Skip to main content

Ophthalmology of Pinnipedimorpha: Seals, Sea Lions, and Walruses

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology
  • 1351 Accesses

Abstract

Pinnipeds are a clade of semi-aquatic carnivorous fin-footed marine mammals that descended from the superfamily Arctoidea within the suborder Canifornia. This is the same suborder that gave rise to bears (Ursidae) and weasels (mustilidae) (Arnason et al. 2006; Delisle and Strobeck 2005). The Mustilidae are thought to be the most closely related species to pinnipeds.(Arnason and Widegren 1986) Approximately 33 million years ago, the Otariidae (eared seals) and Obinidae (walruses) split from the Phocidae (true seals). A later split occurred, separating Otariidae and Obinidae.(Arnason et al. 2006) The transition of pinnipeds from land to water evolved simultaneously with their ability to see in air and underwater equally well.(Hanke et al. 2009a; Schusterman 1981; Schusterman and Balliet 2006) Many anatomical and physiological adaptations occurred to allow pinnipeds these amazing visual abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agency, U. S. E. P. 2016. Uv Index

    Google Scholar 

  • Arnason U, Widegren B (1986) Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive Dna. Mol Biol Evol 3:356–365

    CAS  Google Scholar 

  • Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, Vainoia R (2006) Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol 41:345–354

    Article  PubMed  Google Scholar 

  • Bahrami F, Morris DL, Pourgholami MH (2012) Tetracyclines: drugs with huge therapeutic potential. Mini Rev Med Chem 12:44–52

    Article  CAS  PubMed  Google Scholar 

  • Baradaran-Rafii A, Asl NS, Ebrahimi M, Jabbehdari S, Bamdad S, Roshandel D, Eslani M, Momeni M (2017) The role of amniotic membrane extract eye drop (Ameed) in in vivo cultivation of Limbal stem cells. Ocul Surf 16:146–153

    Article  PubMed  Google Scholar 

  • Barnes JA, Smith JS (2004) Bilateral Phacofragmentation in a New Zealand fur seal (Arctocephalus Forsteri). J Zoo Wildl Med 35:110–112

    Article  PubMed  Google Scholar 

  • Chandler HL, Colitz CMH, Miller WW, Kusewitt DF (2005) Role of Tetracyclines in healing canine refractory ulcers. Invest Ophthalmol Vis Sci 46. E-Abstract 2597

    Google Scholar 

  • Chandler HC, Kusewitt DF, Colitz CMH (2008) Modulation of matrix metalloproteinases by ultraviolet radiation in canine cornea. Vet Ophthalmol 11:135–144

    Article  CAS  PubMed  Google Scholar 

  • Colitz CMH, Bailey JE (2019) Lens diseases and Anesthetic considerations for ophthalmologic procedures in pinnipeds. In: Miller RE, Lamberski N, Calle PP (eds) Fowler’s zoo and wild animal medicine current therapy. Elsevier, St. Louis

    Google Scholar 

  • Colitz CMH, Renner MS, Manire CA, Doescher B, Schmitt TL, Osborn SD, Croft L, Olds J, Gehring E, Mergl J, Tuttle AD, Sutherland-Smith M, Rudnick JC (2010a) Characterization of progressive keratitis in Otariids. Vet Ophthalmol 13:47–53

    Article  PubMed  Google Scholar 

  • Colitz CMH, Saville WJA, Renner MS, Mcbain JF, Reidarson TH, Schmitt TL, Nolan EC, Dugan SJ, Knightly F, Rodriguez MM, Mejia-Fava JC, Osborn SD, Clough PL, Collins SP, Osborn BA, Terrell K (2010b) Risk factors associated with cataracts and lens Luxations in captive pinnipeds in the United States and the Bahamas. J Am Vet Med Assoc 237:429–436

    Article  PubMed  Google Scholar 

  • Colitz CMH, Grubb C, Razner K (2011a) Objective and Behavioral results following cataract removal in 52 pinnipeds. Vet Ophthalmol 14:422

