Skip to main content

Ophthalmology of Cartilaginous Fish: Skates, Rays, and Sharks

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology

Abstract

The cartilaginous fish or Chondrichthyes are a large and successful group of aquatic organisms, comprising the Elasmobranchs, modern sharks, skates and rays (96% of existing species) and the Holocephali, chimeras and elephant fish making up the remaining 4%. These fish have a long evolutionary history with members of the lineage being present in the fossil record 450 million years ago (Sansom et al. 1996) and over that time the fish have evolved to occupy a wide range of varying ecological habitats. To cope with substantially divergent environments, they possess a sophisticated battery of sensory systems with olfaction as an exceptionally sensitive arm of their interaction with their environment. Indeed, this has led some in the past to term them ‘swimming noses’ (Aronson 1963). Investigation of their sense of smell has led to a smaller degree of attention being paid to their vision and ophthalmic anatomy and physiology with early investigators such as Walls (1942) and Rochon-Duvigneaud (1943) suggesting that their retina was populated only by rods rendering the fish scotopic in their visual behaviour with poor visual acuity and lacking colour vision. Gruber’s discovery in 1963 that the retina of the lemon shark Negaprion brevirostris possessed rods and cones opened a new field of study in chondrichthic vision and now we know that there are shark species with a high retinal cone population (Gruber and Cohen 1978) and that it is only deep-sea species which have retinae populated solely by rods (Bozzano et al. 2001). In fact, the visual system of sharks of the deep (etmopterid and dalatiid species) has developed numerous strategies for photon capture in a very dim environment, including semicircular tapeta and aphakic gaps not previously shown to exist in elasmobranchs (Claes et al. 2014). Work by Collin’s group more recently has led to a much deeper understanding of the eye in cartilaginous fish and the role of vision in their behaviour (Collin 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham Gabriel A, Yee-Nin ST, Adamu L, Hassan HM, Wahid AH (2018) Enucleation in a Cownose Ray (Rhinoptera bonasus). Case reports in veterinary medicine. Mar 19, 2018

    Google Scholar 

  • Aronson LR (1963) The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Gilbert PW (ed) Sharks and survival. Heath, Boston, pp 165–241

    Google Scholar 

  • Benz GW, Borucinska JD, Lowry LF, Whiteley HE (2002) Ocular lesions associated with attachment of the copepod Ommatokoita elongata (Lernaeopodidae: Siphonostomatoida) to corneas of Pacific sleeper sharks Somniosus pacificus captured off Alaska in Prince William sound. J Parasitol 88:474–481

    Article  PubMed  Google Scholar 

  • Block BA, Carey FG (1985) Warm brain and eye temperatures in sharks. J Comp Physiol B, Biochem. Syst Environ Physiol 156:229–236

    Article  CAS  Google Scholar 

  • Bozzano A, Murgia R, Vallerga S, Hirano J, Archer S (2001) The photoreceptor system in the retinae of two dogfishes, Scyliorhinus canicula and Galeus melastomus: possible relationship with depth distribution and predatory lifestyle. J Fish Biol 59:1258–1278

    Article  Google Scholar 

  • Claes JM, Partridge JC, Hart NS et al (2014) Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PLoS One 9(8):e104213. https://doi.org/10.1371/journal.pone.0104213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JL, Hueter RE, Organisciak DT (1990) The presence of a porphyropsin-based visual pigment in the juvenile lemon shark (Negaprion brevirostris). Vis Res 30(12):1949–1953

    Article  CAS  PubMed  Google Scholar 

  • Collin SP (2018) Scene through the eyes of an apex predator: a comparative analysis of the shark visual system. Clin Exp Optom 101:624–640

    Article  PubMed  Google Scholar 

  • Ghahghaei A, Rekas A, Carver JA, Augusteyn RC (2009) Structure/function studies of dogfish α-crystallin, comparison with bovine α-crystallin. Mol Vis 15:2411–2419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber SH, Cohen JL (1978) Visual system of the elasmobranchs: state of the art 1960–1975. Sensory biology of sharks, skates, and rays:11–116

    Google Scholar 

  • Gustafsson OSE, Ekstrom P, Kroger RHH (2012) Sturgeons, sharks, and rays have multifocal crystalline lenses and similar lens suspension apparatuses. J Morphol 273:746–753

    Article  PubMed  Google Scholar 

  • Hart NS, Theiss SM, Harahush BK, Collin SP (2011) Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98:193–201

    Article  CAS  PubMed  Google Scholar 

  • Hart NS, Lamb TD, Patel HR, Chuah A, Natoli RC, Hudson NJ, Cutmore SC, Davies WI, Collin SP, Hunt DM (2020) Visual opsin diversity in sharks and rays. Mol Biol Evol 37:811–827

    Article  CAS  PubMed  Google Scholar 

  • Hueter RE, Gruber SH (1982) Recent advances in studies of the visual system of the juvenile lemon shark (Negaprion brevirostris). Florida Scientist 82:11–25

    Google Scholar 

  • Hueter RE, Murphy CJ, Howland M et al (2001) Refractive state and accommodation in the eyes of free-swimming versus restrained juvenile lemon sharks (Negaprion brevirostris). Vis Res 41:1885–1889

