Skip to main content

Nonlinear Viscoelastic Damping for Seismic Isolation

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics

Abstract

The aim of the research here presented is to explore the robustness of base isolation achieved via Rubber-Layer Roller Bearing (RLRB) systems against seismic vibration. We consider an RLRB presenting nonlinear stiffness and nonmonotonic viscoelastic damping. Indeed, the cyclic contact between the metal cylinders and the rubber pads occurring in the RLRB leads to a bell-shaped damping response, with the damping force initially increasing with the relative velocity increasing up to a peak value, and then fast decreasing. Since real seismic excitation spectra are unknown, we focus on the effect of nonlinearity on the robustness of the response of the isolator under different inputs. Indeed, we perform a global optimization of the RLRB against three different earthquakes, together with a reference linear isolator for comparison; then, we compare the response of the structures equipped with the two isolation systems to each of the seismic shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rahman et al., Performance enhancement of wind turbine systems with vibration control: A review. Renew. Sustain. Energy Rev. 51, 43–54 (2015)

    Article  Google Scholar 

  2. H. Zuo, K. Bi, H. Hao, Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Eng. Struct. 141, 303–315 (2017)

    Article  Google Scholar 

  3. J. Chen, C.T. Georgakis, Tuned rolling-ball dampers for vibration control in wind turbines. J. Sound Vib. 332(21), 5271–5282 (2013)

    Article  Google Scholar 

  4. J. Li, Z. Zhang and J. Chen, “Experimental study on vibration control of offshore wind turbines using a ball vibration absorber,” Energy and Power Engineering, 4(3), 153–157 (2012). https://doi.org/10.4236/epe.2012.43021

  5. S. Colwell, B. Basu, Tuned liquid column dampers in offshore wind turbines for structural control. Eng. Struct. 31(2), 358–368 (2009)

    Article  Google Scholar 

  6. Z. Zhang et al., Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing. Eng. Struct. 126, 417–431 (2016)

    Article  Google Scholar 

  7. V. Maldonado et al., Active vibration control of a wind turbine blade using synthetic jets. Int. J. Flow Control 1(4), 227–237 (2009)

    Article  Google Scholar 

  8. S. Daley, I. Zazas, J. Hatonen, Harmonic control of a ‘smart spring’machinery vibration isolation system. Proc. Inst. Mech. Eng. Part M J. Eng. Maritime Environ. 222.2, 109–119 (2008)

    Google Scholar 

  9. E.I. Rivin, Vibration isolation of precision equipment. Precis. Eng. 17(1), 41–56 (1995)

    Article  Google Scholar 

  10. A. Farshidianfar, A. Saghafi, S.M. Kalami, I. Saghafi, Active vibration isolation of machinery and sensitive equipment using H control criterion and particle swarm optimization method. Meccanica 47(2), 437–453 (2012)

    Article  Google Scholar 

  11. A.J. Nieto et al., Unbalanced machinery vibration isolation with a semi-active pneumatic suspension. J. Sound Vib. 329(1), 3–12 (2010)

    Article  Google Scholar 

  12. S.T. De la Cruz, F. L’opez-Almansa, S. Oller, Numerical simulation of the seismic behavior of building structures equipped with friction energy dissipators. Comput. Struct. 85, 30–42 (2007)

    Article  Google Scholar 

  13. D. Foti, M. Diaferio, R. Nobile, Dynamic behavior of new aluminum–steel energy dissipating devices. Struct. Control Hlth. 20, 1106–1119 (2013)

    Article  Google Scholar 

  14. P.S. Harvey Jr., K.C. Kelly, A review of rolling-type seismic isolation: Historical development and future directions. Eng. Struct. 125, 521–531 (2016)

    Article  Google Scholar 

  15. P.S. Harvey Jr., H.P. Gavin, Assessment of a rolling isolation system using reduced order structural models. Eng. Struct. 99, 708–725 (2015)

    Article  Google Scholar 

  16. C.D. Casey, P.S. Harvey Jr., W. Song, Multi-unit rolling isolation system arrays: Analytical model and sensitivity analysis. Eng. Struct. 173, 656–668 (2018)

    Article  Google Scholar 

  17. Y. Starosvetsky, O.V. Gendelman, Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping. J. Sound Vib. 324, 916–939 (2009)

    Article  Google Scholar 

  18. O.V. Gendelman, A. Alloni, Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

    Article  Google Scholar 

  19. A. Pazooki, A. Goodarzi, A. Khajepour, A. Soltani, C. Porlier, A novel approach for the design and analysis of nonlinear dampers for automotive suspensions. J. Vib. Control. 24(14), 3132–3147 (2018)

    Article  MathSciNet  Google Scholar 

  20. Z. Lu et al., Nonlinear dissipative devices in structural vibration control: A review. J. Sound Vib. 423, 18–49 (2018)

    Article  Google Scholar 

  21. M.D. Symans, F.A. Charney, A.S. Whittaker, M.C. Constantinou, C.A. Kircher, M.W. Johnson, R.J. McNamara, Energy dissipation systems for seismic applications: Current practice and recent developments. J. Struct. Eng. 134(1), 3–21 (2008)

