Skip to main content
Log in

Active vibration isolation of machinery and sensitive equipment using H control criterion and particle swarm optimization method

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Isolating the sensitive equipment from vibrating base or the foundation from machinery vibration is of practical importance in a number of engineering fields. With the development of the vibration control techniques and increasing requirements for the higher-performance vibration isolation in industry and everyday life, active vibration isolation exhibits the best performances. In this paper, active vibration isolation reducing vibration transmitted from vibrating base to sensitive equipment and from machinery to foundation was investigated. Controller as static output feedback was considered to design components of active isolation system. An active control is provided by using H control criteria to design this controller. This criterion is presented as a cost function and then optimized by Particle Swarm Optimization (PSO) algorithm. The approach is validated using numerical simulation. Results show that this static output feedback H controller using PSO algorithm can get good performance to reduce the effect of unwanted vibration and disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen CH, Snyder SD (1997) Active control of noise and vibration. Chapman and Hall, London. ISBN 0-419-19390-1 (Chapter 12)

    Google Scholar 

  2. Crede CE (1995) Theory of vibration isolation. In: Harris CM (ed) Shock and vibration handbook. McGraw-Hill, New York (Chapter 30)

    Google Scholar 

  3. Ungar EE (1992) Vibration isolation. In: Beranek L, Ver IL (eds) Noise and vibration control engineering. Wiley, Chichester (Chapter 11)

    Google Scholar 

  4. Karnopp D (1995) Active and semi-active vibration isolation. J Mech Des 117:177–185

    Google Scholar 

  5. Suhardjo J, Spencer BF Jr, Sain MK (1990) Feedback–feedforward control of structures under seismic excitation. Struct Saf 8:69–89

    Article  Google Scholar 

  6. Haddad WM, Hyland DC, Razavi A (1999) Active vibration isolation of multi-degree of freedom systems. J Vib Control 5:577–589

    Article  MATH  MathSciNet  Google Scholar 

  7. Hyde TT, Anderson EH (1996) Actuator with built-in viscous damping for isolation and structural control. AIAA J 34(1):129–135

    Article  ADS  Google Scholar 

  8. Sciulli D, Inman DJ (2000) Isolation design for fully flexible systems. J Intell Mater Syst Struct 10(10):813–824

    Google Scholar 

  9. Toscano R (2007) H 2/H robust static output feedback control design without solving linear matrix inequalities. J Dyn Syst Meas Control 129(6):860–866

    Article  MathSciNet  Google Scholar 

  10. Fuller CR, Elliot SJ, Nelson PA (1996) Active control of vibration. Academic Press, London

    Google Scholar 

  11. Beard MJ, Von Flotow AH, Schubert DW (1994) A practical product implementation of an active/passive vibration isolation system. In: Proceedings of IUTAM symposium on the active control of vibration, University of Bath, UK, pp 101–108

    Google Scholar 

  12. Serrand M, Elliott SJ (2000) Multi channel feedback control for the isolation of base-excited vibration. J Sound Vib 234(4):681–704

    Article  ADS  Google Scholar 

  13. Kim SM, Elliott SJ, Brennan MJ (2001) Decentralized control for multichannel active vibration isolation. IEEE Trans Control Syst Technol 9(1):93–100

    Article  Google Scholar 

  14. Huang X, Elliott SJ, Brennan MJ (2003) Active isolation of a flexible structure from base vibration. J Sound Vib 263:357–376

    Article  ADS  Google Scholar 

  15. Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  16. Preumont A, Francois A, De Man P, Piefort V (2003) Spatial filters in structural control. J Sound Vib 265:61–79

    Article  ADS  Google Scholar 

  17. Muller T, Hurlebaus S, Stobener U, Gaul L (2005) Modeling and control of an active vibration isolation system. In: Proceedings of the international modal analysis conference IMAC, Orlando, USA

    Google Scholar 

  18. Beadle BM, Hurlebaus S, Stobener U, Gaul L (2005) Modeling and parameter identification of an anti-vibration system. In: Proceedings of SPIE: smart structures and structural health monitoring. SPIE, Bellingham

    Google Scholar 

  19. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. Springer, Berlin, pp 39–43

    Chapter  Google Scholar 

  20. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Mateo

    Google Scholar 

  21. Schutte JF, Groenwold AA (2005) A study of global optimization using particle swarms. J Glob Optim 31:93–108

    Article  MATH  MathSciNet  Google Scholar 

  22. Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  23. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  24. Olariu S, Zomaya AY (2006) Handbook of bioinspired algorithms and applications. Taylor & Francis, London

    MATH  Google Scholar 

  25. Nedjah N, Mecedo Mourelle L (2006) Swarm intelligent systems. Springer, Berlin

    Book  Google Scholar 

  26. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  27. Coello Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saghafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farshidianfar, A., Saghafi, A., Kalami, S.M. et al. Active vibration isolation of machinery and sensitive equipment using H control criterion and particle swarm optimization method. Meccanica 47, 437–453 (2012). https://doi.org/10.1007/s11012-011-9451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9451-z

Keywords

Navigation