Skip to main content

Dynamics of Water at Low Temperatures and Implications for Biomolecules

  • Chapter
Aspects of Physical Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 752))

Abstract

The biological relevance of water is a puzzle that has attracted much scientific attention. Here we recall what is unusual about water and discuss the possible implications of the unusual properties of water also known as water anomalies in biological processes. We find the surprising results that some anomalous properties of water, including results of a recent experiments on hydrated biomolecules, are all consistent with the working hypothesis of the presence of a first-order phase transition between two liquids with different densities at low temperatures and high pressures, which ends in a critical point. To elucidate the relation between dynamic and thermodynamic anomalies, we investigate the presence of this liquid–liquid critical point in several models. Using molecular dynamics simulations, we find a correlation between the dynamic transition and the locus of specific heat maxima CP max (also known as Widom line) emanating from the critical point. We investigate the relation between the dynamic transitions of biomolecules (lysozyme and DNA) and the dynamic and thermodynamic properties of hydration water. We find that the dynamic transition of the macromolecules, sometimes called “protein glass transition” in case of proteins, occurs at the same temperature where the dynamics of hydration water has a crossover and also coincides with the temperature of maximum of specific heat and the maximum of the temperature derivative of the orientational order parameter. Since our simulations are consistent with the possibility that the protein glass transition results from a change in the behavior of hydration water, specifically from crossing the Widom line, we explore in more details the relation between the dynamic crossover and the Widom line in a tractable model for water. We find that the dynamic crossover can be fully explained as a consequence of the thermodynamic and structural changes occurring at the Widom line of water. We, therefore, argue that the so-called “glass transition” of hydrated proteins is just a consequence of the thermodynamic and structural changes of the surrounding water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Franks: Biochemistry and Biophysics at Low Temperatures (Cambridge University Press, Cambridge 1985)

    Google Scholar 

  2. C. A. Angell: Annu. Rev. Phys. Chem. 55, 559 (2004)

    Article  ADS  Google Scholar 

  3. H. E. Stanley and J. Teixeira: J. Chem. Phys. 73, 3404 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Sastry, P. G. Debenedetti, F. Sciortino, and H. E. Stanley: Phys. Rev. E 53, 6144 (1996)

    Article  ADS  Google Scholar 

  5. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley: Nature (London) 360, 324 (1992)

    Article  ADS  Google Scholar 

  6. O. Mishima and H. E. Stanley: Nature (London) 392, 164 (1998)

    Article  ADS  Google Scholar 

  7. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, and C.-Y. Mou: Phys. Rev. Lett. 95, 117802 (2005)

    Article  ADS  Google Scholar 

  8. L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. Poole, F. Sciortino, and H. E. Stanley: Proc. Natl. Acad. Sci. U.S.A. 102, 16558 (2005)

    Article  ADS  Google Scholar 

  9. J. Swenson: Phys. Rev. Lett. 97, 189801 (2006)

    Article  ADS  Google Scholar 

  10. S. Cerveny, J. Colmenero, and A. Alegria: Phys. Rev. Lett. 97, 189802 (2006)

    Article  ADS  Google Scholar 

  11. S.-H. Chen, L. Liu, and A. Faraone: Phys. Rev. Lett. 97, 189803 (2006)

    Article  ADS  Google Scholar 

  12. P. G. Debenedetti and H. E. Stanley: Phys. Today 56, 40 (2003)

    Article  Google Scholar 

  13. A. Faraone, L. Liu, C. Y. Mou, C. W. Yen, and S. H. Chen: J. Chem. Phys. 121, 10843 (2004)

    Article  ADS  Google Scholar 

  14. G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley: Nature (London) 409, 692 (2001)

    Article  ADS  Google Scholar 

  15. G. Franzese: Differences between discontinuous and continuous soft-core attractive potentials: the appearance of density anomaly (preprint). J. Mol. Phys. (2007)

    Google Scholar 

  16. A. B. de Oliveira, G. Franzese, P. A. Netz, and M. C. Barbosa: Water-like hierarchy of anomalies in a continuous spherical shouldered potential. J. Chem. Phys. 128, 064901 (2008), http://arxiv.org/abs/0706.2838

    Google Scholar 

  17. M. A. Anisimov, J. V. Sengers, and J. M. H. Levelt Sengers: In: Aqueous System at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions, ed. by D. A. Palmer, R. Fernandez-Prini, and A. H. Harvey (Elsevier, Amsterdam 2004) pp. 29–71

    Google Scholar 

  18. J. M. H. Levelt: Measurements of the compressibility of argon in the gaseous and liquid phase. Ph.D. thesis, University of Amsterdam, Van Gorkum and Co., Assen (1958)

    Google Scholar 

  19. A. Michels, J. M. H. Levelt, and G. Wolkers: Physica 24, 769 (1958)

    Article  ADS  Google Scholar 

  20. A. Michels, J. M. H. Levelt, and W. de Graaff: Physica 24, 659 (1958)

    Google Scholar 

  21. L. Xu, S. Buldyrev, C. A. Angell, and H. E. Stanley: Phys. Rev. E 74, 031108 (2006)

    Article  ADS  Google Scholar 

  22. P. Debenedetti: J. Phys.: Condens. Matter 15, R1669 (2003)

    Article  ADS  Google Scholar 

  23. F. W. Starr, C. A. Angell, and H. E. Stanley: Physica A 323, 51 (2003)

    Article  ADS  Google Scholar 

  24. C. A. Angell: J. Phys. Chem. 97, 6339 (1993)

    Article  Google Scholar 

  25. P. Kumar, S. V. Buldyrev, F. W. Starr, N. Giovambattista, and H. E. Stanley: Phys. Rev. E 72, 051503 (2005)

    Article  ADS  Google Scholar 

  26. P. Kumar, G. Franzese, S. V. Buldyrev, and H. E. Stanley: Phys. Rev. E 73, 041505 (2006)

    Article  ADS  Google Scholar 

  27. J. Horbach and W. Kob: Phys. Rev. B 60, 3169 (1999)

    Article  ADS  Google Scholar 

  28. E. W. Lang and H.-D. Lüdemann: Angew. Chem. Int. Ed. Engl. 21, 315 (2004)

    Article  Google Scholar 

  29. F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H.-D. Lüdemann: Phys. Rev. Lett. 59, 1128 (1987)

    Article  ADS  Google Scholar 

  30. K. Ito, C. T. Moynihan, and C. A. Angell: Nature (London) 398, 492 (1999)

    Article  ADS  Google Scholar 

  31. E. A. Jagla: J. Chem. Phys. 111, 8980 (1999)

    Article  ADS  Google Scholar 

  32. E. A. Jagla: J. Phys.: Condens. Matter 11, 10251 (1999)

    Article  ADS  Google Scholar 

  33. E. A. Jagla: Phys. Rev. E 63, 061509 (2001)

    Article  ADS  Google Scholar 

  34. H. Tanaka: J. Phys. Condens. Matter 15, L703 (2003)

    Article  ADS  Google Scholar 

  35. G. Adam and G. H. Gibbs: J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  36. P. H. Poole, I. Saika-Voivod, and F. Sciortino: J. Phys.: Condens. Matter 17, L431 (2005)

    Article  ADS  Google Scholar 

  37. S. Sastry and C. A. Angell: Nat. Matter. 2, 739 (2003)

    Article  ADS  Google Scholar 

  38. I. Saika-Voivod, P. H. Poole, and F. Sciortino: Nature (London) 412, 514 (2001)

    Article  ADS  Google Scholar 

  39. R. Bergman and J. Swenson: Nature (London) 403, 283 (2000)

    Article  ADS  Google Scholar 

  40. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C. Y. Mou, and S. H. Chen: J. Chem. Phys. 124, 161102 (2006)

    Article  ADS  Google Scholar 

  41. D. C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge 1995)

    Google Scholar 

  42. M. W. Mahoney and W. L. Jorgensen: J. Chem. Phys. 112, 8910 (2000)

    Article  ADS  Google Scholar 

  43. F. H. Stillinger and A. Rahman: J. Chem. Phys. 57, 1281 (1972)

    Article  ADS  Google Scholar 

  44. P. Kumar, S. V. Buldyrev, F. Sciortino, E. Zaccarelli, and H. E. Stanley: Phys. Rev. E 72, 021501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. L. M. Xu, I. Ehrenberg, S. V. Buldyrev, and H. E. Stanley: J. Phys.: Condens. Matter 18, S2239 (2006)

    Article  ADS  Google Scholar 

  46. S. Maruyama, K. Wakabayashi, and M. Oguni: In: Slow Dynamics in Complex Systems: Third International Symposium on Slow Dynamics in Complex Systems, AIP Conf. Proc. No. 708, ed. by M. Tokuyama and I. Oppenheim (AIP, New York 2004) pp. 675–676

    Google Scholar 

  47. P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, S.-H. Chen, S. Sastry, and H. E. Stanley: Phys. Rev. Lett. 97, 177802 (2006)

    Article  ADS  Google Scholar 

  48. S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov: Proc. Natl. Acad. Sci. U.S.A. 103, 9012 (2006)

    Article  ADS  Google Scholar 

  49. J.-M. Zanotti, M.-C. Bellissent-Funel, and J. Parello: Biophys. J. 76, 2390 (1999)

    Article  Google Scholar 

  50. D. Ringe and G. A. Petsko: Biophys. Chem. 105, 667 (2003)

    Article  Google Scholar 

  51. J. M. Wang, P. Cieplak, and P. A. Kollman: J. Comp. Chem. 21, 1049 (2000)

    Article  Google Scholar 

  52. E. J. Sorin and V. S. Pande: Biophys. J. 88, 2472 (2005)

    Article  ADS  Google Scholar 

  53. B. F. Rasmussen, A. M. Stock, D. Ringe, and G. A. Petsko: Nature (London) 357, 423 (1992)

    Article  ADS  Google Scholar 

  54. D. Vitkup, D. Ringe, G. A. Petsko, and M. Karplus: Nat. Struct. Biol. 7, 34 (2000)

    Article  Google Scholar 

  55. A. P. Sokolov, H. Grimm, and R. Kahn: J. Chem. Phys. 110, 7053 (1999)

    Article  ADS  Google Scholar 

  56. W. Doster, S. Cusack, and W. Petry: Nature (London) 337, 754 (1989)

    Article  ADS  Google Scholar 

  57. J. Norberg and L. Nilsson: Proc. Natl. Acad. Sci. U.S.A. 93, 10173 (1996)

    Article  ADS  Google Scholar 

  58. M. Tarek and D. J. Tobias: Phys. Rev. Lett. 88, 138101 (2002)

    Article  ADS  Google Scholar 

  59. M. Tarek and D. J. Tobias: Biophys. J. 79, 3244 (2000)

    Article  ADS  Google Scholar 

  60. H. Hartmann, F. Parak, W. Steigemann, G. A. Petsko, D. R. Ponzi, and H. Frauenfelder: Proc. Natl. Acad. Sci. U.S.A. 79, 4967 (1982)

    Article  ADS  Google Scholar 

  61. A. L. Tournier, J. Xu, and J. C. Smith: Biophys. J. 85, 1871 (2003)

    Article  Google Scholar 

  62. A. L. Lee and A. J. Wand: Nature (London) 411, 501 (2001)

    Article  ADS  Google Scholar 

  63. E. Lindahl, B. Hess, and D. van der Spoel: J. Mol. Mod. 7, 306 (2001)

    Google Scholar 

  64. P. J. Artymiuk, C. C. F. Blake, D. W. Rice, and K. S. Wilson: Acta Crystallogr. B 38, 778 (1982)

    Article  Google Scholar 

  65. H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson: Proc. Natl. Acad. Sci. U.S.A. 78, 2179 (1981)

    Article  ADS  Google Scholar 

  66. J. R. Errington and P. D. Debenedetti: Nature (London) 409, 318 (2001)

    Article  ADS  Google Scholar 

  67. I. Brovchenko, A. Geiger, and A. Oleinikova: J. Chem. Phys. 123, 044515 (2005)

    Article  ADS  Google Scholar 

  68. S.-H. Chen, F. Mallamace, C.-Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu: Proc. Natl. Acad. Sci. U.S.A. 103, 12974 (2006)

    Article  ADS  Google Scholar 

  69. P. Kumar: Proc. Natl. Acad. Sci. U.S.A. 103, 12955 (2006)

    Article  ADS  Google Scholar 

  70. P. Kumar, S. V. Buldyrev, S. R. Becker, P. H. Poole, F. W. Starr, and H. E. Stanley: Proc. Natl. Acad. Sci. U.S.A. 104, 9575 (2007)

    Article  ADS  Google Scholar 

  71. P. Kumar, S. V. Buldyrev, and H. E. Stanley: Space-time correlations in the orientational order parameter and the orientational entropy of water (preprint). (2007)

    Google Scholar 

  72. P. Kumar, S. V. Buldyrev, and H. E. Stanley: In: Soft Matter under Extreme Pressures: Fundamentals and Emerging Technologies, ed. by S. J. Rzoska and V. Mazur, Proc. NATO ARW, Odessa, Oct. 2005 (Springer, Berlin Heidelberg New York 2006)

    Google Scholar 

  73. P. Kumar, G. Franzese, and H. E. Stanley: Phys. Rev. Lett. 100, 105701 (2008)

    Article  ADS  Google Scholar 

  74. G. Franzese and H. E. Stanley: J. Phys.: Condens. Matter 14, 2201 (2002)

    Article  ADS  Google Scholar 

  75. G. Franzese and H. E. Stanley: Physica A 314, 508 (2002)

    Article  ADS  Google Scholar 

  76. G. Franzese, M. I. Marques, and H. E. Stanley: Phys. Rev. E 67, 011103 (2003)

    Article  ADS  Google Scholar 

  77. G. Franzese and H. E. Stanley: J. Phys.: Condens. Matter 19, 205126 (2007)

    Article  ADS  Google Scholar 

  78. G. Darrigo, G. Maisano, F. Mallamace, P. Migliardo, and F. Wanderlingh: J. Chem. Phys. 75, 4264 (1981)

    Article  ADS  Google Scholar 

  79. Angell, C. A. and Rodgers, V.: J. Chem. Phys. 80, 6245 (1984)

    Article  ADS  Google Scholar 

  80. A. K. Soper and M. A. Ricci: Phys. Rev. Lett. 84, 2881 (2000), and references cited therein

    Article  ADS  Google Scholar 

  81. E. Schwegler, G. Galli, and F. Gygi: Phys. Rev. Lett. 84, 2429 (2000)

    Article  ADS  Google Scholar 

  82. P. Raiteri, A. Laio, and M. Parrinello: Phys. Rev. Lett. 93, 087801 (2004), and references cited therein

    Article  ADS  Google Scholar 

  83. K. Stokeley, M. G. Mazza, G. Franzese, and H. E. Stanley: A general model for the thermal behavior of supercooled water, submitted URL arXiv:0805.3468v1<http://arxiv.org/abs/0805.3468v1>

  84. I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting: Phys. Chem. Chem. Phys. 7, 3210 (2005)

    Article  Google Scholar 

  85. Laage, D. and Hynes, J. T.: Science 311, 832 (2006)

    Article  ADS  Google Scholar 

  86. Tokmakoff, A.: Science 317, 54 (2007)

    Article  Google Scholar 

  87. M. A. Ricci, F. Bruni, P. Gallo, M. Rovere, and A. K. Soper: J. Phys.: Condens. Matter 12, A345 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, P., Franzese, G., Buldyrev, S., Stanley, H. (2009). Dynamics of Water at Low Temperatures and Implications for Biomolecules. In: Franzese, G., Rubi, M. (eds) Aspects of Physical Biology. Lecture Notes in Physics, vol 752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78765-5_1

Download citation

Publish with us

Policies and ethics