    Google Scholar 

  • Colitz CMH, Gulland F, Palmer L (2011b) Retrospective Report of Ocular Problems in Wild Pinnipeds. J Zoo Wildlife Med, In Preparation For Submission

    Google Scholar 

  • Colitz CMH, Bowman M, Cole G, Budelsky C, Doescher B, Anderson E (2014) Surgical Repair of a Corneal Perforation or Descemetocele with Concurrent Lensectomy in Three Pinnipeds. International Association Of Aquatic Animal Medicine

    Google Scholar 

  • Colitz CMH, Gilger BC, Grundon R, Anderson E, Berliner A, Blyde D, Bowman M, Buchanan S, Chua F, Doescher B, Menchaca M, March D, Olds J, Phillips W, Reidarson T, Seruca C, Soborb A, Staggs L, Wells R (2016) The Use of Episcleral Subconjunctival Cyclosporine Implants to Control Otariid Keratopathy. Annual Conference of the International Association of Aquatic Animal Medicine, 2016 Virginia Beach, VA

    Google Scholar 

  • Colitz CMH, Bailey JE, Mejia-Fava JC (2018a) Cetacean and pinniped ophthalmology. In: Dierauf L, Gulland FMD (eds) Crc handbook of marine mammal medicine, 3rd edn. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Colitz CMH, Saville WJA, Walsh MT, Latson E (2018b) Epidemiologic Study Of Risk Factors Associated With Corneal Disease In Pinnipeds. J Am Vet Med Assoc, In Press

    Google Scholar 

  • Dai J, Mumper RJ (2010) Plant Phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RW, Fuiman LA, Williams TM, Collier SO, Hagey WP, Kanatous SB, Kohin S, Horning M (1999) Hunting behavior of a marine mammal Beaneath the Antarctic fast ice. Science 283:993–996

    Article  CAS  PubMed  Google Scholar 

  • Dawson WW, Schroeder JP, Sharpe SN (1987) Corneal surface properties of two marine mammal species. Mar Mamm Sci 3:186–197

    Article  Google Scholar 

  • Dawson C, Naranjo C, Sanchez-Maldonado B, Fricker GV, Linn-Pearl RN, Escanilla N, Karafnik C, Gould DJ, Sanchez RF, Matas-Riera M (2017) Immediate effects of diamond Burr debridement in patients with spontaneous chronic corneal epithelial defects, light and electron microscopic evaluation. Vet Ophthalmol 20:11–15

    Article  CAS  PubMed  Google Scholar 

  • Delisle I, Strobeck C (2005) A phylogeny of the Caniformia (order carnivore) based on 12 complete protein-coding mitochondrial genes. Mol Phylogenet Evol 37:192–201

    Article  CAS  PubMed  Google Scholar 

  • Demeule M, Brossard M, Page M, Gingras D, Beliveau R (2000) Matrix metalloproteinase inhibition by green tea Catechins. Biochim Biophys Acta 1478:51–60

    Article  CAS  PubMed  Google Scholar 

  • Dunn JL, Overstrom NA, St.Aubin DJ (1996) An epidemiologic survey to determine factors associated with corneal and lenticular lesions in Captive Harbor seals and California Sea lions. Annual Meeting Of The Iaaam:108–109

    Google Scholar 

  • El-Shabrawi Y, Christen WG, Foster CS (2009) Correlation of Metalloproteinase-2 and −9 with Proinflammatory cytokines interleukin-1ß, Interleukin-12 and the Interleukin-1 receptor antagonist in patients with chronic uveitis. Curr Eye Res 20:211–214

    Article  Google Scholar 

  • Esson DW, Nollens HH, Schmitt TL, Fritz KJ, Simeone CA, Stewart BS (2015) Aphakic phacoemulsification and automated anterior vitrectomy, and Postreturn monitoring of a Rehabilitated Harbor seal. J Zoo Wildl Med 46:647–651

    Article  PubMed  Google Scholar 

  • Federici TJ (2011) The non-antibiotic properties of Tetracyclines: clinical potential in ophthalmic disease. Pharmacol Res 64:611–623

    Article  Google Scholar 

  • Fleming M, Bexton S (2016) Conjunctival Flora of healthy and diseased eyes of Grey seals (Halichoerus Grypus): implications for treatment. Vet Rec 179:99–103

    Article  CAS  PubMed  Google Scholar 

  • Gaynes BI, Onyekwuluje A (2008) Topical ophthalmic Nsaids: a discussion with focus on Nepafenac ophthalmic suspension. Clinical Ophthalmol 2:355–368

    Article  CAS  Google Scholar 

  • Griebel U, Schmid A (1992) Color vision in the Californa Sea lion (Zalophus Californianus). Vis Res 32:477–482

    Article  CAS  PubMed  Google Scholar 

  • Grubb CM, Razner KT, Colitz CMH (2011) Let Sea Lions Be See Lions! Analysis of Behavior in California Sea Lions Before and After Cataract Removal Surgery. Annual Meeting Of The International Marine Animal Trainers Association. Miami, FL

    Google Scholar 

  • Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006a) Corneal topography, refractive state, and Accomodation in harbor seals (Phoca Vitulina). Vis Res 46:837–847

    Article  PubMed  Google Scholar 

  • Hanke W, Romer R, Dehnhardt G (2006b) Visual fields and eye movements in a harbor seal (Phoca Vitulina). Vis Res 46:2804–2814

    Article  PubMed  Google Scholar 

  • Hanke FD, Kroger RH, Siebert U, Dehnhardt G (2008) Multifocal lenses in a Monochromat: the harbour seal. J Exp Biol 211:3315–3322

    Article  PubMed  Google Scholar 

  • Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009a). Basic Mechanisms in Pinniped Vision. Exp Brain Res, Epub Ahead Of Print

    Google Scholar 

  • Hanke FD, Peichl L, Dehnhardt G (2009b) Retinal ganglion cell topography in Juvenile Harbor seals (Phoca Vitulina). Brain Behavior And Evolution 74:102–109

    Article  PubMed  Google Scholar 

  • Jamieson GS, Fisher HD (1971) The retina of the harbor seal, Phoca Vitulina. Can J Zool 49:19–23

    Article  Google Scholar 

  • Jamieson GS, Fisher HD (1972) The pinniped eye: a review. In: Harrison RJ (ed) Functional anatomy of marine mammals I. Academic Press, London, New York

    Google Scholar 

  • Jia Z, Song Z, Zhao Y, Wang X, Liu P (2011) Grape seed Proanthocyanidin extract protects human lens epithelial cells from oxidative stress via reducing Nf-Кb and Mapk protein expression. Mol Vis 17:210–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpestam B, Gustafsson J, Shashar N, Katzir G, Kroger RH (2007) Multifocal lenses in coral reef fishes. J Exp Biol 210:2923–2931

    Article  PubMed  Google Scholar 

  • Kastelein RA, Zweypfenning J, Spekreijse H, Dubbeldam JL, Born EW (1993) The anatomy of the walrus head (Odobenus Rosmarus). Part 3: the eyes and their function in walrus ecology. Aquat Mamm 19:61–92

    Google Scholar 

  • Kelleher Davis R, Colitz CMH, Staggs L, Argueso P (2013a) Carbohydrate profiles in ocular secretions from cetaceans and pinnipeds. International Association Of Aquatic Animal Medicine, Sausalito, California

    Google Scholar 

  • Kelleher Davis R, Doane MG, Knop E, Knop N, Dubielzig RR, Colitz CMH, Argueso P, Sullivan DA (2013b) Anatomy of ocular gland morphology and tear composition of pinniped. Vet Ophthalmol 16:269–275

    Article  PubMed  Google Scholar 

  • Kern TJ, Colitz CMH (2013) Exotic animal ophthalmology. In: Gelatt KN, Gilger BC, Kern TJ (eds) Veterinary ophthalmology, 5th edn. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  • Klauss G, Suedmeyer WK, Galle LE, Giuliano EA, Castaner LJ (2005) Surgical resection of an orbital fat prolapse in a California Sea lion (Zalophus Californianus). Vet Ophthalmol 8:277–281

    Article  PubMed  Google Scholar 

  • Kroger RHH, Campbell MCW, Fernald RD, Wagner HJ (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J Comp Physiol 184:361–369

    Article  CAS  Google Scholar 

  • Lavigne DM, Ronald K (1975) Pinniped Visual Pigments. Comp Biochem Physiol 52b:325–329

    Google Scholar 

  • Levenson DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–843

    Article  CAS  Google Scholar 

  • Malmstrom T, Kroger RHH (2006) Pupil shapes and lens optics in the eyes of terrestrial vertebrates. J Exp Biol 209:18–25

    Article  PubMed  Google Scholar 

  • Mass AM (1992) Retinal topography in the walrus (Odobenus Rosmarus Divergrns) and fur seal (Callorhinus Ursinus). In: Thomas JA, R. A, K, Supin AY (eds) Marine mammal sensory systems. Plenum, New York

    Google Scholar 

  • Mass AM, Supin AY (1992) Peak density, size and regional distribution of ganglion cells in the retina of the fur seal Callorhinus Ursinus. Brain Behavior And Evolution 39:69–76

    Article  CAS  PubMed  Google Scholar 

  • Mass AM, Supin AY (2003) Retinal topography of the harp seal Pagophilus Groenlandicus. Brain Behavior And Evolution 62:212–222

    Article  PubMed  Google Scholar 

  • Mass AM, Supin AY (2005) Ganglion cell topography and retinal resolution of the Steller Sea lion (Eumetopias Jubatus). Aquat Mammal 31:393–402

    Article  Google Scholar 

  • Mass AM, Supin AY (2007) Adaptive features of aquatic Mammals' eye. Anat Rec 290:701–715

    Article  Google Scholar 

  • Mass AM, Supin AY (2010) Retinal ganglion cell layer of the Caspian seal Pusa Caspica: topography and localization of the high-resolution area. Brain Behavior And Evolution 76:144–153

    Article  PubMed  Google Scholar 

  • Mejia-Fava JC, Ballweber L, Colitz CMH, Clemons-Chevis CL, Croft LA, Dalton LM, Dold C, Gearhart SA, Hoffman EM, Osborn SD, Jack SW, Renner MS, Schmitt TL, Rodriguez M, Romano TA, Tuttle AD (2009) Use of rebound tonometry as a diagnostic tool to diagnose glaucoma in the captive California Sea lion. Vet Ophthalmol 12:405

    Google Scholar 

  • Miller SN, Colitz CMH, Dubielzig RR (2010) Anatomy of the California Sea lion globe. Vet Ophthalmol 13:63–71

    Article  PubMed  Google Scholar 

  • Miller S, Samuelson D, Dubielzig R (2013) Anatomic features of the cetacean globe. Vet Ophthalmol 16:52–63

    Article  PubMed  Google Scholar 

  • Nagy AR, Roland K (1970) The harp seal, Pagophilus Groenlandicus. Can J Zool 48:367–370

    Article  CAS  PubMed  Google Scholar 

  • Nakagaki K, Hata K, Iwata E, Takeo K (2000) Malassezia Pachydermatis isolated from a south American Sea lion (Otaria Byronia) with dermatitis. J Vet Med Sci 62:901–903

    Article  CAS  PubMed  Google Scholar 

  • Newkirk KM, Chandler HC, Parent AE, Young DC, Colitz CM, Wilkie DA, Kusewitt DF (2007) Ultraviolet radiation-induced corneal degeneration in 129 mice. Toxicol Pathol 35:819–826

    Article  PubMed  Google Scholar 

  • Newman LA, Robinson PR (2005) Cone visual pigments of aquatic mammals. Vis Neurosci 22:873–879

    Article  PubMed  Google Scholar 

  • Ninomiya H, Yoshida E (2007) Functional anatomy of the ocular circulatory system: vascular corrosion casts of the cetacean eye. Vet Ophthalmol 10:231–238

    Article  PubMed  Google Scholar 

  • Oliveira R, Martielli P, Chelysheva M, Naranjo C, Romero C (2019). Presumed Papilloma Eyelid Lesion Induced by an Otarine Herpesvirus (Othv)-1 Infection in a Seal

    Google Scholar 

  • Peichl L, Moutairou K (1998) Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African Giant rats (Rodentia). Eur J Neurosci 10:2586–2594

    Article  CAS  PubMed  Google Scholar 

  • Peichl L, Berhmann G, Kroger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1

    Article  Google Scholar 

  • Perry HD, Kenyon KR, Lamberts DW, Foulks GN, Seedor JA, Golub LM (1986) Systemic Tetracycyline hydrochloride as an adjunctive therapy in the treatment of persistent epithelial defects. Ophthalmology 93:1320–1322

    Article  CAS  PubMed  Google Scholar 

  • Potron A, Poirel L, Nordmann P (2015) Emerging broad-Spectrum resistance in pseudomonas aeruginosa and Acinetobacter Baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 45:568–585

    Article  CAS  PubMed  Google Scholar 

  • Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R (2016) Potential role of bromelain in clinical and therapeutic applications. Biomedical Reports 5:283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth SJ, Tischer BK, Kovacs KM, Lydersen C, Osterrieder N, Tryland M (2013) Phocine herpesvirus 1 (Phhv-1) in harbor seals from Svalbard, Norway. Vet Microbiol 164:286–292

    Article  PubMed  Google Scholar 

  • Schusterman RJ (1981) Visual acuities in pinnipeds. Psychol Rec 31:125–143

    Article  Google Scholar 

  • Schusterman RJ, Balliet RF (2006) Aerial and underwater visual acuity in the California Sea lion (Zalophus Californianus) as a function of luminance. Ann NY Acad Sci 188:37–46

    Article  Google Scholar 

  • Shiroto Y, Terashima S, Hosokawa Y, Oka K, Isokawa K, Tsuruga E (2017) The effect of ultraviolet B on Fibrillin-1 and Fibrillin-2 in human non-pigmented ciliary epithelial cells in vitro. Acta Histochem Cytochem 50:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staggs LA, Colitz CMH, Holmes-Douglas S (2013) The Use of Subconjunctival Cyclosporine Implants in a California Sea Lion (Zalophus Californianus) Prior to Cataract Surgery. International Association for Aquatic Animal Medicine

    Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) Vision in aquatic mammals. The sensory physiology of aquatic mammals. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner Press, New York

    Google Scholar 

  • West JA, Sivak JG, Murphy CJ, Kovacs KM (1991) A comparative study of the anatomy of the iris and ciliary body in aquatic mammals. Can J Zool 69:2594–2607

    Article  Google Scholar 

  • Wright EP, Waugh LF, Goldstein T, Freeman KS, Kelly TR, Wheeler EA, Smith BR, Gulland FM (2015) Evaluation of viruses and their association with ocular lesions in pinnipeds in rehabilitation. Vet Ophthalmol 18:148–159

    Article  CAS  PubMed  Google Scholar 

  • Yen YH, Pu CM, Liu CW, Chen YC, Chen YC, Liang CJ, Hsieh JH, Huang HF, Chen YL (2018) Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of Tnf-Α, Mmp-9, Α-Sma, and collagen. Int Wound J 15:605–617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Colitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colitz, C. (2022). Ophthalmology of Pinnipedimorpha: Seals, Sea Lions, and Walruses. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-81273-7_13

Download citation

Publish with us

Policies and ethics