Skip to main content

Slow Dynamics of Biological Water

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 266))

  • 582 Accesses

Abstract

Water hydrating biomolecules shows a more complex dynamical behavior when compared to the bulk. Its translational slow dynamics can be described by two mechanisms characterized by two well distinct time scales. One mechanism is the \(\alpha\)-relaxation typical of supercooled bulk water and other glass forming liquids. Upon cooling, this relaxation shows a fragile-to-strong crossover due to the activation of hopping phenomena which permits to the water molecules in the hydration layer to escape from nearest neighbors cage. The second mechanism is a much slower relaxation that is present only in hydration water and it is coupled with the biomolecule dynamics. This long-relaxation shows upon cooling a strong-to-strong crossover in coincidence with the well-known Protein Dynamical Transition. Structural rearrangements of biomolecules can trap hydration water molecules over length-scale larger than nearest neighbors distances. This causes a new hopping regime specific only of hydration water and already active at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FSC:

Fragile-to-Strong Crossover

MCT:

Mode Coupling Theory

MSD:

Mean Square Displacement

MSF:

Mean Square Fluctuation

PDT:

Protein Dynamical Transition

RDF:

Radial Distribution Function

SISF:

Self Intermediate Scattering Function

SSC:

Strong-to-Strong Crossover

References

  1. Franks F (2000) Water: A Matrix of Life, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LGM (2016) Water: a tale of two liquids. Chem Rev 116:7463–7500

    Article  Google Scholar 

  3. Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behaviour of metastable water. Nature 360:324–328

    Article  ADS  Google Scholar 

  4. Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Singularity-free interpretation of the thermodynamics of supercooled water. Phys Rev E 53:6144–6154

    Article  ADS  Google Scholar 

  5. Xu L, Kumar P, Buldyrev SV, Chen S-H, Poole PH, Sciortino F, Stanley HE (2005) Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proc Natl Acad Sci U S A 102:16558–16562

    Article  ADS  Google Scholar 

  6. Franzese G, Stanley HE (2007) The Widom line of supercooled water. J Phys Condens Matter 19:205126

    Article  ADS  Google Scholar 

  7. Gallo P, Stanley HE (2017) Supercooled water reveals its secrets. Science 358:1543–1544

    Article  ADS  Google Scholar 

  8. De Marzio M, Camisasca G, Conde MM, Rovere M, Gallo P (2017) Structural properties and fragile to strong transition in confined water. J Chem Phys 146:084505

    Google Scholar 

  9. Kumar P, Yan Z, Xu L, Mazza MG, Buldyrev SV, Chen SH, Sastry S, Stanley HE (2006) Glass transition in biomolecules and the liquid-liquid critical point of water. Phys Rev Lett 97:177802

    Google Scholar 

  10. Kumar P, Franzese G, Buldyrev SV, Stanley HE (2008) Dynamics of water at low temperatures and implications for biomolecules. Lect Notes Phys 752:3–22

    Article  ADS  Google Scholar 

  11. Stanley HE, Buldyrev SV, Franzese G, Kumar P, Mallamace F, Mazza MG, Stokely K, Xu L (2010) Liquid polymorphism: water in nanoconfined and biological environments. J Phys Condens Matter 22:284101

    Google Scholar 

  12. Franzese G, Hernando-Martínez A, Kumar P, Mazza MG, Stokely K, Strekalova EG, De Los Santos F, Stanley HE (2010) hase transitions and dynamics of bulk and interfacial water. Phys Condens Matter 22:284103

    Google Scholar 

  13. Mallamace F, Corsaro C, Mallamace D, Baglioni P, Stanley HE, Chen SH (2011) A possible role of water in the protein folding process. J Phys Chem B 115:14280–14294

    Article  Google Scholar 

  14. Bianco V, Iskrov S, Franzese G (2012) Understanding the role of hydrogen bonds in water dynamics and protein stability. J Biol Phys 38:27–48

    Article  Google Scholar 

  15. Franzese G, Bianco V (2013) Water at Biological and Inorganic Interfaces. Food Biophys 8:153–169

    Article  Google Scholar 

  16. Bianco V, Franzese G (2015) Contribution of water to pressure and cold denaturation of proteins. Phys Rev Lett 115:108101

    Article  ADS  Google Scholar 

  17. Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Stanley HE, Chen SH (2015) Some thermodynamical aspects of protein hydration water. J Chem Phys 142:215103

    Google Scholar 

  18. Roberts CJ, Debenedetti PG (1999) Structure and dynamics in concentrated, amorphous carbohydrate-water systems by molecular dynamics simulation. J Phys Chem B 103:7308–7318

    Article  Google Scholar 

  19. Bizzarri AR, Cannistraro S (2002) Molecular dynamics of water at the protein-solvent interface. J Phys Chem B 106:6617–6633

    Article  Google Scholar 

  20. Lee SL, Debenedetti PG, Errington JR (2005) A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. J Chem Phys 122:204511

    Google Scholar 

  21. Giuffrida S, Panzica M, Giordano FM, Longo A (2011) SAXS study on myoglobin embedded in amorphous saccharide matrices. Eur Phys J E 34:87

    Article  Google Scholar 

  22. de Barbosa R, C, Barbosa MC, (2015) Hydration shell of the TS-Kappa protein: higher density than bulk water. Phys A 439:48–58

    Article  Google Scholar 

  23. Camisasca G, Iorio A, De Marzio M, Gallo P (2018) Structure and slow dynamics of protein hydration water. J Mol Liq 268:903–910

    Article  Google Scholar 

  24. Martelli F, Ko HY, Borallo CC, Franzese G (2018) Structural properties of water confined by phospholipid membranes. Front Phys 13:136801

    Article  ADS  Google Scholar 

  25. Iorio A, Camisasca G, Rovere M, Gallo P (2019) Characterization of hydration water in supercooled water-trehalose solutions: the role of the hydrogen bonds network. J Chem Phys 151:044507

    Article  ADS  Google Scholar 

  26. Martelli F, Crain J, Franzese G (2020) Network topology in water nanoconfined between phospholipid membranes. ACS Nano 14:8616–8623

    Article  Google Scholar 

  27. Rocchi C, Bizzarri AR, Cannistraro S (1998) Water dynamical anomalies evidenced by molecular-dynamics simulations at the solvent-protein interface. Phys Rev E 57:3315–3325

    Article  ADS  Google Scholar 

  28. Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C (2005) Internal dynamics and protein–matrix coupling in trehalose-coated proteins. Biochem Biophys Acta - Proteins Proteomics 1749:252–281

    Article  Google Scholar 

  29. Paciaroni A, Cornicchi E, Marconi M, Orecchini A, Petrillo C, Haertlein M, Moulin M, Sacchetti F (2009) Coupled relaxations at the protein-water interface in the picosecond time scale. J R Soc Interface 6(Suppl 5):S635–S640

    Google Scholar 

  30. Paolantoni M, Comez L, Gallina ME, Sassi P, Scarponi F, Fioretto D, Morresi A (2009) Light scattering spectra of water in trehalose aqueous solutions: evidence for two different solvent relaxation processes. J Phys Chem B 113:7874–7878

    Article  Google Scholar 

  31. Magno A, Gallo P (2011) Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J Phys Chem Lett 2:977–982

    Article  Google Scholar 

  32. Corradini D, Strekalova EG, Stanley HE, Gallo P (2013) Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose. Sci Rep 3:1218

    Article  ADS  Google Scholar 

  33. Cordone L, Cottone G, Cupane A, Emanuele A, Giuffrida S, Levantino M (2015) Proteins in saccharides matrices and the trehalose peculiarity: biochemical and biophysical properties. Curr Org Chem 19:1684–1706

    Article  Google Scholar 

  34. Franzese G, Bianco V, Iskrov S (2011) Water at Interface with Proteins. Food Biophys 6:186–198

    Article  Google Scholar 

  35. Comez L, Lupi L, Morresi A, Paolantoni M, Sassi P, Fioretto D (2013) More is different: experimental results on the effect of biomolecules on the dynamics of hydration water. J Phys Chem Lett 4:1188–1192

    Article  Google Scholar 

  36. Giuffrida S, Cottone G, Bellavia G, Cordone L (2013) Proteins in amorphous saccharide matrices: structural and dynamical insights on bioprotection. Eur Phys J E Soft Matter 36:79

    Article  Google Scholar 

  37. Mallamace F, Corsaro C, Mallamace D, Stanley HE, Chen SH (2013) Water and biological macromolecules. Adv Chem Phys 152:263–308

    Google Scholar 

  38. Schirò G, Fomina M, Cupane A (2013) Communication: protein dynamical transition vs liquid-liquid phase transition in protein hydration water. J Chem Phys 139:121102

    Article  ADS  Google Scholar 

  39. Mallamace F, Baglioni P, Corsaro C, Chen SH, Mallamace D, Vasi C, Stanley HE (2014) The influence of water on protein properties. J Chem Phys 141:165104

    Article  ADS  Google Scholar 

  40. Mallamace F, Corsaro C, Mallamace D, Cicero N, Vasi S, Dugo G, Stanley HE (2015) Dynamical changes in hydration water accompanying lysozyme thermal denaturation. Front Phys 10:106104

    Article  ADS  Google Scholar 

  41. Camisasca G, De Marzio M, Corradini D, Gallo P (2016) Two structural relaxations in protein hydration water and their dynamic crossovers. J Chem Phys 145:044503

    Article  ADS  Google Scholar 

  42. Comez L, Paolantoni M, Sassi P, Corezzi S, Morresi A, Fioretto D (2016) Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. Soft Matter 12:5501–5514

    Article  ADS  Google Scholar 

  43. Köhler MH, de Barbosa RC, da Silva LB, Barbosa MC (2017) Role of the hydrophobic and hydrophilic sites in the dynamic crossover of the protein-hydration water. Phys A Stat Mech Appl 468:733–739

    Article  Google Scholar 

  44. Iorio A, Camisasca G, Gallo P (2019) Slow dynamics of hydration water and the trehalose dynamical transition. J Mol Liq 282:617–625

    Article  Google Scholar 

  45. Corezzi S, Paolantoni M, Sassi P, Morresi A, Fioretto D, Comez L (2019) Trehalose-induced slowdown of lysozyme hydration dynamics probed by EDLS spectroscopy. J Chem Phys 151:015101

    Article  ADS  Google Scholar 

  46. Dos Santos MAF, Habitzreuter MA, Schwade MH, Borrasca R, Antonacci M, Gonzatti GK, Netz PA, Barbosa MC (2019) Dynamical aspects of supercooled TIP3P-water in the grooves of DNA. J Chem Phys 150:235101

    Article  ADS  Google Scholar 

  47. Doster W, Cusack S, Petry W (1990) Dynamic instability of liquidlike motions in a globular protein observed by inelastic neutron scattering. Phys Rev Lett 65:1080–1083

    Article  ADS  Google Scholar 

  48. Combet S, Zanotti J-M (2012) Further evidence that interfacial water is the main “driving force” of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin. Phys Chem 14:4927–4934

    Google Scholar 

  49. Schirò G, Fichou Y, Gallat F-X, Wood K, Gabel F, Moulin M, Härtlein M, Heyden M, Colletier J-P, Orecchini A, Paciaroni A, Wuttke J, Tobias DJ, Weik M (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490

    Article  ADS  Google Scholar 

  50. Schirò G, Weik M (2019) Role of hydration water in the onset of protein structural dynamics. J Phys Condens Matter 31:463002

    Article  ADS  Google Scholar 

  51. Chen S-H, Lagi M, Chu X, Zhang Y, Kim C, Faraone A, Fratini E, Baglioni P (2010) Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations. Spectrosc Int J 24:1–24

    Article  Google Scholar 

  52. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  53. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  54. MacKerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  Google Scholar 

  55. Camisasca G, De Marzio M, Rovere M, Gallo P (2017) Slow dynamics and structure of supercooled water in confinement. Entropy 19:185

    Article  Google Scholar 

  56. Iorio A, Camisasca G, Gallo P (2019) Glassy dynamics of water at interface with biomolecules: a Mode Coupling Theory test. Sci China Phys Mech Astron 62:107011

    Article  ADS  Google Scholar 

  57. Iorio A, Minozzi M, Camisasca G, Rovere M, Gallo P (2020) Slow dynamics of supercooled hydration water in contact with lysozyme: examining the cage effect at different length scales. Philos Mag 100:2582–2595

    Article  ADS  Google Scholar 

  58. Tenuzzo L, Camisasca G, Gallo P (2020) Protein-water and water-water long-time relaxations in protein hydration water upon cooling—a close look through density correlation functions. Molecules 25:4570

    Article  Google Scholar 

  59. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  Google Scholar 

  60. Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  Google Scholar 

  61. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  Google Scholar 

  62. Gallo P, Sciortino F, Tartaglia P, Chen S-H (1996) Slow dynamics of water molecules in supercooled states. Phys Rev Lett 76:2730–2733

    Article  ADS  Google Scholar 

  63. Sciortino F, Gallo P, Tartaglia P, Chen S-H (1996) Supercooled water and the kinetic glass transition. Phys Rev E 54:6331–6343

    Article  ADS  Google Scholar 

  64. Götze W, Sjogren L (1992) Relaxation processes in supercooled liquids. Reports Prog Phys 55:241–376

    Article  ADS  Google Scholar 

  65. Götze W (2009) Complex Dynamics of Glass-Forming Liquids. Oxford University Press, New York

    MATH  Google Scholar 

  66. Perticaroli S, Comez L, Sassi P, Paolantoni M, Corezzi S, Caponi S, Morresi A, Fioretto D (2015) Hydration and aggregation of lysozyme by extended frequency range depolarized light scattering. J Non Cryst Solids 407:472–477

    Article  ADS  Google Scholar 

  67. Corezzi S, Sassi P, Paolantoni M, Comez L, Morresi A, Fioretto D (2014) Hydration and rotational diffusion of levoglucosan in aqueous solutions. J Chem Phys 140:184505

    Article  ADS  Google Scholar 

  68. Pal SK, Peon J, Bagchi B, Zewail AH (2002) Biological water: femtosecond dynamics of macromolecular hydration. J Phys Chem B 106:12376–12395

    Article  Google Scholar 

  69. Pal SK, Peon J, Zewail AH (2002) Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc Natl Acad Sci 99:1763–1768

    Article  ADS  Google Scholar 

  70. Zhang L, Wang L, Kao Y-T, Qiu W, Yang Y, Okobiah O, Zhong D (2007) Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci U S A 104:18461–18466

    Article  ADS  Google Scholar 

  71. Li T, Hassanali AA, Kao Y-T, Zhong D, Singer SJ (2007) Hydration dynamics and time scales of coupled water-protein fluctuations. J Am Chem Soc 129:3376–3382

    Article  Google Scholar 

  72. Starr FW, Sciortino F, Stanley HE (1999) Dynamics of simulated water under pressure. Phys Rev E 60:6757–6768

    Article  ADS  Google Scholar 

  73. Angell CA (2002) Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev 102:2627–2650

    Article  Google Scholar 

  74. Camisasca G, Schlesinger D, Zhovtobriukh I, Pitsevich G, Pettersson LGM (2019) A proposal for the structure of high- and low-density fluctuations in liquid water. J Chem Phys 151:034508

    Article  ADS  Google Scholar 

  75. Camisasca G, Galamba N, Wikfeldt KT, Pettersson LGM (2019) Translational and rotational dynamics of high and low density TIP4P/2005 water. J Chem Phys 150:224507

    Article  ADS  Google Scholar 

  76. Gallo P, Rovere M (2012) Mode coupling and fragile to strong transition in supercooled TIP4P water. J Chem Phys 137:164503

    Article  ADS  Google Scholar 

  77. De Marzio M, Camisasca G, Rovere M, Gallo P (2016) Fragile-to-strong crossover in supercooled water : A comparison between TIP4P and TIP4P/2005 models. IL NUOVO CIMENTO C 39:1–8

    Google Scholar 

  78. De Marzio M, Camisasca G, Rovere M, Gallo P (2016) Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water. J Chem Phys 144:074503

    Article  ADS  Google Scholar 

  79. De Marzio M, Camisasca G, Rovere M, Gallo P (2018) Fragile to strong crossover and Widom line in supercooled water: A comparative study. Front Phys 13:136103

    Article  Google Scholar 

  80. Stanley HE, Kumar P, Han S, Mazza MG, Stokely K, Buldyrev SV, Franzese G, Mallamace F, Xu L (2009) Heterogeneities in confined water and protein hydration water. J Phys Condens Matter 21:504105

    Article  Google Scholar 

  81. Gallo P, Corradini D, Rovere M (2013) Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl. J Chem Phys 139:204503

    Article  ADS  Google Scholar 

  82. Gallo P, Rovere M, Chen S-H (2010) Dynamic crossover in supercooled confined water: understanding bulk properties through confinement. J Phys Chem Lett 1:729–733

    Article  Google Scholar 

  83. Gallo P, Rovere M, Chen S-H (2012) Water confined in MCM-41: a mode coupling theory analysis. J Phys Condens Matter 24:064109

    Article  ADS  Google Scholar 

  84. Coronas LE, Vilanova O, Bianco V, Santos F de los, Franzese G (2020) The Franzese-Stanley Coarse Grained Model for Hydration Water, arXiv:2004.03646v2

  85. Gallo P, Rovere M, Spohr E (2000) Glass transition and layering effects in confined water: a computer simulation study. J Chem Phys 113:11324–11335

    Article  ADS  Google Scholar 

  86. Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci U S A 101:14408–14413

    Article  ADS  Google Scholar 

  87. Magazù S, Maisano G, Migliardo F, Mondelli C, Romeo G (2004) An elastic neutron scattering on dynamical transition in hydrogen-bonded systems. J Mol Struct 700:225–227

    Article  ADS  Google Scholar 

  88. He Y, Ku PI, Knab JR, Chen JY, Markelz AG (2008) Protein dynamical transition does not require protein structure. Phys Rev Lett 101:178103

    Article  ADS  Google Scholar 

  89. Zanatta M, Tavagnacco L, Buratti E, Bertoldo M, Natali F, Chiessi E, Orecchini A, Zaccarelli E (2018) Evidence of a low-temperature dynamical transition in concentrated microgels. Sci Adv 4:eaat5895

    Article  ADS  Google Scholar 

  90. Tavagnacco L, Chiessi E, Zanatta M, Orecchini A, Zaccarelli E (2019) Water-polymer coupling induces a dynamical transition in microgels. J Phys Chem Lett 10:870–876

    Article  Google Scholar 

  91. Kob W, Andersen HC (1995) Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys Rev E 52:4134–4153

    Article  ADS  Google Scholar 

  92. Kob W, Andersen HC (1995) Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys Rev E 51:4626–4641

    Article  ADS  Google Scholar 

  93. Sastry S, Debenedetti PG, Stillinger FH (1998) Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393:554–557

    Article  ADS  Google Scholar 

  94. Svishchev IM, Zassetsky AY (2000) Three-dimensional picture of dynamical structure in liquid water. J Chem Phys 112:1367–1372

    Article  ADS  Google Scholar 

  95. De Marzio M, Camisasca G, Rovere M, Gallo P (2017) Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes. J Chem Phys 146:084502

    Article  ADS  Google Scholar 

  96. Iwashita T, Wu B, Chen W-R, Tsutsui S, Baron AQR, Egami T (2017) Seeing real-space dynamics of liquid water through inelastic x-ray scattering. Sci Adv 3:e1603079

    Article  ADS  Google Scholar 

  97. Camisasca G, De Marzio M, Gallo P (2020) Effect of Trehalose on Protein Cryoprotection: Insights on the Mechanism of Slowing Down of Hydration. J Chem Phys 153:224503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camisasca, G., Iorio, A., Tenuzzo, L., Gallo, P. (2022). Slow Dynamics of Biological Water. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_2

Download citation

Publish with us

Policies and ethics