    Article  CAS  PubMed  Google Scholar 

  • de Jong WW, Leunissen JA, Leenen PJ, Zweers A, Versteeg M (1988) Dogfish alpha-crystallin sequences. Comparison with small heat shock proteins and Schistosoma egg antigen. J Biol Chem 263:5141–5149

    Article  PubMed  Google Scholar 

  • Kik MJ, Janse M, Benz GW (2011) The sea louse Lepeophtheirus acutus (Caligidae, Siphonostomatoida, Copepoda) as a pathogen of aquarium-held elasmobranchs. J Fish Dis 34(10):793–799

    Article  CAS  PubMed  Google Scholar 

  • Lisney TJ, Collin SP (2007) Relative eye size in elasmobranchs. Brain Behav Evol 69:266–279

    Article  PubMed  Google Scholar 

  • Lisney TJ, Collin SP (2008) Retinal ganglion cell distribution and spatial resolving power in elasmobranchs. Brain Behav Evol 72:59–77

    Article  PubMed  Google Scholar 

  • Litherland L (2009) Neuroethological studies on shark vision Assessing the role of visual biology in habitat use and behaviour. PhD Thesis, The School of Biomedical Sciences, The University of Queensland

    Google Scholar 

  • Litherland L, Collin SP, Fritsches KA (2009a) Eye growth in sharks: ecological implications for changes in retinal topography and visual resolution. Vis Neurosci 26(4):397–409

    Article  PubMed  Google Scholar 

  • Litherland L, Collin SP, Fritsches KA (2009b) Visual optics and ecomorphology of the growing shark eye: a comparison between deep and shallow water species. J Exp Biol 212(21):3583–3594

    Article  PubMed  Google Scholar 

  • Muller J (1843) Untersuchungen uber die Eingeweide der Fische. Schlufs der vergleichenden Anatomie der Myxinoiden. Abhandlungen der Koniglichen Akademe der Wissenschajten 43:109–170

    Google Scholar 

  • Muriana CB, Vasconcelos BV, Leandro RM, Malavasi CE, Amorim AF, Rici RE, Maria DA, Miglino MA, Ferreira AO (2017) Morphological study of the eye bulb of the hammerhead shark, Sphyrna lewini (elasmobranch: Carcharhinidae). Int J Morphol 35:287–292

    Article  Google Scholar 

  • Murphy CJ, Howland HC (1986) On the gekko pupil and Scheiner’s disc. Vis Res 26(5):815–817

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Hedeholm RB, Heinemeier J et al (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353(6300):702. https://doi.org/10.1126/science.aaf1703

    Article  CAS  PubMed  Google Scholar 

  • Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groningen-Luyben WAHM (1989) Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A 164:513–529

    Article  CAS  PubMed  Google Scholar 

  • Quaeck-Davies K, Bendall VA, MacKenzie KM, Hetherington S, Newton J, Trueman CN (2018) Teleost and elasmobranch eye lenses as a target for life-history stable isotope analyses. Peer J 4(6):e4883

    Article  Google Scholar 

  • Rochon-Duvigneaud A (1943) Les yeux et la vision des vertébrés. Masson, Paris

    Google Scholar 

  • Sansom IJ, Smith MM, Smith MP (1996) Scales of thelodont and shark-like fishes from the Ordovician of Colorado. Nature 379(6566):628–630

    Article  CAS  Google Scholar 

  • Shirai S (1992 Jun 15) Fauna and zoogeography of deep-benthic chondrichthyan fishes around the Japanese archipelago. Jpn J Ichthyol 39(1):37–48

    Article  Google Scholar 

  • Sivak JG (1989) Optical variability of the fish lens. In: Douglas R, Djamgoz M (eds) The visual system of fish. Springer, Dordrecht, pp 63–80

    Google Scholar 

  • Tomita T, Murakumo K, Komoto S, Dove A, Kino M, Miyamoto K, Toda M (2015) Armored eyes of the whale shark. PLoS One 15(6):e0235342

    Article  Google Scholar 

  • Tomita T, Murakumo K, Miyamoto K, Sato K, Oka SI, Kamisako H, Toda M (2016) Eye retraction in the giant guitarfish, Rhynchobatus djiddensis (Elasmobranchii: Batoidea): a novel mechanism for eye protection in batoid fishes. Zoology 119(1):30–35

    Article  PubMed  Google Scholar 

  • Tubbesing VA, Block BA (2000) Orbital rete and red muscle vein anatomy indicate a high degree of endothermy in the brain and eye of the salmon shark. Acta Zool 81:49–56

    Article  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science

    Google Scholar 

  • Weng KC, Block BA (2004) Diel vertical migration of the bigeye thresher shark (Alopias superciliosus), a species possessing orbital retia mirabilia. Fish Bull 102:221–229

    Google Scholar 

  • Wildgoose WH, Lewbart GA (2001) Terapeutics. In: Wildgoose WH (ed) BSAVA manual of ornamental fish. BSAVA, pp 237–258

    Chapter  Google Scholar 

  • Zigman S (1990) Comparative biochemistry and biophysics of elasmobranch lenses. J Exp Zool 256(S5):29–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, D. (2022). Ophthalmology of Cartilaginous Fish: Skates, Rays, and Sharks. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-71302-7_4

Download citation

Publish with us

Policies and ethics