Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytol 221:50–66. https://doi.org/10.1111/nph.15263
CrossRef
PubMed
Google Scholar
Anderson K, Hancock S, Disney M, Gaston KJ (2015) Is waveform worth it? A comparison of LiDAR approaches for vegetation and landscape characterization. Remote Sens Ecol Conserv 2(1):5–15. https://doi.org/10.1002/rse2.8
CrossRef
Google Scholar
Arekhi M, Yesil A, Ozkan UY, Balik Sanli F (2018) Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest. For Ecosyst 5:23–36. https://doi.org/10.1186/s40663-018-0141-3
CrossRef
Google Scholar
Arias-Rodil M, Diéguez-Aranda U, Álvarez-González JG et al (2018) Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Ann For Sci 75:36–47. https://doi.org/10.1007/s13595-018-0712-z
CrossRef
Google Scholar
Asner GP, Martin RA (2008) Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front Ecol Environ 7(5):269–276. https://doi.org/10.1890/070152
CrossRef
Google Scholar
Asner GP, Martin RE, Ford AJ, Metcalfe DJ, Liddell MJ (2009) Leaf chemical and spectral diversity in Australian tropical forests. Ecol Appl 19(1):236–253. https://doi.org/10.1890/08-0023.1
CrossRef
PubMed
Google Scholar
Bater CW, Coops NC, Gergel SE et al (2009) Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing. Can J For Res 39:1080–1091. https://doi.org/10.1139/X09-030
CrossRef
Google Scholar
Bauerhansl C, Berger F, Dorren L et al (2010) Development of harmonized indicators and estimation procedures for forests with protective functions against natural hazards in the alpine space (PROALP). European Commission, Joint Research Centre, Institute for Environment and Sustainability. Office for Official Publications of the European Communities. © European Communities, 2010. https://doi.org/10.2788/51473
Baumann M, Ozdogan M, Wolter PT et al (2014) Landsat remote sensing of forest windfall disturbance. Remote Sens Environ 143:171–179. https://doi.org/10.1016/j.rse.2013.12.020
CrossRef
Google Scholar
Bayat AT, van Gils H, Weir M (2012) Carbon stock of European Beech forest; a case at M. Pizzalto, Italy. APCBEE Procedia 1:159–168. https://doi.org/10.1016/j.apcbee.2012.03.026
CrossRef
Google Scholar
Bebi P, Kienast F, Schönenberger W (2001) Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. For Ecol Manag 145:3–14. https://doi.org/10.1016/S0378-1127(00)00570-3
CrossRef
Google Scholar
Bergseng E, Ørka HO, Næsset E, Gobakken T (2015) Assessing forest inventory information obtained from different inventory approaches and remote sensing data sources. Ann For Sci 72:33–45. https://doi.org/10.1007/s13595-014-0389-x
CrossRef
Google Scholar
Bigot C, Dorren LKA, Berger F (2009) Quantifying the protective function of a forest against rockfall for past, present and future scenarios using two modelling approaches. Nat Hazard 49:99–111. https://doi.org/10.1007/s11069-008-9280-0
CrossRef
Google Scholar
Bowditch E, Santopuoli G, Binder F et al (2020) What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst Serv 43:101113. https://doi.org/10.1016/j.ecoser.2020.101113
CrossRef
Google Scholar
Brandtberg T (2002) Individual tree-based species classification in high spatial resolution aerial images of forests using fuzzy sets. Fuzzy Sets Syst 132:371–387. https://doi.org/10.1016/S0165-0114(02)00049-0
CrossRef
Google Scholar
Breshears DD, Huxman TE, Adams HD, Zou CB, Davison JE (2008) Vegetation synchronously leans upslope as climate warms. Proceedings of the National Academy of Sciences 105(33):11591–11592. https://doi.org/10.1073/pnas.0806579105
Brožová N, Fischer JT, Bühler Y et al (2020) Determining forest parameters for avalanche simulation using remote sensing data. Cold Reg Sci Technol 172:102976. https://doi.org/10.1016/j.coldregions.2019.102976
CrossRef
Google Scholar
Bucha T, Stibig HJ (2008) Analysis of MODIS imagery for detection of clear cuts in the boreal forest in north-west Russia. Remote Sens Environ 112:2416–2429. https://doi.org/10.1016/j.rse.2007.11.008
CrossRef
Google Scholar
Burton PJ, Bergeron Y, Bogdansky BEC, Juday GP et al (2010) Sustainability of boreal forests and forestry in a changing environment. In: Mery G, Katila P, Galloway G, Alfaro R, Kanninen M, Lobovikov M, Varjo J (eds) Forests and society responding to global drivers of change, vol 25. IUFRO World, Series, pp 249–282
Google Scholar
Bütler R, Schlaepfer R (2004) Spruce snag quantification by coupling colour infrared aerial photos and a GIS. For Ecol Manag 195:325–339. https://doi.org/10.1016/j.foreco.2004.02.042
CrossRef
Google Scholar
Bütler R, Angelstam P, Ekelund P, Schlaepfer R (2004) Dead wood threshold values for the three-toed woodpecker presence in boreal and sub-Alpine forest. Biol Conserv 119:305–318. https://doi.org/10.1016/j.biocon.2003.11.014
CrossRef
Google Scholar
Calders K, Jonckheere I, Nightingale J, Vastaranta M (2020) Remote sensing technology applications in forestry and REDD+. Forests 11:10–13. https://doi.org/10.3390/f11020188
CrossRef
Google Scholar
Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. Guilford Press, New York. ISBN:9781609181765
Google Scholar
Castaño-Díaz M, Álvarez-Álvarez P, Tobin B, Nieuwenhuis M, Afif-Khouri E, Cámara-Obregón A (2017) Evaluation of the use of low-density LiDAR data to estimate structural attributes and biomass yield in a short-rotation willow coppice: an example in a field trial. Ann For Sci 74:69. https://doi.org/10.1007/s13595-017-0665-7
CrossRef
Google Scholar
Castilla G, Filiatrault M, McDermid GJ, Gartrell M (2020) Estimating individual conifer seedling height using drone-based image point clouds. Forests 11:924. https://doi.org/10.3390/f11090924
CrossRef
Google Scholar
Cazzolla Gatti R, Callaghan T, Velichevskaya A et al (2019) Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-44188-1
CAS
CrossRef
Google Scholar
Chen G, Meentemeyer RK (2016) Remote sensing of forest damage by diseases and insects. 145–162. https://doi.org/10.1201/9781315371931-9
Coops NC (2015) Characterizing forest growth and productivity using remotely sensed data. Curr For Rep 1:195–205. https://doi.org/10.1007/s40725-015-0020-x
CrossRef
Google Scholar
Coops NC, Gaulton R, Waring RH (2011) Mapping site indices for five Pacific Northwest conifers using a physiologically based model. Appl Veg Sci 14:268–276. https://doi.org/10.1111/j.1654-109X.2010.01109.x
CrossRef
Google Scholar
Copernicus Emergency Management Service. https://emergency.copernicus.eu/. Accessed 06/29/2020
Corona P, Fattorini L, Franceschi S et al (2014) Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: model-based, design-based, and hybrid perspectives. Can J For Res 44:1303–1311. https://doi.org/10.1139/cjfr-2014-0203
CrossRef
Google Scholar
Dalponte M, Coomes DA (2016) Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol Evol 7:1236–1245. https://doi.org/10.1111/2041-210X.12575
CrossRef
PubMed
PubMed Central
Google Scholar
Dalponte M, Bruzzone L, Gianelle D (2008) Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans Geosci Remote Sens 46:1416–1427. https://doi.org/10.1109/TGRS.2008.916480
CrossRef
Google Scholar
Dalponte M, Bruzzone L, Dalponte M et al (2009) Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume. IEEE J Sel Top Appl Earth Obs Remote Sens 2:310–318. https://doi.org/10.1109/JSTARS.2009.2037523
CrossRef
Google Scholar
Dalponte M, Frizzera L, Gianelle D (2019) Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. PeerJ 6:e6227. https://doi.org/10.7717/peerj.6227
CrossRef
PubMed
PubMed Central
Google Scholar
de Asis AM, Omasa K (2007) Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. ISPRS J Photogramm Remote Sens 62:309–324. https://doi.org/10.1016/j.isprsjprs.2007.05.013
CrossRef
Google Scholar
De Kauwe MG, Disney MI, Quaife T, Lewis P, Williams M (2011) An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens Environ 115(2):767–780. https://doi.org/10.1016/j.rse.2010.11.004
CrossRef
Google Scholar
Diem JE (2002) Remote assessment of forest health in southern Arizona, USA: evidence for ozone-induced foliar injury. Environ Manag 29:373–384. https://doi.org/10.1007/s00267-001-0011-5
CrossRef
Google Scholar
Dorren LKA, Maier B, Putters US, Seijmonsbergen AC (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps. Geomorphology 57:151–167. https://doi.org/10.1016/S0169-555X(03)00100-4
CrossRef
Google Scholar
Dorren L, Maier B, Berger F (2006) Assessing protection forest structure with airborne laser scanning in steep mountainous terrain. Paper presented at the Workshop on 3D Remote Sensing in Forestry, 14th–15th Feb 2006, Vienna 238–242
Google Scholar
Dotzler S, Hill J, Buddenbaum H, Stoffels J (2015) The potential of EnMAP and sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sens 7:14227–14258. https://doi.org/10.3390/rs71014227
CrossRef
Google Scholar
Dubayah R, Blair JB, Goetz S et al (2020) The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci Remote Sens 1:100002. https://doi.org/10.1016/j.srs.2020.100002
CrossRef
Google Scholar
Dungey H (2016) Forest genetics for productivity – the next generation. New Zeal J For Sci 46:40490. https://doi.org/10.1186/s40490-016-0081-z
CrossRef
Google Scholar
Dungey HS, Dash JP, Pont D et al (2018) Phenotyping whole forests will help to track genetic performance. Trends Plant Sci 23:854–864. https://doi.org/10.1016/j.tplants.2018.08.005
CAS
CrossRef
PubMed
Google Scholar
Einzmann K, Immitzer M, Böck S et al (2017) Windthrow detection in european forests with very high-resolution optical data. Forests 8:1–26. https://doi.org/10.3390/f8010021
CrossRef
Google Scholar
Erikson M (2004) Species classification of individually segmented tree crowns in high-resolution aerial images using radiometric and morphologic image measures. Remote Sens Environ 91:469–477. https://doi.org/10.1016/j.rse.2004.04.006
CrossRef
Google Scholar
Falkowski MJ, Wulder MA, White JC, Gillis MD (2009) Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery. Prog Phys Geogr 33:403–423. https://doi.org/10.1177/0309133309342643
CrossRef
Google Scholar
FAO (2015) Knowledge reference for national forest assessments. http://www.fao.org/3/a-i4822e.pdf
Fassnacht FE, Latifi H, Ghosh A et al (2014) Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens Environ 140:533–548. https://doi.org/10.1016/j.rse.2013.09.014
CrossRef
Google Scholar
Filipescu CN, Groot A, Maclsaac DA et al (2012) Prediction of diameter using height and crown attributes: a case study. West J Appl For 27:30–35. https://doi.org/10.1093/wjaf/27.1.30
CrossRef
Google Scholar
Fischlin A, Ayres M, Karnosky D, Kellomäki S, Louman B, Ong C, Plattner C, Santoso H, Thompson I, Booth T, Marcar N, Scholes B, Swanston C, Zamolodchikov D (2009) Future environmental impacts and vulnerabilities. In: Seppala R, Buck A, Katila P (eds) Adaptation of forests and people to climate change. IUFRO World Series 22. Geist and Lambin, 2002
Google Scholar
FOREST EUROPE (2015) State of Europe’s Forests:2015
Google Scholar
Fragoso-Campón L, Quirós E, Mora J, Gutiérrez Gallego JA, Durán-Barroso P (2020) Overstory-understory land cover mapping at the watershed scale: accuracy enhancement by multitemporal remote sensing analysis and LiDAR. Environ Sci Pollut Res 27:75–88. https://doi.org/10.1007/s11356-019-04520-8
CrossRef
Google Scholar
Friedlaender H, Koch B (2000) First experience in the application of laser scanner data for the assessment of vertical and horizontal forest structures. Int Arch Photogramm Remote Sensing XXXIII(Part B7, ISPRS Congr XXXIII):693–700
Google Scholar
Fuller DO (2001) Forest fragmentation in Loudoun County, Virginia, USA evaluated with multitemporal Landsat imagery. Landscape Ecology 16:627–642. https://link.springer.com/article/10.1023/A:1013140101134
Gallaun H, Zanchi G, Nabuurs GJ et al (2010) EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For Ecol Manag 260:252–261. https://doi.org/10.1016/j.foreco.2009.10.011
CrossRef
Google Scholar
Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501. https://doi.org/10.1007/s004420050337
CAS
CrossRef
PubMed
Google Scholar
Gamon JA, Huemmrich KF, Wong CYS et al (2016) A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc Natl Acad Sci USA 113:13087–13092. https://doi.org/10.1073/pnas.1606162113
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Gao BC (1996) NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
CrossRef
Google Scholar
Gao WQ, Lei XD, Fu LY (2019) Impacts of climate change on the potential forest productivity based on a climate-driven biophysical model in northeastern China. J For Res. https://doi.org/10.1007/s11676-019-00999-6
Ghaffarian S, Kerle N, Filatova T (2018) Remote sensing-based proxies for urban disaster risk management and resilience: a review. Remote Sens 10:1760–1789. https://doi.org/10.3390/rs10111760
CrossRef
Google Scholar
Gillespie TW, Willis KS, Ostermann-Kelm S (2015) Spaceborne remote sensing of the world’s protected areas. Prog Phys Geogr 39:388–404. https://doi.org/10.1177/0309133314561648
CrossRef
Google Scholar
Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272. https://doi.org/10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2
CAS
CrossRef
PubMed
Google Scholar
Goodbody TRH, Coops NC, Hermosilla T et al (2018) Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. Int J Remote Sens 39:5246–5264. https://doi.org/10.1080/01431161.2017.1402387
CrossRef
Google Scholar
Green PC, Burkhart HE (2020) Plantation Loblolly pine seedling counts with unmanned aerial vehicle imagery: a case study. J For 118(5):487–500. https://doi.org/10.1093/jofore/fvaa020
CrossRef
Google Scholar
Haara A, Haarala M (2002) Tree species classification using semi-automatic delineation of trees on aerial images. Scand J For Res 17:556–565. https://doi.org/10.1080/02827580260417215
CrossRef
Google Scholar
Haines-Young R, Potschin MB (2018) Common international classification of ecosystem services (CICES) V5.1 and guidance on the application of the revised structure. Fabis Consulting Ltd. The Paddocks, Chestnut Lane, Barton in Fabis, Nottingham, NG11 0AE, UK. Available from www.cices.eu
Hamraz H, Contreras MA, Zhang J (2017) Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds. ISPRS J Photogramm Remote Sens 130:385–392. https://doi.org/10.1016/j.isprsjprs.2017.07.001
CrossRef
Google Scholar
Hasenauer H, Neumann M, Moreno A, Running S (2017) Assessing the resources and mitigation potential of European forests. Energy Procedia 125:372–378. https://doi.org/10.1016/j.egypro.2017.08.052
CrossRef
Google Scholar
He Y, Chen G, Potter C, Meentemeyer RK (2019) Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality. Remote Sens Environ 231:111238. https://doi.org/10.1016/j.rse.2019.111238
CrossRef
Google Scholar
Hedin LO (2015) Signs of saturation in the tropical carbon sink Hot on the trail of temperature processing. Nature 519:295–296. https://doi.org/10.1038/519295a
CAS
CrossRef
PubMed
Google Scholar
Heinzel J, Koch B (2012) Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int J Appl Earth Obs Geoinf 18:101–110. https://doi.org/10.1016/j.jag.2012.01.025
CrossRef
Google Scholar
Hermosilla T, Wulder MA, White JC et al (2015) Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens Environ 170:121–132. https://doi.org/10.1016/j.rse.2015.09.004
CrossRef
Google Scholar
Hernández-Clemente R, Navarro-Cerrillo RM, Suárez L et al (2011) Assessing structural effects on PRI for stress detection in conifer forests. Remote Sens Environ 115:2360–2375. https://doi.org/10.1016/j.rse.2011.04.036
CrossRef
Google Scholar
Hilker T, Wulder MA, Coops NC (2008) Update of forest inventory data with lidar and high spatial resolution satellite imagery. Can J Remote Sens 34:5–12. https://doi.org/10.5589/m08-004
CrossRef
Google Scholar
Hilker T, Coops NC, Gaulton R, Wulder MA, Cranston J, Stenhouse GB (2011) Biweekly disturbance capture and attribution: case study in western Alberta grizzly bear habitat. J Appl Remote Sens 5(1). https://doi.org/10.1117/1.3664342
Hirschmugl M, Ofner M, Raggam J, Schardt M (2007) Single tree detection in very high resolution remote sensing data. Remote Sens Environ 110:533–544. https://doi.org/10.1016/j.rse.2007.02.029
CrossRef
Google Scholar
Huang C-Y, Anderegg WRL, Asner GP (2019) Remote sensing of forest die-off in the Anthropocene: from plant ecophysiology to canopy structure. Remote Sens Environ 231:111233. https://doi.org/10.1016/j.rse.2019.111233
CrossRef
Google Scholar
Hubau W, Lewis SL, Phillips OL et al (2020) Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579:80–87. https://doi.org/10.1038/s41586-020-2035-0
CAS
CrossRef
PubMed
Google Scholar
Hunt ER, Rock BN (1989) Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens Environ 30:43–54. https://doi.org/10.1016/0034-4257(89)90046-1
CrossRef
Google Scholar
Imangholiloo M, Saarinen N, Markelin L et al (2019) Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle. Forests 10:1–17. https://doi.org/10.3390/f10050415
CrossRef
Google Scholar
Imangholiloo M, Saarinen N, Holopainen M, Yu X, Hyyppä J, Vastaranta M (2020) Using leaf-off and leaf-on multispectral airborne laser scanning data to characterize seedling stands. Remote Sens 12:3328. https://doi.org/10.3390/rs12203328
CrossRef
Google Scholar
Immitzer M, Atzberger C, Koukal T (2012) Tree species classification with Random forest using very high spatial resolution 8-band worldView-2 satellite data. Remote Sens 4:2661–2693. https://doi.org/10.3390/rs4092661
CrossRef
Google Scholar
Inoue T, Nagai S, Yamashita S et al (2014) Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan. PLoS One 9:1–7. https://doi.org/10.1371/journal.pone.0109881
CAS
CrossRef
Google Scholar
Jin X, Fiore AM, Murray LT et al (2017) Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and application to decadal trends. J Geophys Res Atmos 122:10439–10461. https://doi.org/10.1002/2017JD026720
CAS
CrossRef
Google Scholar
Jucker T, Caspersen J, Chave J et al (2017) Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob Chang Biol 23:177–190. https://doi.org/10.1111/gcb.13388
CrossRef
PubMed
Google Scholar
Kapos V, Rhind J, Edwards M et al (2000) Developing a map of the world’s mountain forests. In: Price MF, Butt N (eds) Forests in sustainable mountain development: a state-of-knowledge report for 2000. CAB International, Wallingford, pp 4–9
CrossRef
Google Scholar
Kasischke ES, Bourgeau-Chavez LL, Johnstone JF (2007) Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery – implications for post-fire tree recruitment. Remote Sens Environ 108:42–58. https://doi.org/10.1016/j.rse.2006.10.020
CrossRef
Google Scholar
Kauppi P, Hanewinkel M, Lundmark T, Nabuurs GJ, Peltola H, Trasobares A, Hetemäki L (2018) Climate smart forestry in Europe. European Forest Institute
Google Scholar
Kempeneers P, Sedano F, Pekkarinen A, Seebach L, Strobl P, San Miguel-Ayanz J (2012). Pan-European forest maps derived from optical satellite imagery. IEEE Earthzine 5 (2nd quarter theme). https://earthzine.org/pan-european-forest-maps-derived-from-optical-satellite-imagery/
Kennedy RE, Cohen WB, Schroeder TA (2007) Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens Environ 110:370–386. https://doi.org/10.1016/j.rse.2007.03.010
CrossRef
Google Scholar
Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms. Remote Sens Environ 114:2897–2910. https://doi.org/10.1016/j.rse.2010.07.008
CrossRef
Google Scholar
Klein WH (1982) Estimating bark beetle-killed lodgepole pine with high altitude panoramic photography. Photogramm Eng Remote Sens 48:733–737
Google Scholar
Knorn J, Rabe A, Radeloff VC et al (2009) Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sens Environ 113:957–964. https://doi.org/10.1016/j.rse.2009.01.010
CrossRef
Google Scholar
Koch B. (2015). Remote sensing supporting national forest inventories NFA. In Food and Agriculture Organization of the United Nations, Knowledge reference for national forest assessments. Rome: Food and Agriculture Organization of the United Nations (pp. 77–92)
Google Scholar
Korpela I (2004) Individual tree measurements by means of digital aerial photogrammetry. In Silva Fennica Monographs 3:93 p
Google Scholar
Lambert J, Denux JP, Verbesselt J et al (2015) Detecting clear-cuts and decreases in forest vitality using MODIS NDVI time series. Remote Sens 7:3588–3612. https://doi.org/10.3390/rs70403588
CrossRef
Google Scholar
Landry S, St-Laurent M-H, Pelletier G, Villard M-A (2020) The best of both worlds? Integrating Sentinel-2 images and airborne LiDAR to characterize forest regeneration. Remote Sens 2020(12):2440. https://doi.org/10.3390/rs12152440
CrossRef
Google Scholar
Lausch A, Borg E, Bumberger J et al (2018) Understanding forest health with remote sensing, Part III: Requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sens 10:1120–1171. https://doi.org/10.3390/rs10071120
CrossRef
Google Scholar
LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379. https://doi.org/10.1890/06-2057.1
CrossRef
PubMed
Google Scholar
Lefsky MA (2010) A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL043622
CrossRef
Google Scholar
Lehmann EA, Caccetta P, Lowell K et al (2015) SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens Environ 156:335–348. https://doi.org/10.1016/j.rse.2014.09.034
CrossRef
Google Scholar
Li X, Zhang L, Weihermuller L et al (2014) Measurement and simulation of topographic effects on passive microwave remote sensing over mountain areas: a case study from the tibetan plateau. IEEE Trans Geosci Remote Sens 52:1489–1501. https://doi.org/10.1109/TGRS.2013.2251887
CrossRef
Google Scholar
Lorente M, Gauthier S, Bernier P, Ste-Marie C (2018) Tracking forest changes: Canadian Forest Service indicators of climate change. Clim Change:1–15. https://doi.org/10.1007/s10584-018-2154-x
Lucas RM, Honzák M, Curran PJ et al (2000) Mapping the regional extent of tropical forest regeneration stages in the Brazilian Legal Amazon using NOAA AVHRR data. Int J Remote Sens 21:2855–2881. https://doi.org/10.1080/01431160050121285
CrossRef
Google Scholar
Lucier A, Ayres M, Karnosky D, Thompson I, Loehle C, Percy K, Sohngen B (2009) Forest responses and vulnerabilities to recent climate change. In: Seppala R, Buck A, Katila P (eds) Adaptation of forests and people to climate change. IUFRO World Series 22. Geist and Lambin, 2002
Google Scholar
Ludovisi R, Tauro F, Salvati R et al (2017) UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front Plant Sci 8:1–18. https://doi.org/10.3389/fpls.2017.01681
CrossRef
Google Scholar
Majumder BD, Roy JK, Padhee S (2019) Recent advances in multifunctional sensing technology on a perspective of multi-sensor system: a review. IEEE Sens J 19:1204–1214. https://doi.org/10.1109/JSEN.2018.2882239
CrossRef
Google Scholar
Maltamo M, Eerikäinen K, Packalén P, Hyyppä J (2006) Estimation of stem volume using laser scanning-based canopy height metrics. Forestry 79:217–229. https://doi.org/10.1093/forestry/cpl007
CrossRef
Google Scholar
Maltamo M, Peuhkurinen J, Malinen J et al (2009) Predicting tree attributes and quality characteristics of scots pine using airborne laser scanning data. Silva Fenn 43:507–521. https://doi.org/10.14214/sf.203
CrossRef
Google Scholar
Maltamo M, Hauglin M, Næsset E, Gobakken T (2019) Estimating stand level stem diameter distribution utilizing harvester data and airborne laser scanning. Silva Fenn 53:1–19. https://doi.org/10.14214/sf.10075
CrossRef
Google Scholar
Marchi N, Pirotti F, Lingua E (2018a) Airborne and terrestrial laser scanning data for the assessment of standing and lying deadwood: current situation and new perspectives. Remote Sens 10:1356–1376. https://doi.org/10.3390/rs10091356
CrossRef
Google Scholar
Marchi N, Weisberg P, Greenberg J et al (2018b) Remote sensing application for deadwood identification and characterisation. In: Geophysical Research Abstracts of the 20th EGU General Assembly held 4–13 April, 2018 in Vienna, Austria, vol 20, EGU2018-16440-1, p 16440. https://ui.adsabs.harvard.edu/abs/2018EGUGA..2016440M/abstract
Maroschek M, Rammer W, Lexer MJ (2015) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Chang 15:1543–1555. https://doi.org/10.1007/s10113-014-0691-z
CrossRef
Google Scholar
Martin RV (2008) Satellite remote sensing of surface air quality. Atmos Environ 42:7823–7843. https://doi.org/10.1016/j.atmosenv.2008.07.018
CAS
CrossRef
Google Scholar
Masek JG, Goward SN, Kennedy RE et al (2013) United states forest disturbance trends observed using landsat time series. Ecosystems 16:1087–1104. https://doi.org/10.1007/s10021-013-9669-9
CrossRef
Google Scholar
Matikainen L, Karila K, Litkey P et al (2020) Combining single photon and multispectral airborne laser scanning for land cover classification. ISPRS J Photogramm Remote Sens 164:200–216. https://doi.org/10.1016/j.isprsjprs.2020.04.021
CrossRef
Google Scholar
McDowell NG, Coops NC, Beck PSA et al (2015) Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci 20:114–123. https://doi.org/10.1016/j.tplants.2014.10.008
CAS
CrossRef
PubMed
Google Scholar
Meiforth JJ, Buddenbaum H, Hill J, Shepherd JD, Dymond JR (2020) Stress Detection in New Zealand Kauri Canopies with WorldView-2 Satellite and LiDAR Data. Remote Sens 12:1906. https://doi.org/10.3390/rs12121906
Meng R, Dennison PE, Zhao F et al (2018) Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and LiDAR measurements. Remote Sens Environ 215:170–183. https://doi.org/10.1016/j.rse.2018.06.008
CrossRef
Google Scholar
Mitchard ETA, Saatchi SS, White LJT et al (2012) Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences 9:179–191. https://doi.org/10.5194/bg-9-179-2012
CrossRef
Google Scholar
Moghaddam M, Saatchi S, Cuenca RH (2000) Estimating subcanopy soil moisture with radar. J Geophys Res Atmos 105:14899–14911. https://doi.org/10.1029/2000JD900058
CAS
CrossRef
Google Scholar
Monnet J, Mermin E, Chanussot J, Berger F (2010) Using airborne laser scanning to assess forest protection function against rockfall. Interpraevent International Symposium in Pacific Rim, April 2010, Taipei, Taiwan, pp 586–594. hal-00504706
Google Scholar
Morresi D, Vitali A, Urbinati C, Garbarino M (2019) Forest spectral recovery and regeneration dynamics in stand-replacing wildfires of central Apennines derived from Landsat time series. Remote Sens 11:308–325. https://doi.org/10.3390/rs11030308
CrossRef
Google Scholar
Mullen K, Yuan F, Mitchell M (2018) The mountain pine beetle epidemic in the Black Hills, South Dakota: the consequences of long term fire policy, climate change and the use of remote sensing to enhance mitigation. J Geogr Geol 10:69. https://doi.org/10.5539/jgg.v10n1p69
CrossRef
Google Scholar
Mura M, Bottalico F, Giannetti F et al (2018) Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. Int J Appl Earth Obs Geoinf 66:126–134. https://doi.org/10.1016/j.jag.2017.11.013
CrossRef
Google Scholar
Nabuurs GJ, Delacote P, Ellison D et al (2017) By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8:1–14. https://doi.org/10.3390/f8120484
CrossRef
Google Scholar
Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253. https://doi.org/10.1016/S0034-4257(97)00041-2
CrossRef
Google Scholar
Nagendra H, Lucas R, Honrado JP et al (2013) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol Indic 33:45–59. https://doi.org/10.1016/j.ecolind.2012.09.014
CrossRef
Google Scholar
Newnham GJ, Armston JD, Calders K et al (2015) Terrestrial laser scanning for plot-scale forest measurement. Curr For Rep 1:239–251. https://doi.org/10.1007/s40725-015-0025-5
CrossRef
Google Scholar
Ningthoujam RK, Balzter H, Tansey K et al (2016) Airborne S-band SAR for forest biophysical retrieval in temperate mixed forests of the UK. Remote Sens 8:1–22. https://doi.org/10.3390/rs8070609
CrossRef
Google Scholar
Ollinger SV, Goodale CL, Hayhoe K, Jenkins JP (2008) Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests. Mitig Adapt Strateg Glob Chang 13:467–485. https://doi.org/10.1007/s11027-007-9128-z
CrossRef
Google Scholar
Olsson PO, Lindström J, Eklundh L (2016) Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sens Environ 181:42–53. https://doi.org/10.1016/j.rse.2016.03.040
CrossRef
Google Scholar
Ottosen T-B, Petch G, Hanson M, Skjøth CA (2020) Tree cover mapping based on Sentinel-2 images demonstrate high thematic accuracy in Europe. Int J Appl Earth Obs Geoinf 84:101947. https://doi.org/10.1016/j.jag.2019.101947
CrossRef
Google Scholar
Pablos M, González-Zamora Á, Sánchez N, Martínez-Fernández J (2018) Assessment of root zone soil moisture estimations from SMAP, SMOS and MODIS observations. Remote Sens 10:981–1000. https://doi.org/10.3390/rs10070981
CrossRef
Google Scholar
Päivinen R, Van Brusselen J, Schuck A (2009) The growing stock of European forests using remote sensing and forest inventory data. Forestry 82:479–490. https://doi.org/10.1093/forestry/cpp017
CrossRef
Google Scholar
Panagiotidis D, Abdollahnejad A, Surový P, Kuželka K (2019) Detection of fallen logs from high-resolution UAV images. New Zeal J For Sci 49. https://doi.org/10.33494/nzjfs492019x26x
Paquette A, Vayreda J, Coll L et al (2018) Climate change could negate positive tree diversity effects on forest productivity: a study across five climate types in Spain and Canada. Ecosystems 21:960–970. https://doi.org/10.1007/s10021-017-0196-y
CrossRef
Google Scholar
Paul-Limoges E, Damm A, Hueni A et al (2018) Effect of environmental conditions on sun-induced fluorescence in a mixed forest and a cropland. Remote Sens Environ 219:310–323. https://doi.org/10.1016/j.rse.2018.10.018
CrossRef
Google Scholar
Peña MA, Altmann SH (2009) Use of satellite-derived hyperspectral indices to identify stress symptoms in an Austrocedrus chilensis forest infested by the aphid Cinara cupressi. Int J Pest Manag 55:197–206. https://doi.org/10.1080/09670870902725809
CrossRef
Google Scholar
Persson Å, Holmgren J (2004) Tree species classification of individual trees in Sweden by combining high resolution laser data with high resolution near-infrared digital images. Int Arch Photogramm Remote Sens Spat Inf Sci 36:204–207
Google Scholar
Peuhkurinen J, Tokola T, Plevak K, Sirparanta S, Kedrov A, Pyankov S (2018) Predicting Tree Diameter Distributions from Airborne Laser Scanning, SPOT 5 Satellite, and Field Sample Data in the Perm Region, Russia. Forests 9:639. https://doi.org/10.3390/f9100639
Pontius J, Schaberg P, Hanavan R (2020) Remote sensing for early, detailed, and accurate detection of forest disturbance and decline for protection of biodiversity. In: Cavender-Bares J, Gamon JA, Townsend PA (eds) Remote sensing of plant biodiversity. Springer, Cham
Google Scholar
Potapov P, Yaroshenko A, Turubanova S et al (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13(2):51–66. https://doi.org/10.5751/ES-02670-130251
CrossRef
Google Scholar
Pouliot DA, King DJ, Pitt DG (2005) Development and evaluation of an automated tree detection-delineation algorithm for monitoring regenerating coniferous forests. Can J For Res 35:2332–2345. https://doi.org/10.1139/x05-145
CrossRef
Google Scholar
Puliti S, Solberg S, Granhus A (2019) Use of UAV photogrammetric data for estimation of biophysical properties in forest stands under regeneration. Remote Sens 11:233. https://doi.org/10.3390/rs11030233
CrossRef
Google Scholar
Quegan S, Le Toan T, Chave J et al (2019) The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens Environ 227:44–60. https://doi.org/10.1016/j.rse.2019.03.032
CrossRef
Google Scholar
Rao K, Anderegg WRL, Sala A et al (2019) Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sens Environ 227:125–136. https://doi.org/10.1016/j.rse.2019.03.026
CrossRef
Google Scholar
Rasel SMM, Groen TA, Hussin YA, Diti IJ (2017) Proxies for soil organic carbon derived from remote sensing. Int J Appl Earth Obs Geoinf 59:157–166. https://doi.org/10.1016/j.jag.2017.03.004
CrossRef
Google Scholar
Rees WG, Williams M (1997) Monitoring changes in land cover induced by atmospheric pollution in the Kola Peninsula, Russia, using Landsat-MSS data. Int J Remote Sens 18:1703–1723. https://doi.org/10.1080/014311697218061
CrossRef
Google Scholar
Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11(6):588–597
CAS
CrossRef
Google Scholar
Rock BN, Hoshizaki T, Miller JR (1988) Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sens Environ 24:109–127. https://doi.org/10.1016/0034-4257(88)90008-9
CrossRef
Google Scholar
Röder M, Latifi H, Hill S, Wild J, Svoboda M, Brůna J, Macek M, Nováková MH, Gülch E, Heurich M (2018) Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. International Journal of Remote Sensing 39(15-16):5288–5309. https://doi.org/10.1080/01431161.2018.1441568
Rosenzweig C, Casassa G, Karoly DJ et al (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 79–131
Google Scholar
Roth KL, Roberts DA, Dennison PE, Alonzo M, Peterson SH, Beland M (2015) Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens Environ 167:135–151. https://doi.org/10.1016/j.rse.2015.05.007
CrossRef
Google Scholar
Saksa T, Uuttera J, Kolström T et al (2003) Clear-cut detection in boreal forest aided by remote sensing. Scand J For Res 18:537–546. https://doi.org/10.1080/02827580310016881
CrossRef
Google Scholar
Salas C, Ene L, Gregoire TG et al (2010) Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sens Environ 114:1277–1285. https://doi.org/10.1016/j.rse.2010.01.020
CrossRef
Google Scholar
Sánchez-Ruiz S, Chiesi M, Maselli F, Gilabert MA (2016) Mapping growing stock at 1-km spatial resolution for Spanish forest areas from ground forest inventory data and GLAS canopy height. In: Proceedings of SPIE 10005, Earth Resources and Environmental Remote Sensing/GIS Applications VII, 100051I (18 October 2016). https://doi.org/10.1117/12.2241166
Sandström J, Bernes C, Junninen K et al (2019) Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. J Appl Ecol 56:1770–1781. https://doi.org/10.1111/1365-2664.13395
CrossRef
Google Scholar
Schnelle F, Volkert E (1974) International phenological gardens in Europe. The basic network for international phenological observations. In: Lieth H (ed) Phenology and seasonality modeling. Ecological studies (Analysis and synthesis), vol 8. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-51863-8_32
CrossRef
Google Scholar
Seidl R, Albrich K, Erb K et al (2019) What drives the future supply of regulating ecosystem services in a mountain forest landscape? For Ecol Manag 445:37–47. https://doi.org/10.1016/j.foreco.2019.03.047
CrossRef
Google Scholar
Seppälä R, Buck A, Katila P (eds) (2009) Adaptation of forests and people to climate change. A global assessment report. IUFRO World Series Volume 22. Helsinki, 224 p
Google Scholar
Shi L, Liu S (2017) Methods of estimating forest biomass: a review. In: Tumuluru JS (ed) Biomass volume estimation and valorization for energy. IntechOpen. https://doi.org/10.5772/65733
CrossRef
Google Scholar
Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res Biogeosci 116:1–12. https://doi.org/10.1029/2011JG001708
CrossRef
Google Scholar
Šímová I, Storch D (2017) The enigma of terrestrial primary productivity: measurements, models, scales and the diversity–productivity relationship. Ecography 40(239–252):2017. https://doi.org/10.1111/ecog.02482
CrossRef
Google Scholar
Sinha S, Santra A, Das AK et al (2019) Regression-based integrated Bi-sensor SAR data model to estimate forest carbon stock. J Indian Soc Remote Sens 47:1599–1608. https://doi.org/10.1007/s12524-019-01004-7
CrossRef
Google Scholar
Skakun RS, Wulder MA, Franklin SE (2003) Sensitivity of the Thematic Mapper Enhanced Wetness Difference Index (EWDI) to detect mountain pine needle red-attack damage. Remote Sens Environ 86(4):433–443. https://doi.org/10.1016/S0034-4257(03)00112-3
CrossRef
Google Scholar
Smigaj M, Gaulton R, Suárez JC, Barr SL (2019) Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree stress associated with red band needle blight severity. For Ecol Manag 433:699–708. https://doi.org/10.1016/j.foreco.2018.11.032
CrossRef
Google Scholar
Smith G, Askne J (2001) Clear-cut detection using ERS interferometry. Int J Remote Sens 22:3651–3664. https://doi.org/10.1080/01431160110040477
CrossRef
Google Scholar
Spriggs RA, Coomes DA, Jones TA et al (2017) An alternative approach to using LiDAR remote sensing data to predict stem diameter distributions across a temperate forest landscape. Remote Sens 9:944. https://doi.org/10.3390/rs9090944
CrossRef
Google Scholar
Stone C, Mohammed C (2017) Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: a review. Curr For Rep 3:75–92. https://doi.org/10.1007/s40725-017-0056-1
CrossRef
Google Scholar
Szpakowski DM, Jensen JLR (2019) A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens 11:2638. https://doi.org/10.3390/rs11222638
Tang H, Armston J, Hancock S et al (2019) Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens Environ 231:111262. https://doi.org/10.1016/j.rse.2019.111262
CrossRef
Google Scholar
Teich M, Bebi P (2009) Evaluating the benefit of avalanche protection forest with GIS-based risk analyses – a case study in Switzerland. For Ecol Manag 257:1910–1919. https://doi.org/10.1016/j.foreco.2009.01.046
CrossRef
Google Scholar
Thomas V, Oliver RD, Lim K, Woods M (2008) LiDAR and Weibull modeling of diameter and basal area. For Chron 84:866–875. https://doi.org/10.5558/tfc84866-6
CrossRef
Google Scholar
Torresan C, Corona P, Scrinzi G, Marsal JV (2016) Using classification trees to predict forest structure types from LiDAR data. Ann For Res 59(2):281–298. https://doi.org/10.15287/afr.2016.423
CrossRef
Google Scholar
Vacchiano G, Berretti R, Motta R, Mondino EB (2018) Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery. IForest 11:459–468. https://doi.org/10.3832/ifor2655-011
CrossRef
Google Scholar
Varhola A, Coops NC (2013) Estimation of watershed-level distributed forest structure metrics relevant to hydrologic modeling using LiDAR and Landsat. J Hydrol 487:70–86. https://doi.org/10.1016/j.jhydrol.2013.02.032
CrossRef
Google Scholar
Vastaranta M, Saarinen N, Yrttimaa T, Kankare V (2020) Monitoring forests in space and time using close-range sensing. https://doi.org/10.20944/preprints202002.0300.v1
Verkerk PJ, Costanza R, Hetemäki L et al (2020) Climate-smart forestry: the missing link. For Policy Econ 115:102164. https://doi.org/10.1016/j.forpol.2020.102164
CrossRef
Google Scholar
Viccaro M, Cozzi M, Fanelli L, Romano S (2019) Spatial modelling approach to evaluate the economic impacts of climate change on forests at a local scale. Ecol Indic 106:105523. https://doi.org/10.1016/j.ecolind.2019.105523
CrossRef
Google Scholar
Vincent G, Caron F, Sabatier D, Blanc L (2012) LiDAR shows that higher forests have more slender trees. Bois Forets des Tropiques 66:51–56
CrossRef
Google Scholar
Vittucci C, Ferrazzoli P, Kerr Y et al (2016) SMOS retrieval over forests: exploitation of optical depth and tests of soil moisture estimates. Remote Sens Environ 180:115–127. https://doi.org/10.1016/j.rse.2016.03.004
CrossRef
Google Scholar
Wallace L, Lucieer A, Malenovskỳ Z et al (2016) Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7:1–16. https://doi.org/10.3390/f7030062
CrossRef
Google Scholar
Walsh SJ, Weiss DJ, Butler DR, Malanson GP (2004) An assessment of snow avalanche paths and forest dynamics using Ikonos satellite data. Geocarto Int 19:85–93. https://doi.org/10.1080/10106040408542308
CrossRef
Google Scholar
Wang R, Gamon JA (2018) Remote sensing of terrestrial plant biodiversity. Remote Sens Environ 231:111218. https://doi.org/10.1016/j.rse.2019.111218
CrossRef
Google Scholar
Wang C-J, Zhang Z-X, Wan J-Z (2019) Vulnerability of global forest ecoregions to future climate change. Glob Ecol Conserv 20:1–10. https://doi.org/10.1016/j.gecco.2019.e00760
CrossRef
Google Scholar
Waring RH, Coops NC, Landsberg JJ (2010) Improving predictions of forest growth using the 3-PGS model with observations made by remote sensing. For Ecol Manag 259:1722–1729. https://doi.org/10.1016/j.foreco.2009.05.036
CrossRef
Google Scholar
Warren SD, Alt M, Olson KD, Irl SDH, Steinbauer MJ, Jentsch A (2014) The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness. Ecol Informatics 24:160–168. https://doi.org/10.1016/j.ecoinf.2014.08.006
CrossRef
Google Scholar
Weatherall A, Nabuurs G-J, Velikova V et al (2021) Defining Climate-Smart Forestry. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (Eds): Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
Weinstein BG, Marconi S, Bohlman S et al (2019) Individual tree-crown detection in rgb imagery using semi-supervised deep learning neural networks. Remote Sens 11:1–13. https://doi.org/10.3390/rs11111309
CrossRef
Google Scholar
Weiskittel AR, Crookston NL, Radtke PJ (2011) Linking climate, gross primary productivity, and site index across forests of the western United States. Can J For Res 41(8). https://doi.org/10.1139/x11-086
Weiss DJ, Walsh SJ (2009) Remote sensing of mountain environments. Geogr Compass 3:1–21. https://doi.org/10.1111/j.1749-8198.2008.00200.x
CrossRef
Google Scholar
Wigneron JP, Jackson TJ, O’Neill P et al (2017) Modelling the passive microwave signature from land surfaces: a review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens Environ 192:238–262. https://doi.org/10.1016/j.rse.2017.01.024
CrossRef
Google Scholar
Willis KS (2015) Remote sensing change detection for ecological monitoring in United States protected areas. Biol Conserv 182:233–242. https://doi.org/10.1016/j.biocon.2014.12.006
CrossRef
Google Scholar
Xu X, Li J, Tolson BA (2014) Progress in integrating remote sensing data and hydrologic modelling. Prog Phys Geogr 38(4):464–498. https://doi.org/10.1177/0309133314536583
CrossRef
Google Scholar
Yang H, Hu D, Xu H, Zhing X (2020) Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ Sci Pollut Res 27:14915–14932. https://doi.org/10.1007/s11356-020-08006-w
CrossRef
Google Scholar
Zarea A, Mohammadzadeh A (2016) A novel building and tree detection method from LiDAR data and aerial images. IEEE J Sel Top Appl Earth Obs Remote Sens 9:1864–1875. https://doi.org/10.1109/JSTARS.2015.2470547
CrossRef
Google Scholar
Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87(2–3):171–182. https://doi.org/10.1016/S0034-4257(03)00139-1
CrossRef
Google Scholar