UK national audit. Eur Radiol. 2020;30:4713–23.

    Article  Google Scholar 

  • Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, Moody B, Szolovits P, Anthony Celi L, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.

    Article  CAS  Google Scholar 

  • Köse T, Özgür S, Coşgun E, Keskinoğlu A, Keskinoğlu P. Effect of missing data imputation on deep learning prediction performance for vesicoureteral reflux and recurrent urinary tract infection clinical study. Biomed Res Int. 2020:1895076.

    Google Scholar 

  • Lindner C, Bromiley PA, Ionita MC, Cootes TF. Robust and accurate shape model matching using random forest regression-voting. IEEE Trans Pattern Anal Mach Intell. 2015;37:1862–74.

    Article  Google Scholar 

  • McLellan AR, Gallacher SJ, Fraser M, McQuillian C. The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int. 2003;14:1028–34.

    Article  Google Scholar 

  • National Institute for Health and Care Excellence. Guidance on the use of trastuzumab for the treatment of advanced breast cancer. 2002;24.

    Google Scholar 

  • NHS Health Education England. Topol digital fellowships. In: About Topol Digit. Fellowsh. Program. 2019. https://topol.hee.nhs.uk/digital-fellowships/. Accessed 14 Sep 2020.

  • Rajak R, Patel K, Lawless R, Staal J, Holmes A. Incidental capture of vertebral fragility fractures (VFFs) from CT imaging in a large district general hospital in London. Rheumatology. 2019;58:kez108.073.

    Article  Google Scholar 

  • Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg. 2010;143(3):331–6.

    Article  Google Scholar 

  • Rowley A, Turpin R, Walton S. The emergence of artificial intelligence and machine learning algorithms in healthcare: recommendations to support governance and regulation. BSI Gr. 2019:1–18.

    Google Scholar 

  • Saeed H, Kenth J, Black G, Saeed S, Stivaros S, Bruce I. Hearing loss in Enlarged vestibular aqueduct: a prognostic factor systematic review of the literature. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc [and] Eur Acad Otol Neurotol. 2020.

    Google Scholar 

  • Schunke AC, Bromiley PA, Tautz D, Thacker NA. TINA manual landmarking tool: software for the precise digitization of 3D landmarks. 2012.

    Google Scholar 

  • Shih RY, Koeller KK. Embryonal tumors of the central nervous system: from the radiologic pathology archives. RadioGraphics. 2018;38:525–41.

    Article  Google Scholar 

  • Taylor KR, DeLuca AP, Shearer AE, et al. AudioGene: Predicting hearing loss genotypes from phenotypes to guide genetic screening. Hum Mutat. 2013;34:539–45.

    CAS  PubMed  Google Scholar 

  • The University of Manchester. UoMqVXL: University of Manchester’s Qt libraries for VXL. 2020. http://uomqvxl.sourceforge.net/. Accessed 16 Sep 2020.

  • Tiffin PA, Paton LW. Rise of the machines? Machine learning approaches and mental health: opportunities and challenges. Br J Psychiatry. 2018;213:509–10.

    Article  Google Scholar 

  • Topol E. The Topol review: preparing the healthcare workforce to deliver the digital future. London: 2019a.

    Google Scholar 

  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019b;25:44–56.

    Article  CAS  Google Scholar 

  • US FDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML) based software as a medical device (SaMD). 2019.

    Google Scholar 

  • Villanueva-Meyer JE, Mabray MC, Cha S. Current clinical brain tumor imaging. Neurosurgery. 2017;81:397–415.

    Article  Google Scholar 

  • Wellcome Trust Ltd. Understanding patient data. In: Putt. people Cent. Decis. about patient data. 2020. https://understandingpatientdata.org.uk/. Accessed 16 Sep 2020.

  • Wernick M, Yang Y, Brankov J, Yourganov G, Strother S. Machine learning in medical imaging. IEEE Signal Process Mag. 2010;27:25–38.

    Article  Google Scholar 

  • Wilson G, Aruliah DA, Brown CT, et al. Best practices for scientific computing. PLoS Biol. 2014;12:1–7.

    Article  Google Scholar 

  • Wong SH, Al-Hasani H, Alam Z, Alam A. Artificial intelligence in radiology: how will we be affected? Eur Radiol. 2019;29:141–3.

    Article  CAS  Google Scholar 

  • Zeng X, Yu G, Lu Y, Tan L, Wu X, Shi S, Duan H, Shu Q, Li H. PIC, a paediatric-specific intensive care database. Sci Data. 2020;7:14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela C. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davies, A.C. et al. (2021). Working as a Health AI Specialist. In: Butler-Henderson, K., Day, K., Gray, K. (eds) The Health Information Workforce . Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-81850-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81850-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81849-4

  • Online ISBN: 978-3-030-81850-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics