Skip to main content

Biomedical Applications of Laponite®-Based Nanomaterials and Formulations

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Abstract

Laponite® (Lap)-based materials and their biomedical applications are critically discussed. The properties of Lap grades and their modified species are presented. The current state of biomedical applications, including of Lap-based drug delivery systems for different pharmaceutical molecules is reviewed. Special attention is paid to medical hydrogels with incorporated Lap, and cytotoxicity and antimicrobial activity assessments for different Lap-based systems. The detailed reference data of Lap-based materials include Tables with decryptions the grades of Laps, popular silanation agents for edge modification, Lap-based therapeutic platforms, examples of biomedical applications hydrogels with incorporated Lap, hydrogel inks for 3D printing, popular assays for toxicity assessment, effects of Lap on cellular metabolism, and examples of bioactivity assessments for Lap-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann BS (1965) Behaviour of a synthetic clay in pigment dispersions. Rheol Acta 4:250–255. https://doi.org/10.1007/BF01973660

    Article  Google Scholar 

  2. Shafran K, Jeans C, Kemp SJ, Murphy K (2020) Dr Barbara S. Neumann: Clay scientist and industrial pioneer; creator of Laponite®. Clay Miner 1–9. https://doi.org/10.1180/clm.2020.35

  3. Ghadiri M, Chrzanowski W, Rohanizadeh R (2015) Biomedical applications of cationic clay minerals. RSC Adv 5:29467–29481. https://doi.org/10.1039/C4RA16945J

    Article  ADS  Google Scholar 

  4. Lebovka N, Lisetski L, Bulavin LA (2018) Organization of nano-disks of laponite® in soft colloidal systems. In: Bulavin L, Xu L (eds) Modern Problems of the Physics of Liquid Systems, pp 137–164

    Google Scholar 

  5. Pujala RK (2014) Dispersion stability, microstructure and phase transition of anisotropic nanodiscs. Springer International Publishing, ISBN 978-3-319-04555-9, Switzerland

    Google Scholar 

  6. Becher TB et al (2019) The structure--property relation Laponite® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter 15:1278–1289. https://doi.org/10.1039/C8SM01965G

  7. Massaro M, Cavallaro G, Lazzara G, Riela S (2020) Covalently modified nanoclays: synthesis, properties and applications. In: Cavallaro G, Fakhrullin R, Pasbakhsh P (eds) Clay Nanoparticles. Elsevier, pp 305–333

    Google Scholar 

  8. Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R (2018) Nanoclays for biomedical applications. In: Torres-Martinez LM, Kharissova OV, Kharisov BI (eds) Handbook of Ecomaterials. Springer International Publishing, pp 1–19

    Google Scholar 

  9. Murugesan S, Scheibel T (2020) Copolymer/Clay nanocomposites for biomedical applications. Adv Funct Mater 30:1908101. https://doi.org/10.1002/adfm.201908101

  10. Gholamipour-Shirazi A, Carvalho MS, Huila MFG, Araki K, Dommersnes P, Fossum JO (2016) Transition from glass-to gel-like states in clay at a liquid interface. Sci Rep 6:37239. https://doi.org/10.1038/srep37239

  11. Morariu S, Teodorescu M (2020) Laponite–a versatile component in hybrid materials for biomedical applications. Mem Sci Sect Rom Acad 43:1–25

    Google Scholar 

  12. Chimene D, Alge DL, Gaharwar AK (2015) Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 27:7261–7284. https://doi.org/10.1002/adma.201502422

    Article  Google Scholar 

  13. Tomás H, Alves CS, Rodrigues J (2018) Laponite®: A key nanoplatform for biomedical applications? Nanomedicine Nanotechnology. Biol Med 14:2407–2420. https://doi.org/10.1016/j.nano.2017.04.016

    Article  Google Scholar 

  14. Das SS, Hussain K, Singh S, Hussain A, Faruk A, Tebyetekerwa M et al (2019) Laponite-based nanomaterials for biomedical applications: a review. Curr Pharm Des 25:424–443. https://doi.org/10.2174/1381612825666190402165845

  15. De Melo BR, Ferreira MA, Meirelles LMA, Zorato N, Raffin FN (2020) Nanoclays in drug delivery systems. In: Cavallaro G, Fakhrullin R, Pasbakhsh P (eds) Clay Nanoparticles. Elsevier, Properties and Applications. Micro and Nano Technologies, pp 185–202

    Google Scholar 

  16. Ianchis R et al (2020) Hydrogel-clay nanocomposites as carriers for controlled release. Curr Med Chem 27:919–954. https://doi.org/10.2174/0929867325666180831151055

  17. Jayakumar A, Surendranath A, Mohanan PV (2018) 2D materials for next generation healthcare applications. Int J Pharm 551:309–321. https://doi.org/10.1016/j.ijpharm.2018.09.041

    Article  Google Scholar 

  18. Mousa M, Evans ND, Oreffo ROC, Dawson JI (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159:204–214. https://doi.org/10.1016/j.biomaterials.2017.12.024

    Article  Google Scholar 

  19. Ogunsona EO, Muthuraj R, Ojogbo E, Valerio O, Mekonnen TH (2020) Engineered nanomaterials for antimicrobial applications: a review. Appl Mater Today 18:100473. https://doi.org/10.1016/j.apmt.2019.100473

  20. Pramanik S, Das DS (2020) Chapter 9 - Future prospects and commercial viability of two-dimensional nanostructures for biomedical technology. In: Khan R, Barua S (eds) Two-Dimensional Nanostructures for Biomedical Technology. Elsevier, pp 281–302

    Google Scholar 

  21. Zhang J, Zhou CH, Petit S, Zhang H (2019) Hectorite: synthesis, modification, assembly and applications. Appl Clay Sci 177:114–138. https://doi.org/10.1016/j.clay.2019.05.001

    Article  Google Scholar 

  22. Neumann BS (1970) Synthetic hectorite-type clay minerals. United States Patent No 3586478. Claims priority, applicatign Great Britain Ser. No 298401, June 20, 1963

    Google Scholar 

  23. Jeans CV (2009) Contrasting books on clay mineral science–how should they be judged? (shortened title two books on clay mineral science). Acta Geodyn Geromaterialia 6:45–59

    Google Scholar 

  24. Wang S et al (2019) Synthesis and biocompatibility of two-dimensional biomaterials. Colloids Surfaces A Physicochem Eng Asp 583:124004. https://doi.org/10.1016/j.colsurfa.2019.124004

  25. Christidis GE, Aldana C, Chryssikos GD, Gionis V, Kalo H, Stöter M, Breu J, Robert J-L (2018) The nature of Laponite: pure hectorite or a mixture of different trioctahedral phases? Minerals 8:314. https://doi.org/10.3390/min8080314

    Article  ADS  Google Scholar 

  26. Gantenbein D, Schoelkopf J, Matthews GP, Gane PAC (2011) Determining the size distribution-defined aspect ratio of platy particles. Appl Clay Sci 53:544–552. https://doi.org/10.1016/j.clay.2011.04.020

    Article  Google Scholar 

  27. Balnois E, Durand-Vidal S, Levitz P (2003) Probing the morphology of laponite clay colloids by atomic force microscopy. Langmuir 19:6633–6637. https://doi.org/10.1021/la0340908

    Article  Google Scholar 

  28. López-Angulo D et al (2020) Effect of Laponite® on the structure, thermal stability and barrier properties of nanocomposite gelatin films. Food Biosci 35:100596. https://doi.org/10.1016/j.fbio.2020.100596

  29. Suman K, Joshi YM (2018) Microstructure and soft glassy dynamics of an aqueous laponite dispersion. Langmuir 34:13079–13103. https://doi.org/10.1021/acs.langmuir.8b01830

    Article  Google Scholar 

  30. Tzitzios V et al (2010) Immobilization of magnetic iron oxide nanoparticles on laponite discs – an easy way to biocompatible ferrofluids and ferrogels. J Mater Chem 20:5418. https://doi.org/10.1039/c0jm00061b

  31. Thompson DW, Butterworth JT (1992) The nature of laponite and its aqueous dispersions. J Colloid Interface Sci 151:236–243. https://doi.org/10.1016/0021-9797(92)90254-J

    Article  ADS  Google Scholar 

  32. Mohanty RP, Joshi YM (2016) Chemical stability phase diagram of aqueous Laponite dispersions. Appl Clay Sci 119:243–248. https://doi.org/10.1016/j.clay.2015.10.021

    Article  Google Scholar 

  33. Jatav S, Joshi YM (2014) Chemical stability of Laponite in aqueous media. Appl Clay Sci 97:72–77. https://doi.org/10.1016/j.clay.2014.06.004

    Article  Google Scholar 

  34. Suman K, Mittal M, Joshi YM (2020) Effect of sodium pyrophosphate and understanding microstructure of aqueous LAPONITE® dispersion using dissolution study. J Phys Condens Matter 32:224002. https://doi.org/10.1088/1361-648X/ab724d

  35. Anonymous (2018) Laponite. Performance Additives. BYK. Technical Information B-RI 21

    Google Scholar 

  36. Delavernhe L, Pilavtepe M, Emmerich K (2018) Cation exchange capacity of natural and synthetic hectorite. Appl Clay Sci 151:175–180. https://doi.org/10.1016/j.clay.2017.10.007

    Article  Google Scholar 

  37. Capello C, Leandro GC, Campos CEM, Hotza D, Carciofi BAM, Valencia GA (2019) Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. J Food Eng 262:162–169. https://doi.org/10.1016/j.jfoodeng.2019.06.010

    Article  Google Scholar 

  38. Valencia GA, Djabourov M, Carn F, Sobral PJA (2018) Novel insights on swelling and dehydration of laponite. Colloid Interface Sci Commun 23:1–5. https://doi.org/10.1016/j.colcom.2018.01.001

    Article  Google Scholar 

  39. Bippus L, Jaber M, Lebeau B (2009) Laponite and hybrid surfactant/laponite particles processed as spheres by spray-drying. New J Chem 33:1116–1126. https://doi.org/10.1039/B820429B

    Article  Google Scholar 

  40. Gaharwar AK et al (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25:3329–3336. https://doi.org/10.1002/adma.201300584

  41. Li C, Liu Q, Mei Z, Wang J, Xu J, Sun D (2009) Pickering emulsions stabilized by paraffin wax and Laponite clay particles. J Colloid Interface Sci 336:314–321. https://doi.org/10.1016/j.jcis.2009.03.080

    Article  ADS  Google Scholar 

  42. Ramsay JDF, Swanton SW, Bunce J (1990) Swelling and dispersion of smectite clay colloids: determination of structure by neutron diffraction and small-angle neutron scattering. J Chem Soc Faraday Trans 86:3919–3926. https://doi.org/10.1039/FT9908603919

    Article  Google Scholar 

  43. Rosta L, Von Gunten HR (1990) Light scattering characterization of laporite sols. J Colloid Interface Sci 134:397–406. https://doi.org/10.1016/0021-9797(90)90149-I

    Article  ADS  Google Scholar 

  44. Karpovich A, Vlasova M, Sapronova N, Sukharev V, Ivanov V (2016) Exfoliation dynamics of laponite clay in aqueous suspensions studied by NMR relaxometry. Orient J Chem 32:1679–1683. https://doi.org/10.13005/ojc/320346

  45. Bakk A, Fossum JO, da Silva GJ, Adland HM, Mikkelsen A, Elgsaeter A (2002) Viscosity and transient electric birefringence study of clay colloidal aggregation. Phys Rev E 65:21407. https://doi.org/10.1103/PhysRevE.65.021407

    Article  ADS  Google Scholar 

  46. Nicolai T, Cocard S (2000) Light scattering study of the dispersion of laponite. Langmuir 16:8189–8193. https://doi.org/10.1021/la9915623

    Article  Google Scholar 

  47. Ali S, Bandyopadhyay R (2013) Use of ultrasound attenuation spectroscopy to determine the size distribution of clay tactoids in aqueous suspensions. Langmuir 29:12663–12669. https://doi.org/10.1021/la402478h

    Article  Google Scholar 

  48. Pawar N, Bohidar HB (2011) Anisotropic domain growth and complex coacervation in nanoclay-polyelectrolyte solutions. Adv Colloid Interface Sci 167:12–23. https://doi.org/10.1016/j.cis.2011.06.007

  49. Au P-I, Hassan S, Liu J, Leong Y-K (2015) Behaviour of LAPONITE® gels: rheology, ageing, pH effect and phase state in the presence of dispersant. Chem Eng Res Des 101:65–73. https://doi.org/10.1016/j.cherd.2015.07.023

    Article  Google Scholar 

  50. Labanda J, Llorens J (2005) Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions. J Colloid Interface Sci 289:86–93. https://doi.org/10.1016/j.jcis.2005.03.055

    Article  ADS  Google Scholar 

  51. Labanda J, Sabaté J, Llorens J (2007) Rheology changes of Laponite aqueous dispersions due to the addition of sodium polyacrylates of different molecular weights. Colloids Surfaces A Physicochem Eng Asp 301:8–15. https://doi.org/10.1016/j.colsurfa.2007.01.011

    Article  Google Scholar 

  52. Huang AY, Berg JC (2006) High-salt stabilization of Laponite clay particles. J Colloid Interface Sci 296:159–164. https://doi.org/10.1016/j.jcis.2005.08.068

    Article  ADS  Google Scholar 

  53. Zhang S, Lan Q, Liu Q, Xu J, Sun D (2008) Aqueous foams stabilized by Laponite and CTAB. Colloids Surfaces A Physicochem Eng Asp 317:406–413. https://doi.org/10.1016/j.colsurfa.2007.11.010

    Article  Google Scholar 

  54. Manilo M, Lebovka N, Barany S (2014) Characterization of the electric double layers of multi-walled carbon nanotubes, laponite and nanotube+ laponite hybrids in aqueous suspensions. Colloids Surfaces A Physicochem Eng Asp 462:211–216. https://doi.org/10.1016/j.colsurfa.2014.09.006

    Article  Google Scholar 

  55. Savenko VS (2014) Aging of Laponite aqueous suspensions in presence of anionic surfactant. Bull Taras Shevchenko Natl Univ Kyiv Ser Phys Math 2:277–282

    Google Scholar 

  56. Tawari SL, Koch DL, Cohen C (2001) Electrical double-layer effects on the Brownian diffusivity and aggregation rate of Laponite clay particles. J Colloid Interface Sci 240:54–66. https://doi.org/10.1006/jcis.2001.7646

    Article  ADS  Google Scholar 

  57. Bergaya F, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12:275–280. https://doi.org/10.1016/S0169-1317(97)00012-4

    Article  Google Scholar 

  58. Borden D, Giese RF (2001) Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner 49:444–445. https://doi.org/10.1346/CCMN.2001.0490510

    Article  ADS  Google Scholar 

  59. Mourchid A, Levitz P (1998) Long-term gelation of laponite aqueous dispersions. Phys Rev E 57:R4887. https://doi.org/10.1103/PhysRevE.57.R4887

    Article  ADS  Google Scholar 

  60. Komadel P (2016) Acid activated clays: materials in continuous demand. Appl Clay Sci 131:84–99. https://doi.org/10.1016/j.clay.2016.05.001

    Article  Google Scholar 

  61. Mishra AK, Kuila T, Kim NH, Lee JH (2012) Effect of peptizer on the properties of Nafion-Laponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells. J Memb Sci 389:316–323. https://doi.org/10.1016/j.memsci.2011.10.043

    Article  Google Scholar 

  62. Li P, Kim NH, Hui D, Rhee KY, Lee JH (2009) Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl Clay Sci 46:414–417. https://doi.org/10.1016/j.clay.2009.10.007

    Article  Google Scholar 

  63. Komadel P, Madejová J (2006) Acid activation of clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in Clay Science. Elsevier, pp 263–287

    Google Scholar 

  64. Tkáč I, Komadel P, Müller D (1994) Acid-treated montmorillonites—a study by 29 Si and 27 Al MAS NMR. Clay Miner 29:11–19. https://doi.org/10.1180/claymin.1994.029.1.02

    Article  ADS  Google Scholar 

  65. Breen C, Madejová J, Komadel P (1995) Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. J Mater Chem 5:469–474. https://doi.org/10.1039/JM9950500469

    Article  Google Scholar 

  66. Bickmore BR, Bosbach D, Hochella MF Jr, Charlet L, Rufe E (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. Am Mineral 86:411–423. https://doi.org/10.2138/am-2001-0404

    Article  ADS  Google Scholar 

  67. Van Rompaey K, Van Ranst E, De Coninck F, Vindevogel N (2002) Dissolution characteristics of hectorite in inorganic acids. Appl Clay Sci 21:241–256. https://doi.org/10.1016/S0169-1317(02)00086-8

    Article  Google Scholar 

  68. Franco F, Pozo M, Cecilia JA, Benítez-Guerrero M, Lorente M (2016) Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl Clay Sci 120:70–80. https://doi.org/10.1016/j.clay.2015.11.021

    Article  Google Scholar 

  69. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187. https://doi.org/10.1016/j.progpolymsci.2015.10.001

    Article  Google Scholar 

  70. Mishra AK, Chattopadhyay S, Nando GB (2010) Effect of modifiers on morphology and thermal properties of novel thermoplastic polyurethane-peptized laponite nanocomposite. J Appl Polym Sci 115:558–569. https://doi.org/10.1002/app.30975

    Article  Google Scholar 

  71. Mishra AK, Rajamohanan PR, Nando GB, Chattopadhyay S (2011) Structure–property of thermoplastic polyurethane–clay nanocomposite based on covalent and dual-modified Laponite. Adv Sci Lett 4:65–73. https://doi.org/10.1166/asl.2011.1174

    Article  Google Scholar 

  72. Wheeler PA, Wang J, Baker J, Mathias LJ (2005) Synthesis and characterization of covalently functionalized laponite clay. Chem Mater 17:3012–3018. https://doi.org/10.1021/cm050306a

    Article  Google Scholar 

  73. Hanley HJM, Muzny CD, Butler BD (1997) Surfactant adsorption on a clay mineral: application of radiation scattering. Langmuir 13:5276–5282. https://doi.org/10.1021/la962048p

    Article  Google Scholar 

  74. Nakamura T, Thomas JK (1987) Formation of surfactant double layers on laponite clay colloids. Langmuir 3:234–239. https://doi.org/10.1021/la00074a016

    Article  Google Scholar 

  75. Pizzey C, Klein S, Leach E, van Duijneveldt JS, Richardson RM (2004) Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study. J Phys Condens Matter 16:2479. https://doi.org/10.1088/0953-8984/16/15/002

    Article  ADS  Google Scholar 

  76. Borsacchi S, Geppi M, Ricci L, Ruggeri G, Veracini CA (2007) Interactions at the surface of organophilic-modified laponites: a multinuclear solid-state NMR study. Langmuir 23:3953–3960. https://doi.org/10.1021/la063040a

  77. Li C-F, Zhang S-Y, Wang J, Feng X-S, Sun D-J, Xu J (2008) Interactions between Brij surfactants and Laponite nanoparticles and emulsions stabilized by their mixtures. Acta Chim Sin -Chinese Ed 66(21):2313–2320

    Google Scholar 

  78. Liu Q, Zhang S, Sun D, Xu J (2009) Aqueous foams stabilized by hexylamine-modified Laponite particles. Colloids Surfaces A Physicochem Eng Asp 338:40–46. https://doi.org/10.1016/j.colsurfa.2008.12.035

    Article  Google Scholar 

  79. Savenko V, Bulavin L, Rawiso M, Loginov M, Vorobiev E, Lebovka NI (2013) Sedimentation stability and aging of aqueous dispersions of Laponite in the presence of cetyltrimethylammonium bromide. Phys Rev E 88:52301. https://doi.org/10.1103/PhysRevE.88.052301

    Article  ADS  Google Scholar 

  80. Manilo MV, Lebovka N, Barany S (2017) Combined effect of cetyltrimethylammonium bromide and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J Mol Liq 235:104–110. https://doi.org/10.1016/j.molliq.2017.01.090

    Article  Google Scholar 

  81. Connolly J, van Duijneveldt JS, Klein S, Pizzey C, Richardson RM (2006) Effect of surfactant and solvent properties on the stacking behavior of non-aqueous suspensions of organically modified clays. Langmuir 22:6531–6538. https://doi.org/10.1021/la0609219

    Article  Google Scholar 

  82. Lambert Y et al (2006) Second-harmonic generation imaging of LiIO3/laponite nanocomposite waveguides. Jpn J Appl Phys 45:7525. https://doi.org/10.1143/JJAP.45.7525

  83. Yaroshchuk O, Tomylko S, Kovalchuk O, Lebovka N (2014) Liquid crystal suspensions of carbon nanotubes assisted by organically modified Laponite nanoplatelets. Carbon N Y 68:389–398. https://doi.org/10.1016/j.carbon.2013.11.015

    Article  Google Scholar 

  84. Lysenkov EA, Lebovka NI, Yakovlev YV, Klepko VV, Pivovarova NS (2012) Percolation behaviour of polypropylene glycol filled with multiwalled carbon nanotubes and Laponite. Compos Sci Technol 72:1191–1195. https://doi.org/10.1016/j.compscitech.2012.04.002

    Article  Google Scholar 

  85. Pizzey C, Van Duijneveldt J, Klein S (2004) Liquid crystal clay composites. Mol Cryst Liq Cryst 409:51–57. https://doi.org/10.1080/15421400490435657

    Article  Google Scholar 

  86. Li W, Yu L, Liu G, Tan J, Liu S, Sun D (2012) Oil-in-water emulsions stabilized by Laponite particles modified with short-chain aliphatic amines. Colloids Surfaces A Physicochem Eng Asp 400:44–51. https://doi.org/10.1016/j.colsurfa.2012.02.044

    Article  Google Scholar 

  87. Bruno TJ, Lewandowska A, Tsvetkov F, Miller KE, Hanley HJM (2002) Wall-coated open-tubular column chromatography on an organo–clay stationary phase. J Chromatogr A 973:143–149. https://doi.org/10.1016/S0021-9673(02)01124-X

    Article  Google Scholar 

  88. Mirau PA, Serres JL, Jacobs D, Garrett PH, Vaia RA (2008) Structure and dynamics of surfactant interfaces in organically modified clays. J Phys Chem B 112:10544–10551. https://doi.org/10.1021/jp801479h

    Article  Google Scholar 

  89. Wang B, Zhou M, Rozynek Z, Fossum JO (2009) Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. J Mater Chem 19:1816–1828. https://doi.org/10.1039/B818502F

    Article  Google Scholar 

  90. Leach ESH, Hopkinson A, Franklin K, van Duijneveldt JS (2005) Nonaqueous suspensions of laponite and montmorillonite. Langmuir 21:3821–3830. https://doi.org/10.1021/la0503909

    Article  Google Scholar 

  91. Bulavin LA et al (2018) Microstructure and optical properties of nematic and cholesteric liquid crystals doped with organo-modified platelets. J Mol Liq 267:279–285. https://doi.org/10.1016/j.molliq.2017.12.078

  92. Loyens W, Jannasch P, Maurer FHJ (2005) Poly (ethylene oxide)/Laponite nanocomposites via melt-compounding: effect of clay modification and matrix molar mass. Polymer (Guildf) 46:915–928. https://doi.org/10.1016/j.polymer.2004.11.076

    Article  Google Scholar 

  93. Savenko V, Bulavin L, Rawiso M, Lebovka N (2014) Aging of aqueous Laponite dispersions in the presence of sodium polystyrene sulfonate. Ukr J Phys 59(6):589–595. https://doi.org/10.15407/ujpe59.06.0589

  94. Capovilla L, Labbe P, Reverdy G (1991) Formation of cationic/anionic mixed surfactant bilayers on laponite clay suspensions. Langmuir 7:2000–2003. https://doi.org/10.1021/la00058a004

    Article  Google Scholar 

  95. Shaydyuk Y, Turrell S, Moissette A, Hureau M, Gomza Y, Klepko V, Lebovka N (2014) New phenothiazine–laponite hybrid systems: adsorption and ionization. J Mol Struct 1056:1–6. https://doi.org/10.1016/j.molstruc.2013.10.022

    Article  ADS  Google Scholar 

  96. Ohlow MJ, Moosmann B (2011) Phenothiazine: the seven lives of pharmacology’s first lead structure. Drug Discov Today 16:119–131. https://doi.org/10.1016/j.drudis.2011.01.001

    Article  Google Scholar 

  97. Staniford MC et al (2015) Photophysical efficiency-boost of aqueous aluminium phthalocyanine by hybrid formation with nano-clays. Chem Commun 51:13534–13537. https://doi.org/10.1039/C5CC05352H

  98. Staniford MC, Lezhnina MM, Kynast UH (2015) Phthalocyanine blue in aqueous solutions. RSC Adv 5:3974–3977. https://doi.org/10.1039/C4RA11139G

    Article  ADS  Google Scholar 

  99. Grabolle M, Starke M, Resch-Genger U (2016) Highly fluorescent dye--nanoclay hybrid materials made from different dye classes. Langmuir 32:3506–3513. https://doi.org/10.1021/acs.langmuir.5b04297

  100. Mustafa R et al (2016) Synthesis of diatrizoic acid-modified LAPONITE® nanodisks for CT imaging applications. RSC Adv 6:57490–57496. https://doi.org/10.1039/C6RA11755D

  101. Peraro GR et al (2020) Aminofunctionalized LAPONITE® as a versatile hybrid material for chlorhexidine digluconate incorporation: Cytotoxicity and antimicrobial activities. Appl Clay Sci 195:105733. https://doi.org/10.1016/j.clay.2020.105733

  102. Kaup G, Felbeck T, Staniford M, Kynast U (2016) Towards the rare earth functionalization of nano-clays with luminescent reporters for biophotonics. J Lumin 169:581–586. https://doi.org/10.1016/j.jlumin.2015.03.009

    Article  Google Scholar 

  103. Yang Y, Liu Z, Wu D, Wu M, Tian Y, Niu Z, Huang Y (2013) Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions. J Colloid Interface Sci 410:27–32. https://doi.org/10.1016/j.jcis.2013.07.060

    Article  ADS  Google Scholar 

  104. Patil SP, Mathew R, Ajithkumar TG, Rajamohanan PR, Mahesh TS, Kumaraswamy G (2008) Gelation of covalently edge-modified laponites in aqueous media. 1. Rheology and nuclear magnetic resonance. J Phys Chem B 112:4536–4544. https://doi.org/10.1021/jp710489n

    Article  Google Scholar 

  105. Daniel LM, Frost RL, Zhu HY (2008) Edge-modification of laponite with dimethyl-octylmethoxysilane. J Colloid Interface Sci 321:302–309. https://doi.org/10.1016/j.jcis.2008.01.032

    Article  ADS  Google Scholar 

  106. Hegyesi N, Simon N, Pukánszky B (2019) Silane modification of layered silicates and the mechanism of network formation from exfoliated layers. Appl Clay Sci 171:74–81. https://doi.org/10.1016/j.clay.2019.01.023

    Article  Google Scholar 

  107. Park M, Shim I-K, Jung E-Y, Choy J-H (2004) Modification of external surface of laponite by silane grafting. J Phys Chem Solids 65:499–501. https://doi.org/10.1016/j.jpcs.2003.10.031

    Article  ADS  Google Scholar 

  108. Herrera NN, Letoffe J-M, Reymond J-P, Bourgeat-Lami E (2005) Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes. J Mater Chem 15:863–871. https://doi.org/10.1039/B415618H

    Article  Google Scholar 

  109. Wheeler PA, Wang J, Mathias LJ (2006) Poly (methyl methacrylate)/laponite nanocomposites: exploring covalent and ionic clay modifications. Chem Mater 18:3937–3945. https://doi.org/10.1021/cm0526361

    Article  Google Scholar 

  110. Herrera NN, Letoffe J-M, Putaux J-L, David L, Bourgeat-Lami E (2004) Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 20:1564–1571. https://doi.org/10.1021/la0349267

    Article  Google Scholar 

  111. Bandeira LC et al (2012) Preparation of composites of laponite with alginate and alginic acid polysaccharides. Polym Int 61:1170–1176. https://doi.org/10.1002/pi.4196

  112. Bui VKH, Park D, Lee Y-C (2018) Aminoclays for biological and environmental applications: an updated review. Chem Eng J 336:757–772. https://doi.org/10.1016/j.cej.2017.12.052

    Article  Google Scholar 

  113. Samei E, Pelc NJ (2020) Computed Tomography: Approaches, Applications, and Operations. Springer Nature, Switzerland AG

    Google Scholar 

  114. Ding L et al (2016) LAPONITE® -stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomater Sci 4:474–482. https://doi.org/10.1039/C5BM00508F

  115. Mustafa R, Zhou B, Yang J, Zheng L, Zhang G, Shi X (2016) Dendrimer-functionalized LAPONITE® nanodisks loaded with gadolinium for T 1-weighted MR imaging applications. RSC Adv 6:95112–95119. https://doi.org/10.1039/C6RA18718H

    Article  ADS  Google Scholar 

  116. De Melo Barbosa R, Ferreira MA, Meirelles LMA, NicoleZorato, Raffin FN (2020) 8 - Nanoclays in drug delivery systems. In: Cavallaro G, Fakhrullin R, Pasbakhsh P (eds) Clay Nanoparticles. Elsevier, pp 185–202

    Google Scholar 

  117. Snigdha S, Kalarikkal N, Thomas S, Radhakrishnan EK (2020) Engineered phyllosilicate clay-based antimicrobial surfaces. In: Engineered Antimicrobial Surfaces. Springer, pp 95–108

    Google Scholar 

  118. Gonçalves M, Mignani S, Rodrigues J, Tomás H (2020) A glance over doxorubicin based-nanotherapeutics: from proof-of-concept studies to solutions in the market. J Control Release 317:347–374. https://doi.org/10.1016/j.jconrel.2019.11.016

    Article  Google Scholar 

  119. Roychoudhury S, Kumar A, Bhatkar D, Sharma NK (2020) Molecular avenues in targeted doxorubicin cancer therapy. Futur Oncol 16:687–700. https://doi.org/10.2217/fon-2019-0458

    Article  Google Scholar 

  120. Barraud L et al (2005) Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol 42:736–743. https://doi.org/10.1016/j.jhep.2004.12.035

  121. Bezerra IM, Chiavone-Filho O, Mattedi S (2013) Solid-liquid equilibrium data of amoxicillin and hydroxyphenylglycine in aqueous media. Brazilian J Chem Eng 30:45–54. https://doi.org/10.1590/S0104-66322013000100006

  122. Prieto E et al (2020) Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. Biomed Mater. https://doi.org/10.1088/1748-605X/aba445

  123. Varanda F, de Melo MJ, Caco AI, Dohrn R, Makrydaki FA, Voutsas E, Tassios D, Marrucho IM (2006) Solubility of antibiotics in different solvents. 1. Hydrochloride forms of tetracycline, moxifloxacin, and ciprofloxacin. Ind Eng Chem Res 45:6368–6374. https://doi.org/10.1021/ie060055v

    Article  Google Scholar 

  124. Tsai Y-C, Tsai T-F (2019) Itraconazole in the treatment of nonfungal cutaneous diseases: a review. Dermatol Ther (Heidelb) 9:271–280. https://doi.org/10.6084/m9.figshare.8010563

    Article  Google Scholar 

  125. Shin YH, Shin WC, Kim JW (2020) Effect of osteoporosis medication on fracture healing: an evidence based review. J Bone Metab 27:15–26. https://doi.org/10.11005/jbm.2020.27.1.15

  126. Aickara D, Bashyam AM, Pichardo RO, Feldman SR (2020) Topical methotrexate in dermatology: a review of the literature. J Dermatolog Treat 1–21. https://doi.org/10.1080/09546634.2020.1770170

  127. Sanders WE Jr (1992) Oral ofloxacin: a critical review of the new drug application. Clin Infect Dis 14:539–554. https://doi.org/10.1093/clinids/14.2.539

    Article  Google Scholar 

  128. Marsot A, Boulamery A, Bruguerolle B, Simon N (2012) Vancomycin. Clin Pharmacokinet 51:1–13. https://doi.org/10.2165/11596390-000000000-00000

    Article  Google Scholar 

  129. Caracas HCPM, Maciel JVB, de Souza MMG, Maia LC et al (2009) The use of lidocaine as an anti-inflammatory substance: a systematic review. J Dent 37:93–97. https://doi.org/10.1016/j.jdent.2008.10.005

  130. Jaffary F, Abdellahi L, Nilforoushzaheh MA (2017) Review of the prevalence and causes of antimony compounds resistance in different societies: review article. Tehran Univ Med J TUMS Publ 75:399–407

    Google Scholar 

  131. Lonappan L, Brar SK, Das RK, Verma M, Surampalli RY (2016) Diclofenac and its transformation products: environmental occurrence and toxicity-a review. Environ Int 96:127–138. https://doi.org/10.1016/j.envint.2016.09.014

    Article  Google Scholar 

  132. Prathumsap N, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N (2020) Effects of doxorubicin on the heart: from molecular mechanisms to intervention strategies. Eur J Pharmacol 866:172818. https://doi.org/10.1016/j.ejphar.2019.172818

  133. Amalina ND, Nurhayati IP, Meiyanto E (2017) Doxorubicin induces lamellipodia formation and cell migration. Indones J Cancer Chemoprevention 8:61–67. https://doi.org/10.14499/indonesianjcanchemoprev8iss2pp61-67

  134. Martins-Neves SR, Cleton-Jansen A-M, Gomes CMF (2018) Therapy-induced enrichment of cancer stem-like cells in solid human tumors: where do we stand? Pharmacol Res 137:193–204. https://doi.org/10.1016/j.phrs.2018.10.011

  135. Pacelli S, Paolicelli P, Moretti G, Petralito S, Di Giacomo S, Vitalone A, Casadei MA (2016) Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 77:114–123. https://doi.org/10.1016/j.eurpolymj.2016.02.007

    Article  Google Scholar 

  136. Rawat K, Agarwal S, Tyagi A, Verma AK, Bohidar HB (2014) Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay. Appl Biochem Biotechnol 174:936–944. https://doi.org/10.1007/s12010-014-0983-2

    Article  Google Scholar 

  137. Nair BP, Sharma CP (2012) Poly (lactide-co-glycolide)-laponite-F68 nanocomposite vesicles through a single-step double-emulsion method for the controlled release of doxorubicin. Langmuir 28:4559–4564. https://doi.org/10.1021/la300005c

    Article  Google Scholar 

  138. Wang S et al (2013) Laponite® nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 29:5030–5036. https://doi.org/10.1021/la4001363

  139. Li K et al (2014) Enhanced in vivo antitumor efficacy of doxorubicin encapsulated within laponite nanodisks. ACS Appl Mater Interfaces 6:12328–12334. https://doi.org/10.1021/am502094a

  140. Zheng L et al (2019) Direct assembly of anticancer drugs to form Laponite-based nanocomplexes for therapeutic co-delivery. Mater Sci Eng C 99:1407–1414. https://doi.org/10.1016/j.msec.2019.02.083

  141. Wang G et al (2014) Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. ACS Appl Mater Interfaces 6:16687–16695. https://doi.org/10.1021/am5032874

  142. Gonçalves M et al (2014) pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10:300–307. https://doi.org/10.1016/j.actbio.2013.09.013

  143. Yang Y, Li J, Chen F, Qiao S, Li Y, Pan W (2020) Synthesis, formulation, and characterization of doxorubicin-loaded laponite/oligomeric hyaluronic acid-aminophenylboronic acid nanohybrids and cytological evaluation against MCF-7 breast cancer cells. AAPS PharmSciTech 21:5. https://doi.org/10.1208/s12249-019-1533-6

  144. Zhou B et al (2018) Drug-mediation formation of nanohybrids for sequential therapeutic delivery in cancer cells. Colloids Surfaces B Biointerfaces 163:284–290. https://doi.org/10.1016/j.colsurfb.2017.12.046

  145. Alkekhia D, Hammond PT, Shukla A (2020) Layer-by-layer biomaterials for drug delivery. Annu Rev Biomed Eng 22:1–24. https://doi.org/10.1146/annurev-bioeng-060418-052350

    Article  Google Scholar 

  146. Xiao S et al (2016) Fine tuning of the pH-sensitivity of laponite-doxorubicin nanohybrids by polyelectrolyte multilayer coating. Mater Sci Eng C 60:348–356. https://doi.org/10.1016/j.msec.2015.11.051

  147. Zhuang Y et al (2017) Laponite-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy. ACS Biomater Sci Eng 3:431–442. https://doi.org/10.1021/acsbiomaterials.6b00528

  148. Wang G et al (2016) In Situ formation of pH-/thermo-sensitive nanohybrids via friendly-assembly of poly (N-vinylpyrrolidone) onto LAPONITE®. RSC Adv 6:31816–31823. https://doi.org/10.1039/C5RA25628C

  149. Wu Y et al (2014) Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J Mater Chem B 2:7410–7418. https://doi.org/10.1039/C4TB01162G

  150. Jiang T, Chen G, Shi X, Guo R (2019) Hyaluronic acid-decorated laponite® nanocomposites for targeted anticancer drug delivery. Polymers (Basel) 11:137. https://doi.org/10.3390/polym11010137

    Article  Google Scholar 

  151. Jiang T et al (2020) Doxorubicin encapsulated in P-glycoprotein-modified 2D-nanodisks overcomes multidrug resistance. Chem Eur J. https://doi.org/10.1002/chem.201905097

  152. Chen G et al (2015) Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite® nanodisks. New J Chem 39:2847–2855. https://doi.org/10.1039/C4NJ01916D

  153. Mustafa R, Luo Y, Wu Y, Guo R, Shi X (2015) Dendrimer-functionalized laponite nanodisks as a platform for anticancer drug delivery. Nanomaterials 5:1716–1731. https://doi.org/10.3390/nano5041716

    Article  Google Scholar 

  154. Fraile JM et al (2016) Laponite as carrier for controlled in vitro delivery of dexamethasone in vitreous humor models. Eur J Pharm Biopharm 108:83–90. https://doi.org/10.1016/j.ejpb.2016.08.015

  155. Roozbahani M, Kharaziha M, Emadi R (2017) pH sensitive dexamethasone encapsulated laponite nanoplatelets: Release mechanism and cytotoxicity. Int J Pharm 518:312–319. https://doi.org/10.1016/j.ijpharm.2017.01.001

    Article  Google Scholar 

  156. Jung H, Kim H-M, Bin CY, Hwang S-J, Choy J-H (2008) Itraconazole-Laponite: Kinetics and mechanism of drug release. Appl Clay Sci 40:99–107. https://doi.org/10.1016/j.clay.2007.09.002

    Article  Google Scholar 

  157. Jung H, Kim H-M, Bin CY, Hwang S-J, Choy J-H (2008) Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int J Pharm 349:283–290. https://doi.org/10.1016/j.ijpharm.2007.08.008

    Article  Google Scholar 

  158. Ghadiri M, Hau H, Chrzanowski W, Agus H, Rohanizadeh R (2013) Laponite® clay as a carrier for in situ delivery of tetracycline. RSC Adv 3:20193–20201. https://doi.org/10.1039/C3RA43217C

    Article  ADS  Google Scholar 

  159. Wang S et al (2012) Encapsulation of amoxicillin within laponite-doped poly (lactic-co-glycolic acid) nanofibers: preparation, characterization, and antibacterial activity. ACS Appl Mater Interfaces 4:6393–6401. https://doi.org/10.1021/am302130b

  160. Häffner SM et al (2019) Interaction of laponite with membrane components-consequences for bacterial aggregation and infection confinement. ACS Appl Mater Interfaces 11:15389–15400. https://doi.org/10.1021/acsami.9b03527

  161. Nair BP, Sindhu M, Nair PD (2016) Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surfaces B Biointerfaces 143:423–430. https://doi.org/10.1016/j.colsurfb.2016.03.033

  162. Reddy NS, Rao KK (2016) Polymeric hydrogels: recent advances in toxic metal ion removal and anticancer drug delivery applications. Indian J Adv Chem Sci 4(2):214–234

    Google Scholar 

  163. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  Google Scholar 

  164. Van Bemmelen JM (1894) Das hydrogel und das krystallinische hydrat des kupferoxyds. Zeitschrift für Anorg Chemie 5:466–483. https://doi.org/10.1002/zaac.18940050156

    Article  Google Scholar 

  165. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118. https://doi.org/10.1038/185117a0

    Article  ADS  Google Scholar 

  166. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4:2531. https://doi.org/10.5923/j.ajps.20140402.01

    Article  Google Scholar 

  167. Devi L, Gaba P (2019) Hydrogel: an updated primer. J Crit Rev 6:1–10. https://doi.org/10.22159/jcr.2019v6i4.33266

  168. Baroli B (2006) Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 81:491–499. https://doi.org/10.1002/jctb.1468

    Article  Google Scholar 

  169. Hu B-H, Messersmith PB (2005) Enzymatically cross-linked hydrogels and their adhesive strength to biosurfaces. Orthod Craniofacial Res 8:145–149. https://doi.org/10.1111/j.1601-6343.2005.00330.x

    Article  Google Scholar 

  170. Gaharwar AK, Rivera CP, Wu C-J, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148. https://doi.org/10.1016/j.actbio.2011.07.023

    Article  Google Scholar 

  171. Liu H, Wang C, Gao Q, Liu X, Tong Z (2010) Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater 6:275–281. https://doi.org/10.1016/j.actbio.2009.06.018

    Article  Google Scholar 

  172. Sharma G et al (2018) Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 16:113–146. https://doi.org/10.1007/s10311-017-0671-x

  173. Li J, Wu C, Chu PK, Gelinsky M (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep 140:100543. https://doi.org/10.1016/j.mser.2020.100543

  174. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 190:254–273. https://doi.org/10.1016/j.jconrel.2014.03.052

    Article  Google Scholar 

  175. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20:683–696. https://doi.org/10.1089/ten.teb.2014.0086

    Article  Google Scholar 

  176. Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662. https://doi.org/10.1016/j.actbio.2013.12.006

    Article  Google Scholar 

  177. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279. https://doi.org/10.1016/j.carbpol.2012.10.028

    Article  Google Scholar 

  178. Bae KH, Wang L-S, Kurisawa M (2013) Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B 1:5371–5388. https://doi.org/10.1039/c3tb20940g

    Article  Google Scholar 

  179. Khan S, Ullah A, Ullah K, Rehman N (2016) Insight into hydrogels. Des Monomers Polym 19:456–478. https://doi.org/10.1080/15685551.2016.1169380

    Article  Google Scholar 

  180. Kehr NS, Atay S, Ergün B (2015) Self-assembled monolayers and nanocomposite hydrogels of functional nanomaterials for tissue engineering applications. Macromol Biosci 15:445–463. https://doi.org/10.1002/mabi.201400363

  181. Taylor DL, In Het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093. https://doi.org/10.1002/adma.201601613

  182. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties. Adv Mater 14:1120. https://doi.org/10.1002/1521-4095(20020816)14:16%3c1120::AID-ADMA1120%3e3.0.CO;2-9

    Article  Google Scholar 

  183. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N -isopropylacrylamide) and clay. Macromolecules 35:10162–10171. https://doi.org/10.1021/ma021301r

    Article  ADS  Google Scholar 

  184. Haraguchi K, Li H-J, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in situ free-radical polymerization in PNIPA−clay nanocomposite hydrogels. Macromolecules 38:3482–3490. https://doi.org/10.1021/ma047431c

    Article  ADS  Google Scholar 

  185. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Gelation mechanism of poly (N-isopropylacrylamide)−clay nanocomposite gels. Macromolecules 40:4287–4295. https://doi.org/10.1021/ma070104v

    Article  ADS  Google Scholar 

  186. Li P, Siddaramaiah KNH, Yoo G-H, Lee J-H (2009) Poly(acrylamide/Laponite) nanocomposite hydrogels: swelling and cationic dye adsorption properties. J Appl Polym Sci 111:1786–1798. https://doi.org/10.1002/app.29061

    Article  Google Scholar 

  187. Haraguchi K (2011) Stimuli-responsive nanocomposite gels. Colloid Polym Sci 289:455–473. https://doi.org/10.1007/s00396-010-2373-9

  188. Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu C-J, Akkus O, Schmidt G (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12:779–793. https://doi.org/10.1002/mabi.201100508

    Article  Google Scholar 

  189. Manjula B et al (2017) Hydrogels and its nanocomposites from renewable resources: biotechnological and biomedical applications. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of Composites from Renewable Materials. John Wiley & Sons, Inc., Hoboken, pp 67–95

    Google Scholar 

  190. Shen M, Li L, Sun Y, Xu J, Guo X, Prud’homme RK (2014) Rheology and adhesion of poly (acrylic acid)/Laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30:1636–1642. https://doi.org/10.1021/la4045623

  191. Tongwa P, Nygaard R, Bai B (2013) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: design, synthesis, and characterization. J Appl Polym Sci 128:787–794. https://doi.org/10.1002/app.38258

    Article  Google Scholar 

  192. Chen P, Xu S, Wu R, Wang J, Gu R, Du J (2013) A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl Clay Sci 72:196–200. https://doi.org/10.1016/j.clay.2013.01.012

    Article  Google Scholar 

  193. Strachota B et al (2015) Poly(N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation. Soft Matter 11:9291–9306. https://doi.org/10.1039/C5SM01996F

  194. Zinkovska N, Smilek J, Pekar M (2020) Gradient hydrogels - the state of the art in preparation methods. Polymers (Basel) 12:966. https://doi.org/10.3390/polym12040966

    Article  Google Scholar 

  195. Tan Y et al (2018) Rapid recovery hydrogel actuators in air with bionic large-ranged gradient structure. ACS Appl Mater Interfaces 10:40125–40131. https://doi.org/10.1021/acsami.8b13235

  196. Ionov L (2014) Hydrogel-based actuators: possibilities and limitations. Mater Today 17:494–503. https://doi.org/10.1016/j.mattod.2014.07.002

    Article  Google Scholar 

  197. Zhang Y et al (2019) Thermo-responsive and shape-adaptive hydrogel actuators from fundamentals to applications. Eng Sci 6:1–11. https://doi.org/10.30919/es8d788

  198. Tan Y et al (2018) A fast, reversible, and robust gradient nanocomposite hydrogel actuator with water-promoted thermal response. Macromol Rapid Commun 39:1700863. https://doi.org/10.1002/marc.201700863

  199. Xu P et al (2020) Multidimensional gradient hydrogel and its application in sustained release. Colloid Polym Sci 298:1187–1195. https://doi.org/10.1007/s00396-020-04688-3

  200. Yao C et al (2016) Smart hydrogels with inhomogeneous structures assembled using nanoclay-cross-linked hydrogel subunits as building blocks. ACS Appl Mater Interfaces 8:21721–21730. https://doi.org/10.1021/acsami.6b07713

  201. Erol O, Pantula A, Liu W, Gracias DH (2019) Transformer hydrogels: a review. Adv Mater Technol 4:1900043. https://doi.org/10.1002/admt.201900043

    Article  Google Scholar 

  202. Augé A, Zhao Y (2016) What determines the volume transition temperature of UCST acrylamide–acrylonitrile hydrogels? RSC Adv 6:70616–70623. https://doi.org/10.1039/C6RA12720G

    Article  ADS  Google Scholar 

  203. Seuring J, Agarwal S (2012) Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 33:1898–1920. https://doi.org/10.1002/marc.201200433

    Article  Google Scholar 

  204. Huang H, Qi X, Chen Y, Wu Z (2019) Thermo-sensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J 27:990–999. https://doi.org/10.1016/j.jsps.2019.08.001

    Article  Google Scholar 

  205. Teotia AK, Sami H, Kumar A (2015) Thermo-responsive polymers. In: Zhang J (ed) Switchable and Responsive Surfaces and Materials for Biomedical Applications. Elsevier, pp 3–43

    Google Scholar 

  206. Parmar V, Patel G, Abu-Thabit NY (2018) Responsive cyclodextrins as polymeric carriers for drug delivery applications. In: Makhlouf ASH, Abu-Thabit NY (eds) Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, vol. 1. Elsevier, pp 555–580

    Google Scholar 

  207. Song CW, Griffin R, Park HJ (2007) Influence of Tumor pH on Therapeutic Response. Cancer Drug Resistance. Humana Press, Totowa, pp 21–42

    Google Scholar 

  208. Li H, Go G, Ko SY, Park J-O, Park S (2016) Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct 25:027001, p 9. https://doi.org/10.1088/0964-1726/25/2/027001

  209. Thakur S, Arotiba OA (2018) Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly (acrylic acid) superabsorbent hydrogel. Polym Bull 75:4587–4606. https://doi.org/10.1007/s00289-018-2287-0

    Article  Google Scholar 

  210. Raja STK, Thiruselvi T, Mandal AB, Gnanamani A (2015) pH and redox sensitive albumin hydrogel: a self-derived biomaterial. Sci Rep 5:15977. https://doi.org/10.1038/srep15977

    Article  ADS  Google Scholar 

  211. Yoon S, Chen B (2018) Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly (glycerol sebacate) pre-polymer and gelatin. Polym Chem 9:3727–3740. https://doi.org/10.1039/C8PY00544C

    Article  Google Scholar 

  212. Wang Q, Wang Q, Teng W (2016) Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications. Int J Nanomedicine 11:131. https://doi.org/10.2147/IJN.S94777

    Article  Google Scholar 

  213. Ekici S, Tetik A (2015) Development of polyampholyte hydrogels based on Laponite for electrically stimulated drug release. Polym Int 64:335–343. https://doi.org/10.1002/pi.4816

    Article  Google Scholar 

  214. Weeber R, Hermes M, Schmidt AM, Holm C (2018) Polymer architecture of magnetic gels: a review. J Phys Condens Matter 30:63002. https://doi.org/10.1088/1361-648X/aaa344

    Article  Google Scholar 

  215. Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099. https://doi.org/10.1039/c3cs60058k

    Article  Google Scholar 

  216. Frachini ECG, Petri DFS (2019) Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. J Braz Chem Soc 30:2010–2028. https://doi.org/10.21577/0103-5053.20190074

  217. Cousin F, Cabuil V, Levitz P (2002) Magnetic colloidal particles as probes for the determination of the structure of laponite suspensions. Langmuir 18:1466–1473. https://doi.org/10.1021/la010947u

    Article  Google Scholar 

  218. Galicia JA, Sandre O, Cousin F, Guemghar D, Ménager C, Cabuil V (2003) Designing magnetic composite materials using aqueous magnetic fluids. J Phys Condens Matter 15:S1379. https://doi.org/10.1088/0953-8984/15/15/306

    Article  ADS  Google Scholar 

  219. Cousin F, Cabuil V, Grillo I, Levitz P (2008) Competition between entropy and electrostatic interactions in a binary colloidal mixture of spheres and platelets. Langmuir 24:11422–11430. https://doi.org/10.1021/la8015595

    Article  Google Scholar 

  220. Paula FL de O et al (2009) Gravitational and magnetic separation in self-assembled clay-ferrofluid nanocomposites. Brazilian J Phys 39:163–170. https://doi.org/10.1590/S0103-97332009000200007

  221. Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Magnetic hydrogel beads based on PVA/sodium alginate/Laponite RD and studying their BSA adsorption. Carbohydr Polym 147:379–391. https://doi.org/10.1016/j.carbpol.2016.04.024

    Article  Google Scholar 

  222. Lebovka NI et al (2020) Temperature sensitive hydrogels cross-linked by magnetic Laponite RD: Effects of particle magnetization. Mater Adv 1:2994–2999. https://doi.org/10.1039/d0ma00687d

  223. Goncharuk O et al (2020) Thermoresponsive hydrogels physically crosslinked with magnetically modified LAPONITE® nanoparticles. Soft Matter 16:5689–5701. https://doi.org/10.1039/D0SM00929F

  224. Goncharuk O et al (2020) Thermosensitive hydrogel nanocomposites with magnetic laponite nanoparticles. Appl Nanosci 10:4559–4569. https://doi.org/10.1007/s13204-020-01388-w

  225. Diamantopoulos G et al (2013) Magnetic hyperthermia of laponite based ferrofluid. J Magn Magn Mater 336:71–74. https://doi.org/10.1016/j.jmmm.2013.02.032

  226. Aguiar AS et al (2020) The use of a laponite dispersion to increase the hydrophilicity of cobalt-ferrite magnetic nanoparticles. Appl Clay Sci 193:105663. https://doi.org/10.1016/j.clay.2020.105663

  227. Jalili NA, Muscarello M, Gaharwar AK (2016) Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioeng Transl Med 1:297–305. https://doi.org/10.1002/btm2.10034

    Article  Google Scholar 

  228. Lee JH, Han WJ, Jang HS, Choi HJ (2019) Highly tough, biocompatible, and magneto-responsive Fe3O4/Laponite/PDMAAm nanocomposite hydrogels. Sci Rep 9:15024. https://doi.org/10.1038/s41598-019-51555-5

    Article  ADS  Google Scholar 

  229. Sun Y, Wang Y, Yao J, Gao L, Li D, Liu Y (2017) Highly magnetic sensitivity of polymer nanocomposite hydrogels based on magnetic nanoparticles. Compos Sci Technol 141:40–47. https://doi.org/10.1016/j.compscitech.2017.01.006

    Article  Google Scholar 

  230. Mahdavinia GR, Soleymani M, Etemadi H, Sabzi M, Atlasi Z (2018) Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads. Int J Biol Macromol 107:719–729. https://doi.org/10.1016/j.ijbiomac.2017.09.042

    Article  Google Scholar 

  231. Soleymani M, Akbari A, Mahdavinia GR (2019) Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA. Polym Bull 76:2321–2340. https://doi.org/10.1007/s00289-018-2480-1

    Article  Google Scholar 

  232. Uva M, Pasqui D, Mencuccini L, Fedi S, Barbucci R (2014) Influence of alternating and static magnetic fields on drug release from hybrid hydrogels containing magnetic nanoparticles. J Biomater Nanobiotechnol 05:116–127. https://doi.org/10.4236/jbnb.2014.52014

    Article  Google Scholar 

  233. Mahdavinia GR, Ettehadi S, Amini M, Sabzi M (2015) Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE RD nanocomposites as novel magnetic- and pH-sensitive carriers for controlled drug release. RSC Adv 5:44516–44523. https://doi.org/10.1039/C5RA03731J

    Article  ADS  Google Scholar 

  234. Mahdavinia GR, Soleymani M, Sabzi M, Azimi H, Atlasi Z (2017) Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue. J Environ Chem Eng 5:2617–2630. https://doi.org/10.1016/j.jece.2017.05.017

    Article  Google Scholar 

  235. Mahdavinia GR, Rahmani Z, Mosallanezhad A, Karami S, Shahriari M (2016) Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalin Water Treat 57:20582–20596. https://doi.org/10.1080/19443994.2015.1111808

    Article  Google Scholar 

  236. Mola-ali-abasiyan S, Mahdavinia GR (2018) Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic Laponite RD to remove cadmium. Environ Sci Pollut Res 25:14977–14988. https://doi.org/10.1007/s11356-018-1485-5

  237. Liu Q, Liu L (2019) Novel light-responsive hydrogels with antimicrobial and antifouling capabilities. Langmuir 35:1450–1457. https://doi.org/10.1021/acs.langmuir.8b01663

    Article  Google Scholar 

  238. Kuksenok O, Yashin VV, Dayal P, Balazs AC (2010) Copying from nature: designing adaptive, chemoresponsive gels. J Polym Sci Part B Polym Phys 48:2533–2541. https://doi.org/10.1002/polb.22113

    Article  ADS  Google Scholar 

  239. Chandrawati R (2016) Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med 241:972–979. https://doi.org/10.1177/1535370216647186

    Article  Google Scholar 

  240. Raghavendra GM, Jayaramudu T, Varaprasad K, Mohan Reddy GS, Raju KM (2015) Antibacterial nanocomposite hydrogels for superior biomedical applications: a facile eco-friendly approach. RSC Adv 5:14351–14358. https://doi.org/10.1039/C4RA15995K

    Article  ADS  Google Scholar 

  241. Gonçalves M et al (2014) Antitumor efficacy of doxorubicin-loaded laponite/alginate hybrid hydrogels. Macromol Biosci 14:110–120. https://doi.org/10.1002/mabi.201300241

  242. Koshy ST, Zhang DKY, Grolman JM, Stafford AG, Mooney DJ (2018) Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater 65:36–43. https://doi.org/10.1016/j.actbio.2017.11.024

    Article  Google Scholar 

  243. Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J Mater Sci Mater Med 25:2513–2526. https://doi.org/10.1007/s10856-014-5272-7

    Article  Google Scholar 

  244. Golafshan N, Rezahasani R, Esfahani MT, Kharaziha M, Khorasani SN (2017) Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydr Polym 176:392–401. https://doi.org/10.1016/j.carbpol.2017.08.070

    Article  Google Scholar 

  245. Ordikhani F, Dehghani M, Simchi A (2015) Antibiotic-loaded chitosan–laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. J Mater Sci Mater Med 26:269. https://doi.org/10.1007/s10856-015-5606-0

    Article  Google Scholar 

  246. Yang H, Hua S, Wang W, Wang A (2011) Composite hydrogel beads based on chitosan and laponite: preparation, swelling, and drug release behaviour. Iran Polym J 20(6):479–490

    Google Scholar 

  247. Oliveira MJA et al (2014) Influence of chitosan/clay in drug delivery of glucantime from PVP membranes. Radiat Phys Chem 94:194–198. https://doi.org/10.1016/j.radphyschem.2013.05.050

  248. Haraguchi K, Murata K, Takehisa T (2013) Stimuli-responsive properties of nanocomposite gels comprising (2-methoxyethylacrylate-co-N, N-dimethylacrylamide) copolymer-clay networks. Macromol Symp 329:150–161. https://doi.org/10.1002/masy.201300026

    Article  Google Scholar 

  249. Jafarbeglou M, Abdouss M, Shoushtari AM, Jafarbeglou M (2016) Clay nanocomposites as engineered drug delivery systems. RSC Adv 6:50002–50016. https://doi.org/10.1039/C6RA03942A

    Article  ADS  Google Scholar 

  250. Pellá MCG et al (2018) Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr Polym 196:233–245. https://doi.org/10.1016/j.carbpol.2018.05.033

  251. Pakdel PM, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

    Article  Google Scholar 

  252. Qu B, Luo Y (2020) Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors–a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.240

    Article  Google Scholar 

  253. Owens D III, Peppas N (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010

    Article  Google Scholar 

  254. Takahashi T, Yamada Y, Kataoka K, Nagasaki Y (2005) Preparation of a novel PEG–clay hybrid as a DDS material: dispersion stability and sustained release profiles. J Control Release 107:408–416. https://doi.org/10.1016/j.jconrel.2005.03.031

    Article  Google Scholar 

  255. Kotobuki N, Murata K, Haraguchi K (2013) Proliferation and harvest of human mesenchymal stem cells using new thermoresponsive nanocomposite gels. J Biomed Mater Res Part A 101A:537–546. https://doi.org/10.1002/jbm.a.34355

    Article  Google Scholar 

  256. Gaharwar AK, Schexnailder PJ, Jin Q, Wu C-J, Schmidt G (2010) Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. ACS Appl Mater Interfaces 2:3119–3127. https://doi.org/10.1021/am100609t

    Article  Google Scholar 

  257. Gaharwar AK et al (2010) Highly extensible bio-nanocomposite films with direction-dependent properties. Adv Funct Mater 20:429–436. https://doi.org/10.1002/adfm.200901606

  258. Peak CW, Carrow JK, Thakur A, Singh A, Gaharwar AK (2015) Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell Mol Bioeng 8:404–415. https://doi.org/10.1007/s12195-015-0406-7

    Article  Google Scholar 

  259. Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G (2011) Assessment of using Laponite cross-linked poly (ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577. https://doi.org/10.1016/j.actbio.2010.09.015

    Article  Google Scholar 

  260. Surdu I, Vătuiu D, Jurcoane Ş, Olteanu M, Vătuiu I (2018) The antimicrobial activity of neutral electrolyzed water against germs and fungi from feedstuffs, eggshells and laying henhouse. Rom Biotechnol Lett 3:13607–13614. https://www.e-repository.org/rbl/vol.23/iss.3/7.pdf

  261. Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164. https://doi.org/10.1039/c0sm00067a

    Article  ADS  Google Scholar 

  262. Shibayama M, Suda J, Karino T, Okabe S, Takehisa T, Haraguchi K (2004) Structure and dynamics of poly (N-isopropylacrylamide)−clay nanocomposite gels. Macromolecules 37:9606–9612. https://doi.org/10.1021/ma048464v

    Article  ADS  Google Scholar 

  263. Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromol 7:3267–3275. https://doi.org/10.1021/bm060549b

    Article  Google Scholar 

  264. Zhao H, Liu M, Zhang Y, Yin J, Pei R (2020) Nanocomposite hydrogels for tissue engineering applications. Nanoscale 12:14976–14995. https://doi.org/10.1039/D0NR03785K

    Article  Google Scholar 

  265. Jaiswal MK, Xavier JR, Carrow JK, Desai P, Alge D, Gaharwar AK (2016) Mechanically Stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10:246–256. https://doi.org/10.1021/acsnano.5b03918

    Article  Google Scholar 

  266. Mehrali M et al (2017) Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with load-bearing and electroactive tissues. Adv Mater 29:1603612. https://doi.org/10.1002/adma.201603612

  267. Su D, Jiang L, Chen X, Dong J, Shao Z (2016) Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with Laponite nanoplatelets. ACS Appl Mater Interfaces 8:9619–9628. https://doi.org/10.1021/acsami.6b00891

    Article  Google Scholar 

  268. Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee BP (2014) Injectable dopamine-modified poly (ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 6:16982–16992. https://doi.org/10.1021/am504566v

    Article  Google Scholar 

  269. Waters R, Pacelli S, Maloney R, Medhi I, Ahmed RPH, Paul A (2016) Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale 8:7371–7376. https://doi.org/10.1039/C5NR07806G

    Article  ADS  Google Scholar 

  270. Paul A et al (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4:3544–3554. https://doi.org/10.1039/C5TB02745D

  271. Gaharwar AK et al (2014) Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842. https://doi.org/10.1021/nn503719n

  272. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453. https://doi.org/10.1002/bit.25160

    Article  Google Scholar 

  273. Xavier JR et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118. https://doi.org/10.1021/nn507488s

  274. Dawson JI, Oreffo ROC (2013) Clay: new opportunities for tissue regeneration and biomaterial design. Adv Mater 25:4069–4086. https://doi.org/10.1002/adma.201301034

    Article  Google Scholar 

  275. Carrow JK et al (2018) Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci 115:E3905–E3913. https://doi.org/10.1073/pnas.1716164115

  276. Dawson JI, Kanczler JM, Yang XB, Attard GS, Oreffo ROC (2011) Clay gels for the delivery of regenerative microenvironments. Adv Mater 23:3304–3308. https://doi.org/10.1002/adma.201100968

    Article  Google Scholar 

  277. Shi P, Kim Y-H, Mousa M, Sanchez RR, Oreffo ROC, Dawson JI (2018) Self-assembling nanoclay diffusion gels for bioactive osteogenic microenvironments. Adv Healthc Mater 7:1800331. https://doi.org/10.1002/adhm.201800331

    Article  Google Scholar 

  278. Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RPH, Paul A (2018) Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 69:95–106. https://doi.org/10.1016/j.actbio.2017.12.025

    Article  Google Scholar 

  279. Lokhande G et al (2018) Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 70:35–47. https://doi.org/10.1016/j.actbio.2018.01.045

  280. Kerativitayanan P, Tatullo M, Khariton M, Joshi P, Perniconi B, Gaharwar AK (2017) Nanoengineered osteoinductive and elastomeric scaffolds for bone tissue engineering. ACS Biomater Sci Eng 3:590–600. https://doi.org/10.1021/acsbiomaterials.7b00029

    Article  Google Scholar 

  281. Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME (2014) The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 35:9087–9099. https://doi.org/10.1016/j.biomaterials.2014.07.052

    Article  Google Scholar 

  282. Hasany M et al (2018) Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the “Holy Grail” in orthopedic stem cell therapy? ACS Appl Mater Interfaces 10:34924–34941. https://doi.org/10.1021/acsami.8b11436

  283. Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A (2018) Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano 12:9866–9880. https://doi.org/10.1021/acsnano.8b02434

    Article  Google Scholar 

  284. Heid S, Boccaccini AR (2020) Advancing bioinks for 3D bioprinting using reactive fillers: a review. Acta Biomater 113:1–22. https://doi.org/10.1016/j.actbio.2020.06.040

    Article  Google Scholar 

  285. Sears C et al (2020) Conditioning of 3D printed nanoengineered ionic–covalent entanglement scaffolds with iP‐hMSCs derived matrix. Adv Healthc Mater 9:1901580. https://doi.org/10.1002/adhm.201901580

  286. Zhu W, Webster TJ, Zhang LG (2019) 4D printing smart biosystems for nanomedicine. Nanomedicine (Lond) 14(13):1643–1645. https://doi.org/10.2217/nnm-2019-0134

    Article  Google Scholar 

  287. Wei J et al (2020) A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohydr Polym 238:116207. https://doi.org/10.1016/j.carbpol.2020.116207

  288. Cidonio G et al (2020) Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication 12:35010. https://doi.org/10.1088/1758-5090/ab8753

  289. Adib AA et al (2020) Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication 12:045006. https://doi.org/10.1088/1758-5090/ab97a1

  290. Bidoia ED, Montagnolli RN (2018) Toxicity and Biodegradation Testing. Springer Science+Business Media LLC, New York, USA

    Google Scholar 

  291. Pillai SC, Lang Y (2019) Toxicity of Nanomaterials: Environmental and Healthcare Applications. CRC Press, Taylor & Francis Group, Boca Raton, USA

    Book  Google Scholar 

  292. Ghadiri M, Chrzanowski W, Lee WH, Fathi A, Dehghani F, Rohanizadeh R (2013) Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite. Appl Clay Sci 85:64–73. https://doi.org/10.1016/j.clay.2013.08.049

    Article  Google Scholar 

  293. Repetto G, Del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125. https://doi.org/10.1038/nprot.2008.75

    Article  Google Scholar 

  294. Präbst K, Engelhardt H, Ringgeler S, Hübner H (2017) Basic colorimetric proliferation assays: MTT, WST, and resazurin. In: Gilbert D, Friedrich O (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY, pp 1–17. https://doi.org/10.1007/978-1-4939-6960-9_1

  295. Van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. In: Cree I (ed) Cancer Cell Culture. Humana Press, Methods in Molecular Biology (Methods and Protocols), pp 237–245. https://doi.org/10.1007/978-1-61779-080-5_20

    Chapter  Google Scholar 

  296. Voigt M, Bartels I, Nickisch-Hartfiel A, Jaeger M (2019) Determination of minimum inhibitory concentration and half maximal inhibitory concentration of antibiotics and their degradation products to assess the eco-toxicological potential. Toxicol Environ Chem 101:315–338. https://doi.org/10.1080/02772248.2019.1687706

    Article  Google Scholar 

  297. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755. https://doi.org/10.1086/647952

    Article  Google Scholar 

  298. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. https://doi.org/10.1093/jac/48.suppl_1.5

    Article  Google Scholar 

  299. Tan L et al (2020) Osteogenic differentiation of mesenchymal stem cells by silica/calcium micro-galvanic effects on the titanium surface. J Mater Chem B 8:2286–2295. https://doi.org/10.1039/D0TB00054J

  300. Venkatraman SK, Swamiappan S (2020) Review on calcium-and magnesium-based silicates for bone tissue engineering applications. J Biomed Mater Res Part A 108:1546–1562. https://doi.org/10.1002/jbm.a.36925

    Article  Google Scholar 

  301. Kurgan N et al (2019) Low dose lithium supplementation activates Wnt/β-catenin signalling and increases bone OPG/RANKL ratio in mice. Biochem Biophys Res Commun 511:394–397. https://doi.org/10.1016/j.bbrc.2019.02.066

  302. Li Y, MacIel D, Tomás H, Rodrigues J, Ma H, Shi X (2011) Ph sensitive Laponite/alginate hybrid hydrogels: Swelling behaviour and release mechanism. Soft Matter 7:6231–6238. https://doi.org/10.1039/c1sm05345k

    Article  ADS  Google Scholar 

  303. Motskin M et al (2009) Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30:3307–3317. https://doi.org/10.1016/j.biomaterials.2009.02.044

  304. Napierska D et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853. https://doi.org/10.1002/smll.200800461

  305. Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025. https://doi.org/10.1016/j.biomaterials.2012.07.040

    Article  Google Scholar 

  306. Boyer C et al (2018) Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 65:112–122. https://doi.org/10.1016/j.actbio.2017.11.027

  307. Gonzaga V de AM et al (2020) Chitosan-laponite nanocomposite scaffolds for wound dressing application. J Biomed Mater Res Part B Appl Biomater 108:1388–1397. https://doi.org/10.1002/jbm.b.34487

  308. Vergaro V et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11:820–826. https://doi.org/10.1021/bm9014446

Download references

Acknowledgements

This work was supported by the funding of the National research foundation of Ukraine, Project #2020.02/0138 “Electrokinetic phenomena in natural nano/micro-fluidic and disperse systems: characterizing, treatment, modelling” (MM), complex interdisciplinary research program of NAS of Ukraine “Molecular-Biological Factors of Heterogeneity of Malignant Cells and Variability of Clinical Course of Hormone-Dependent Tumors”, Projects # 0117U002034 (OS,VS), and by the funding from the National Academy of Sciences of Ukraine, Projects 7/9/3-f-4-1230-2020 #0120U100226 and # 0120U102372/20-N (YuS,NL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olena Samoylenko or Olena Korotych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samoylenko, O., Korotych, O., Manilo, M., Samchenko, Y., Shlyakhovenko, V., Lebovka, N. (2022). Biomedical Applications of Laponite®-Based Nanomaterials and Formulations. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_15

Download citation

Publish with us

Policies and ethics