Skip to main content

Artificial Intelligence in Healthcare: Foundations, Opportunities and Challenges

  • Chapter
  • First Online:
Digitalization in Healthcare

Part of the book series: Future of Business and Finance ((FBF))

Abstract

Artificial intelligence (AI) is the next step of the industrial revolution. It aims to automate human or manual decision making. AI has started to disrupt nearly every industry, including healthcare. However, we have just started to scratch the surface as there are many more AI opportunities for healthcare that will allow to improve patient care while cutting waiting times and costs. In this chapter, we provide an introduction to AI and its applications in healthcare. We then examine possible future opportunities of how AI could skyrocket healthcare. Next, we look at the challenges in and around AI research, the impact of AI on our society, fears, education and the need for data literacy for everyone, including physicians and patients. We also discuss how these challenges could be solved. This chapter also serves as a foundation for other book chapters that present further AI applications in healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Historically, the term “data mining” was often used. However, that term usually describes a somewhat larger discipline. During the last decade, that term has lost relevance and tends to be used less frequently nowadays. Instead, the term “data science” has become more popular in recent years. That field aims to apply machine learning models to solving real-world problems.

  2. 2.

    http://www.coursera.org.

  3. 3.

    http://www.udacity.com.

  4. 4.

    http://www.edx.org.

  5. 5.

    A more general definition for multi-valued attributes is \(P(A\vert B) = \frac {P(B\vert A)P(A)}{P(B)} = \frac {P(B\vert A)P(A)}{\sum _{a\in A}{P(B\vert a)P(a)}}\).

  6. 6.

    Note that in real-world medical cases, there is usually more evidence, such as pain or pre-existing diseases, that contributes to a physician’s decision making.

References

  • Akenine, D. (2020). Quantum technologies. In Innovative technologies for market leadership (pp. 11–19). Berlin: Springer.

    Chapter  Google Scholar 

  • Alić, B., Gurbeta, L., & Badnjević, A. (2017). Machine learning techniques for classification of diabetes and cardiovascular diseases. In 2017 6th Mediterranean Conference on Embedded Computing (MECO) (pp. 1–4).

    Google Scholar 

  • Banko, M., & Brill, E. (2001). Scaling to very very large corpora for natural language disambiguation. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (pp. 26–33).

    Google Scholar 

  • Bennett, C. C., Doub, T. W., & Selove, R. (2012). EHRs connect research and practice: Where predictive modeling, artificial intelligence, and clinical decision support intersect. Health Policy and Technology, 1(2), 105–114.

    Article  Google Scholar 

  • Blease, C., Kaptchuk, T. J., Bernstein, M. H., Mandl, K. D., Halamka, J. D., & DesRoches, C. M. (2019). Artificial intelligence and the future of primary care: Exploratory qualitative study of UK general practitioners’ views. Journal of Medical Internet Research, 21(3), e12802.

    Article  Google Scholar 

  • Bokharaeian, B., Diaz, A., & Chitsaz, H. (2016). Enhancing extraction of drug-drug interaction from literature using neutral candidates, negation, and clause dependency. PLoS One, 11(10), e0163480.

    Article  Google Scholar 

  • Borchert, A.-L., & Schnackenburg, A. (2020). Künstliche intelligenz soll werders verletzungspech beenden. http://www.butenunbinnen.de/sport/werder-verletzungen-ki-digitale-spielerpaesse-100.html. Online Accessed August 1, 2020.

  • Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017). Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2(3), 194–220.

    Article  Google Scholar 

  • Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020). Language models are few-shot learners. Preprint arXiv:2005.14165.

    Google Scholar 

  • Calude, C. S., & Longo, G. (2017). The deluge of spurious correlations in big data. Foundations of Science, 22(3), 595–612.

    Article  Google Scholar 

  • Chin, L., Andersen, J. N., & Futreal, P. A. (2011). Cancer genomics: From discovery science to personalized medicine. Nature Medicine, 17(3), 297.

    Article  Google Scholar 

  • Chockley, K., & Emanuel, E. (2016). The end of radiology? Three threats to the future practice of radiology. Journal of the American College of Radiology, 13(12), 1415–1420.

    Article  Google Scholar 

  • Christopoulou, F., Tran, T. T., Sahu, S. K., Miwa, M., & Ananiadou, S. (2020). Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. Journal of the American Medical Informatics Association, 27(1), 39–46.

    Article  Google Scholar 

  • Cirillo, D., & Valencia, A. (2019). Big data analytics for personalized medicine. Current Opinion in Biotechnology, 58, 161–167.

    Article  Google Scholar 

  • Clancey, W. J., & Shortliffe, E. H. (1984). Readings in medical artificial intelligence: The first decade. Boston: Addison-Wesley Longman.

    Google Scholar 

  • Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94.

    Article  Google Scholar 

  • Dougherty, G. (2009). Digital image processing for medical applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • European Commission (2012). Proposal for a regulation of the European parliament and of the council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (general data protection regulation). European Commission.

    Google Scholar 

  • Fulmer, R., Joerin, A., Gentile, B., Lakerink, L., & Rauws, M. (2018). Using psychological artificial intelligence (Tess) to relieve symptoms of depression and anxiety: randomized controlled trial. JMIR Mental Health, 5(4), e64.

    Article  Google Scholar 

  • García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75–88.

    Article  Google Scholar 

  • Gebreyes, K., Wainstein, J., Gerhardt, W., & Korenda, L. (2020). Is the hospital of the future here today? Transforming the hospital business model. http://www2.deloitte.com/us/en/insights/industry/health-care/hospital-business-models-of-the-future.html. Online Accessed August 1, 2020.

  • Gigerenzer, G. (2015). Calculated risks: How to know when numbers deceive you. New York; Simon and Schuster.

    Google Scholar 

  • Glauner, P. (2020a). Teaching: Innovation management for artificial intelligence. http://www.glauner.info/teaching. Online Accessed August 1, 2020.

  • Glauner, P. (2020b). Unlocking the power of artificial intelligence for your business. In Innovative technologies for market leadership (pp. 45–59). Berlin: Springer.

    Chapter  Google Scholar 

  • Glauner, P., Valtchev, P., & State, R. (2018). Impact of biases in big data. In Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018).

    Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (vol. 1). Cambridge: MIT Press Cambridge.

    Google Scholar 

  • Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H.-C., et al. (2019). Artificial intelligence for mental health and mental illnesses: An overview. Current Psychiatry Reports, 21(11), 116.

    Article  Google Scholar 

  • Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.

    Article  Google Scholar 

  • Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

    Article  Google Scholar 

  • Iansiti, M., & Lakhani, K. R. (2020). Competing in the age of AI: Strategy and leadership when algorithms and networks run the world. Brighton: Harvard Business Press.

    Google Scholar 

  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–243.

    Article  Google Scholar 

  • Koomey, J., Berard, S., Sanchez, M., & Wong, H. (2010). Implications of historical trends in the electrical efficiency of computing. IEEE Annals of the History of Computing, 33(3), 46–54.

    Article  Google Scholar 

  • Larrucea, X., Moffie, M., Asaf, S., & Santamaria, I. (2020). Towards a GDPR compliant way to secure European cross border healthcare industry 4.0. Computer Standards & Interfaces, 69, 103408.

    Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

    Article  Google Scholar 

  • Lederberg, J. (1963). An instrumentation crisis in biology. The Joshua Lederberg Papers, Profiles in Science, National Library of Medicine, profiles. nlm. nih. gov/BB/G/C/V/S.

    Google Scholar 

  • Lee, K.-F. (2018). AI superpowers: China, Silicon Valley, and the new world order. Boston: Houghton Mifflin Harcourt.

    Google Scholar 

  • Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., et al. (2020). Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology, 296, E65–E71

    Article  Google Scholar 

  • Liyanage, H., Liaw, S.-T., Jonnagaddala, J., Schreiber, R., Kuziemsky, C., Terry, A. L., et al. (2019). Artificial intelligence in primary health care: Perceptions, issues, and challenges: Primary health care informatics working group contribution to the yearbook of medical informatics 2019. Yearbook of Medical Informatics, 28(1), 41.

    Article  Google Scholar 

  • Marcus, G. (2018). Deep learning: A critical appraisal. Preprint arXiv:1801.00631.

    Google Scholar 

  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, 27(4), 12.

    Google Scholar 

  • McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., et al. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94.

    Article  Google Scholar 

  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 3111–3119.

    Google Scholar 

  • Miller, R. A. (1994). Medical diagnostic decision support systems—past, present, and future: A threaded bibliography and brief commentary. Journal of the American Medical Informatics Association, 1(1), 8–27.

    Article  Google Scholar 

  • Milne, G. (2020). Smoke & Mirrors: How hype obscures the future and how to see past it. London: Robinson.

    Google Scholar 

  • Ng, A., & Widom, J. (2014). Origins of the modern MOOC. http://www.cs.stanford.edu/people/ang/papers/mooc14-OriginsOfModern-MOOC.pdf. Online Accessed August 1, 2020.

  • Nimdzi Insights (2019). Artificial intelligence: Localization winners, losers, heroes, spectators. http://www.nimdzi.com/wp-content/uploads/2019/06/Nimdzi-AI-whitepaper.pdf. Online Accessed August 1, 2020.

  • Pacis, D. M. M., Subido, E. D. C., & Bugtai, N. T. (2018). Trends in telemedicine utilizing artificial intelligence. AIP Conference Proceedings, 1933(1), 040009.

    Article  Google Scholar 

  • Patcas, R., Timofte, R., Volokitin, A., Agustsson, E., Eliades, T., Eichenberger, M., et al. (2019). Facial attractiveness of cleft patients: A direct comparison between artificial-intelligence-based scoring and conventional rater groups. European Journal of Orthodontics, 41(4), 428–433.

    Article  Google Scholar 

  • Przyrowski, C. (2018). The GDPR and its effects on the management of private health information at different healthcare providers: A case study. B.S. Thesis, University of Twente.

    Google Scholar 

  • Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 112(1), 22–28.

    Article  Google Scholar 

  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144).

    Google Scholar 

  • Savino, J. A., & Latifi, R. (2019). The hospital of the future. The Modern Hospital: Patients Centered, Disease Based, Research Oriented, Technology Driven, 4, 375.

    Article  Google Scholar 

  • Schölkopf, B. (2019). Causality for machine learning. Preprint arXiv:1911.10500.

    Google Scholar 

  • Shanahan, M. (2015). The technological singularity. Cambridge: MIT Press.

    Book  Google Scholar 

  • Shortliffe, E. H., & Buchanan, B. G. (1975). A model of inexact reasoning in medicine. Mathematical Biosciences, 23(3–4), 351–379.

    Article  Google Scholar 

  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484.

    Article  Google Scholar 

  • Spicer, J., & Sanborn, A. N. (2019). What does the mind learn? A comparison of human and machine learning representations. Current Opinion in Neurobiology, 55, 97–102.

    Article  Google Scholar 

  • Strickland, E. (2019). How IBM Watson overpromised and underdelivered on AI health care. https://spectrum.ieee.org/biomedical/diagnostics/how-ibm-watson-overpromised-and-underdelivered-on-ai-health-care. Online Accessed August 1, 2020.

  • Thomas, R. (2019). The AI ladder: Demystifying AI challenges. http://www.ibm.com/downloads/cas/O1VADKY2. Online Accessed August 1, 2020.

  • Tomar, D., & Agarwal, S. (2013). A survey on data mining approaches for healthcare. International Journal of Bio-Science and Bio-Technology, 5(5), 241–266.

    Article  Google Scholar 

  • Trestioreanu, L., Glauner, P., Meira, J. A., Gindt, M., State, R. (2020). Using augmented reality and machine learning in radiology. In Innovative technologies for market leadership (pp. 89–106). Berlin: Springer.

    Chapter  Google Scholar 

  • Vigen, T. (2015). Spurious correlations. http://www.tylervigen.com/spurious-correlations. Online Accessed August 1, 2020.

  • Williams, C. (2015). AI guru Ng: Fearing a rise of killer robots is like worrying about overpopulation on mars. http://www.theregister.co.uk/2015/03/19/andrew_ng_baidu_ai/. Online Accessed August 1, 2018.

  • Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341–1390.

    Article  Google Scholar 

  • Yu, K.-H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731.

    Article  Google Scholar 

  • Yueh, J. (2020). GDPR will make big tech even bigger. http://www.forbes.com/sites/forbestechcouncil/2018/06/26/gdpr-will-make-big-tech-even-bigger. Online Accessed August 1, 2020.

  • Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020). A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 8, 58443–58469.

    Article  Google Scholar 

  • Zhou, D., Miao, L., & He, Y. (2018). Position-aware deep multi-task learning for drug–drug interaction extraction. Artificial Intelligence in Medicine, 87, 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Glauner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glauner, P. (2021). Artificial Intelligence in Healthcare: Foundations, Opportunities and Challenges. In: Glauner, P., Plugmann, P., Lerzynski, G. (eds) Digitalization in Healthcare. Future of Business and Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-65896-0_1

Download citation

Publish with us

Policies and ethics