    Article  Google Scholar 

  22. D. Lee, D.P. Taylor, Viscous damper development and future trends. Struct. Des. Tall Build. 10(5), 311–320 (2001)

    Article  Google Scholar 

  23. X. Lu, Y. Zhou, F. Yan, Shaking table test and numerical analysis of RC frames with viscous wall dampers. J. Struct. Eng. 134(1), 64–76 (2008)

    Article  Google Scholar 

  24. N. Menga, D. Foti, G. Carbone, Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators. Meccanica 52, 2807–2817 (2017)

    Article  MathSciNet  Google Scholar 

  25. D. Foti, J.M. Kelly, Experimental analysis of a model isolated at the base with rubber-layer roller bearing (RLRB). Euro. Earthq. Eng. 10, 3–13 (1996)

    Google Scholar 

  26. M. Mezzina, D. Raffaele, C. Dentamaro, D. Foti, P. Monaco. Seismic isolation with RLRB (Rubber Layer Roller Bearing), Proc. of the 1st European conference on Structural control, Barcelona 29–31 May (1996)

    Google Scholar 

  27. A.H. Muhr, M. Sulong, A.G. Thomas, Rolling-ball rubber-layer isolators. J. Nat. Rubber Res. 12, 199–214 (1997)

    Google Scholar 

  28. A.H. Muhr, G. Bergamo. Shaking table tests on rolling-ball rubber-layer isolation system, in 14th European conference on earthquake engineering, pp. 5703–5710 (2010)

    Google Scholar 

  29. L. Guerreiro, J. Azevedo, A.H. Muhr, Seismic tests and numerical modeling of a rolling-ball isolation system. J. Earthq. Eng. 11, 49–66 (2007)

    Article  Google Scholar 

  30. D. Foti, A. Catalan Goni, S. Vacca, On the dynamic response of rolling base isolation systems. Struct. Control Hlth. 20, 639–648 (2013)

    Article  Google Scholar 

  31. D. Foti, Isolatore sismico (Seismic Isolator), Italian Patent 0001414213, (2015)

    Google Scholar 

  32. D. Foti, Rolling devices for seismic isolation of lightweight structures and equipment. Design and realization of a prototype. Struct. Control Hlth. 26, e2311 (2019)

    Article  Google Scholar 

  33. N. Menga, F. Bottiglione, G. Carbone, The nonlinear dynamic behavior of a Rubber-Layer Roller Bearing (RLRB) for vibration isolation. J. Sound Vib. 463, 114952 (2019)

    Article  Google Scholar 

  34. N. Menga, L. Afferrante, G. Carbone, Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 95, 517–529 (2016)

    Article  MathSciNet  Google Scholar 

  35. N. Menga, L. Afferrante, G. Carbone, Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 88, 101–109 (2016)

    Article  Google Scholar 

  36. N. Menga, C. Putignano, L. Afferrante, G. Carbone, The contact mechanics of coated elastic solids: Effect of coating thickness and stiffness. Tribol Let 67, 24 (2019)

    Article  Google Scholar 

  37. N. Menga, F. Bottiglione, G. Carbone, The indentation rolling resistance in belt conveyors: A model for the viscoelastic friction. Lubricants 7(7), 58 (2019)

    Article  Google Scholar 

  38. N. Menga, L. Afferrante, G.P. Demelio, G. Carbone, Rough contact of sliding viscoelastic layers: Numerical calculations and theoretical predictions. Tribol. Int. 122, 67–75 (2018)

    Article  Google Scholar 

  39. N. Menga, Rough frictional contact of elastic thin layers: The effect of geometrical couplig. Int. J. Solids Struct. 164, 212–220 (2019)

    Article  Google Scholar 

  40. C.L. Ng, Y.L. Xu, Semi-active control of a building complex with variable friction dampers. Eng. Struct. 29, 1209–1225 (2007)

    Article  Google Scholar 

  41. A. Yanik, U. Aldemir, M. Bakioglu, A new active control performance index for vibration control of three-dimensional structures. Eng. Struct. 62, 53–64 (2014)

    Article  Google Scholar 

  42. F. Sadek, B. Mohraz, Semiactive control algorithms for structures with variable dampers. J. Eng. Mech. 124, 981–990 (1998)

    Article  Google Scholar 

  43. N. Menga, G. Carbone, D. Dini, Exploring the effect of geometric coupling on friction and energy dissipation in rough contacts of elastic and viscoelastic coatings. J. Mech. Phys. Solids 148, 104273 (2021)

    Article  MathSciNet  Google Scholar 

  44. N. Menga, F. Bottiglione, G. Carbone, Nonlinear viscoelastic isolation for seismic vibration mitigation. Mech. Syst. Signal Process. 157, 107626 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 845756 (N.M. Individual Fellowship).

This work was partly supported by the Italian Ministry of Education, University and Research under the Programme “Progetti di Rilevante Interesse Nazionale (PRIN)”, Grant Protocol 2017948, Title: Foam Airless Spoked Tire – FASTire (G.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Menga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menga, N., Bottiglione, F., Carbone, G. (2022). Nonlinear Viscoelastic Damping for Seismic Isolation. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81166-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81166-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81165-5

  • Online ISBN: 978-3-030-81166-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics