Skip to main content

Certified Evaluations of Hölder Continuous Functions at Roots of Polynomials

  • Conference paper
  • First Online:
Maple in Mathematics Education and Research (MC 2020)

Abstract

Various methods can obtain certified estimates for roots of polynomials. Many applications in science and engineering additionally utilize the value of functions evaluated at roots. For example, critical values are obtained by evaluating an objective function at critical points. For analytic evaluation functions, Newton’s method naturally applies to yield certified estimates. These estimates no longer apply, however, for Hölder continuous functions, which are a generalization of Lipschitz continuous functions where continuous derivatives need not exist. This work develops and analyzes an alternative approach for certified estimates of evaluating locally Hölder continuous functions at roots of polynomials. An implementation of the method in Maple demonstrates efficacy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symbolic Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  Google Scholar 

  2. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration. J. Symbolic Comput. 86, 51–96 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boulier, F., Chen, C., Lemaire, F., Maza, M.M.: Real root isolation of regular chains. In: The Joint Conference of ASCM 2009 and MACIS 2009, COE Lect. Note, vol. 22, pp. 15–29. Kyushu Univ. Fac. Math, Fukuoka (2009)

    Google Scholar 

  4. Gargantini, I., Henrici, P.: Circular arithmetic and the determination of polynomial zeros. Numer. Math. 18, 305–320 (1971/72)

    Google Scholar 

  5. Hardy, G.H.: Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17(3), 301–325 (1916)

    MathSciNet  MATH  Google Scholar 

  6. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281–1292 (2017)

    Article  MathSciNet  Google Scholar 

  7. Kantorovich, L.V.: On Newton’s method for functional equations. Doklady Akad. Nauk SSSR (N.S.) 59, 1237–1240 (1948)

    Google Scholar 

  8. Kearfott, R.B.: Rigorous global search: continuous problems, Nonconvex Optimization and its Applications, vol. 13. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  9. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials \(\dots \) and now for real! In: Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, pp. 303–310. ACM, New York (2016)

    Google Scholar 

  10. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing (Arch. Elektron. Rechnen) 4, 187–201 (1969)

    Google Scholar 

  11. Maple 2020 Program Committee Chairs: Private Communication

    Google Scholar 

  12. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14(4), 611–615 (1977)

    Article  MathSciNet  Google Scholar 

  13. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction Interval Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2009)

    Book  Google Scholar 

  14. Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 393–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_26

    Chapter  Google Scholar 

  15. Rioboo, R.: Real algebraic closure of an ordered field: implementation in axiom. In: Papers from the International Symposium on Symbolic and Algebraic Computation. ISSAC 1992, pp. 206–215, New York, NY, USA. Association for Computing Machinery (1992)

    Google Scholar 

  16. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Engrg. Comm. Comput. 9(5), 433–461 (1999)

    Article  MathSciNet  Google Scholar 

  17. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial’s real roots. J. Comput. Appl. Math. 162(1), 33–50 (2003)

    Article  MathSciNet  Google Scholar 

  18. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MathSciNet  Google Scholar 

  19. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (Laramie, Wyo., 1985), pp. 185–196. Springer, New York (1986). Doi: https://doi.org/10.1007/978-1-4612-4984-9_13

  20. Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic systems. J. Symbolic Comput. 34(5), 461–477 (2002)

    Article  MathSciNet  Google Scholar 

  21. Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput. Math. Appl. 52(6–7), 853–860 (2006)

    Article  MathSciNet  Google Scholar 

  22. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a class of inequality-type theorems. Sci. China Ser. F 44(1), 33–49 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

JDH was supported in part by NSF CCF 1812746. CDS was supported in part by Simons Foundation grant 360486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Hauenstein .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1. Suppose that \(C \ne 0\) such that \(q(x) = C\cdot \prod _{i=1}^d (x - \alpha _i)\). Thus, we know \(q'(x) = C\cdot \sum _{i=1}^d \prod _{j \ne i} (x - \alpha _j)\) and \(q'(\alpha _i) = C\cdot \prod _{j \ne i} (\alpha _i - \alpha _j) \ne 0\) for all i. Let \(p_i(x) = q(x)/(x - \alpha _i) = C\cdot \prod _{j \ne i} (x - \alpha _j)\). Hence, \(p_i(\alpha _i) = q'(\alpha _i)\) and \(p_i(\alpha _j) = 0\) if \(j \ne i\). The polynomials \(p_1,\dots ,p_d\) are linearly independent since, if \(\sum _{i=1}^d a_i p_i(x) = 0\), then evaluating at \(x = \alpha _j\) yields \(a_j \cdot q'(\alpha _j) = 0\) which implies \(a_j = 0\). Thus, they must form a basis for the d-dimensional vector space of polynomials of degree at most \(d-1\).

Since p(x) has degree at most \(d-1\), there are unique constants \(a_i\) so that \(\sum _{i=1}^d a_i p_i(x) = p(x)\). Evaluating at \(x = \alpha _j\) yields \(a_j q'(\alpha _j) = p(\alpha _j)\) so that \(a_j = p(\alpha _j)/q'(\alpha _j)\). Therefore, for all \(x\in \mathbb {C}\setminus \{\alpha _1,\dots ,\alpha _d\}\),

$$\begin{aligned} {\displaystyle \frac{p(x)}{q(x)} = \sum _{i=1}^d \frac{p(\alpha _i)}{q'(\alpha _i)} \frac{1}{x-\alpha _i} = \sum _{i=1}^d - \frac{p(\alpha _i)}{\alpha _i q'(\alpha _i)} \frac{1}{1 -x/ \alpha _i}.}\end{aligned}$$
(9)

The terms in (9) have a Taylor series expansion centered at the origin that converge for all x with \(|x| < \min \{|\alpha _1|, \ldots , |\alpha _d|\}\) such that, as (8) claims,

$${\displaystyle \frac{p(x)}{q(x)} = \sum _{i=1}^d - \frac{p(\alpha _i)}{\alpha _i q'(\alpha _i)} \sum _{n=0}^\infty \alpha _i^{-n} x^n = \sum _{n=0}^\infty \left( -\sum _{i=1}^d \frac{p(\alpha _i)}{\alpha _i q'(\alpha _i)} \alpha _i^{-n} \right) x^n.} $$

Proof of Theorem 2. Clearly, one has \(r_n = \frac{d^n}{dz^n}\left. \frac{p(z)}{q(z)}\right| _{z=0}\). Since p(x) and q(x) have real coefficients, \(r_n\) is real for all \(n \ge 0\). For \(i\in \{1,\dots ,d\}\), let \(t^i_n = C_i \alpha _i^{-n}\) so that (8) reduces to \(r_n = \sum _{i=1}^d t^i_n\). Moreover, \(\alpha _1\in \mathbb {R}\setminus \{0\}\) implies \(C_1\in \mathbb {R}\setminus \{0\}\). Clearly, if \(\alpha _1<0\), then \(t^1_n\) is alternating in sign.

Consider the case when \(\alpha _1>0\). First, note that \(t^1_n\) and \(C_1\) always have the same sign. The following derives a threshold N such that \(|r_n - t^1_n| < |t^1_n|\) for all \(n > N\). Given such an N, \(r_n\) will have the same sign as \(t^1_n\) and \(C_1\) for \(n > N\) and the theorem will be proved. To that end, since \((r_n - t^1_n)/t^1_n = \sum _{i=2}^d t^i_n/t^1_n\),

$${\displaystyle \frac{|r_n - t^1_n|}{|t^1_n|} \le \sum _{i=2}^d \frac{|C_i|}{|C_1|}\frac{|\alpha _1|^n}{|\alpha _i|^n} \le K \left( \frac{m}{M}\right) ^n}$$

for all n. Since, by assumption, \(m/M < 1\), there is a threshold N so that \(K (m/M)^n < 1\) and \(|r_n - t^1_n| < |t^1_n|\) for all \(n > N\). We may take N so that \(K(m/M)^N=1\) or \(N = \log (K)/\log (M/m)\) as claimed.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Edwards, P.B., Hauenstein, J.D., Smyth, C.D. (2021). Certified Evaluations of Hölder Continuous Functions at Roots of Polynomials. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81698-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81697-1

  • Online ISBN: 978-3-030-81698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics