Adams HD, Zeppel MJB, Anderegg WRL et al (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–1291. https://doi.org/10.1038/s41559-017-0248-x
CrossRef
PubMed
Google Scholar
Aide TM, Corrada-Bravo C, Campos-Cerqueira M et al (2013) Real-time bioacoustics monitoring and automated species identification. PeerJ 1:e103. https://doi.org/10.7717/peerj.103
CrossRef
PubMed
PubMed Central
Google Scholar
Albrich K, Rammer W, Thom D, Seidl R (2018) Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecol Appl 28:1884–1896. https://doi.org/10.1002/eap.1785
CrossRef
PubMed
PubMed Central
Google Scholar
Allan BM, Nimmo DG, Ierodiaconou D et al (2018) Futurecasting ecological research: the rise of technoecology. Ecosphere 9:e02163. https://doi.org/10.1002/ecs2.2163
CrossRef
Google Scholar
Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001
CrossRef
Google Scholar
Anderegg WRL, Berry JA, Field CB (2012) Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17:693–700. https://doi.org/10.1016/j.tplants.2012.09.006
CAS
CrossRef
PubMed
Google Scholar
Anderegg WRL, Hicke JA, Fisher RA et al (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683. https://doi.org/10.1111/nph.13477
CrossRef
PubMed
Google Scholar
Anderegg WRL, Klein T, Bartlett M et al (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci 113:5024–5029. https://doi.org/10.1073/pnas.1525678113
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Anderson-Teixeira KJ, Davies SJ, Bennett AC et al (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Change Biol 21:528–549. https://doi.org/10.1111/gcb.12712
CrossRef
Google Scholar
Asseng S, McIntosh PC, Thomas G et al (2016) Is a 10-day rainfall forecast of value in dry-land wheat cropping? Agric For Meteorol 216:170–176. https://doi.org/10.1016/j.agrformet.2015.10.012
CrossRef
Google Scholar
Aubin I, Boisvert-Marsh L, Kebli H, McKenney D, Pedlar J, Lawrence K, Hogg EH, Boulanger Y, Gauthier S, Ste-Marie C (2018) Tree vulnerability to climate change: improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere 9:e02108. https://doi.org/10.1002/ecs2.2108
Baatz R, Bogena HR, Hendricks Franssen H-J et al (2014) Calibration of a catchment scale cosmic-ray probe network: a comparison of three parameterization methods. J Hydrol 516:231–244. https://doi.org/10.1016/j.jhydrol.2014.02.026
CAS
CrossRef
Google Scholar
Baeten L, Bruelheide H, van der Plas F et al (2019) Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol 56:733–744. https://doi.org/10.1111/1365-2664.13308
CrossRef
Google Scholar
Bakker G, van der Ploeg MJ, de Rooij GH et al (2007) New polymer tensiometers: measuring matric pressures down to the wilting point. Vadose Zone J 6:196–202. https://doi.org/10.2136/vzj2006.0110
CrossRef
Google Scholar
Baldocchi DD, Verma SB, Anderson DE (1987) Canopy photosynthesis and water-use efficiency in a deciduous forest. J Appl Ecol 24:251–260. https://doi.org/10.2307/2403802
CrossRef
Google Scholar
Bayne K, Damesin S, Evans M (2017) The internet of things – wireless sensor networks and their application to forestry. N Z J For 61(5):37–41
Google Scholar
Beer C, Reichstein M, Tomelleri E et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. https://doi.org/10.1126/science.1184984
CAS
CrossRef
PubMed
Google Scholar
Blonquist JM, Jones SB, Robinson DA (2005) Standardizing characterization of electromagnetic water content sensors part 2. Evaluation of seven sensing systems. Vadose Zone J 4:1059–1069. https://doi.org/10.2136/vzj2004.0141
CrossRef
Google Scholar
Bodner G, Nakhforoosh A, Arnold T, Leitner D (2018) Hyperspectral imaging: a novel approach for plant root phenotyping. Plant Methods 14:84. https://doi.org/10.1186/s13007-018-0352-1
CrossRef
PubMed
PubMed Central
Google Scholar
Bosela M, Merganičová K, Torresan C, et al (2021) Modelling future growth of mountain forests under changing environments. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (eds) Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449
CAS
CrossRef
Google Scholar
Bothmann L, Menzel A, Menze BH et al (2017) Automated processing of webcam images for phenological classification. PLoS One 12:e0171918. https://doi.org/10.1371/journal.pone.0171918
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bowditch E, Santopuoli G, Binder F et al (2020) What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst Serv 43:101113. https://doi.org/10.1016/j.ecoser.2020.101113
CrossRef
Google Scholar
Brandt LA, Butler PR, Handler SD et al (2017) Integrating science and management to assess forest ecosystem vulnerability to climate change. J For 115:212–221. https://doi.org/10.5849/jof.15-147
CrossRef
Google Scholar
Brown TB, Hultine KR, Steltzer H et al (2016) Using phenocams to monitor our changing earth: toward a global phenocam network. Front Ecol Environ 14:84–93. https://doi.org/10.1002/fee.1222
CrossRef
Google Scholar
Bussotti F, Pollastrini M (2017) Traditional and novel indicators of climate change impacts on European forest trees. Forests 8:137. https://doi.org/10.3390/f8040137
CrossRef
Google Scholar
Cailleret M, Bigler C, Bugmann H et al (2016) Towards a common methodology for developing logistic tree mortality models based on ring-width data. Ecol Appl 26:1827–1841. https://doi.org/10.1890/15-1402.1
CrossRef
PubMed
Google Scholar
Cailleret M, Jansen S, Robert EMR et al (2017) A synthesis of radial growth patterns preceding tree mortality. Glob Change Biol 23:1675–1690. https://doi.org/10.1111/gcb.13535
CrossRef
Google Scholar
Cailleret M, Dakos V, Jansen S et al (2019) Early-warning signals of individual tree mortality based on annual radial growth. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01964
Calders K, Origo N, Burt A et al (2018) Realistic forest stand reconstruction from terrestrial LiDAR for radiative transfer modelling. Remote Sens 10:933. https://doi.org/10.3390/rs10060933
CrossRef
Google Scholar
Cavaleri MA, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old-growth tropical rain forest. Plant Cell Environ 31:473–483. https://doi.org/10.1111/j.1365-3040.2008.01775.x
CAS
CrossRef
PubMed
Google Scholar
Cermák J, Nadezhdina N, Trcala M, Simon J (2015) Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. IForest Biogeosci For 8:226. https://doi.org/10.3832/ifor1116-008
CrossRef
Google Scholar
Cernusak LA, Barbour MM, Arndt SK et al (2016) Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ 39:1087–1102. https://doi.org/10.1111/pce.12703
CAS
CrossRef
PubMed
Google Scholar
Chave J, Davies SJ, Phillips OL et al (2019) Ground data are essential for biomass remote sensing missions. Surv Geophys 40:863–880. https://doi.org/10.1007/s10712-019-09528-w
CrossRef
Google Scholar
Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. https://doi.org/10.1038/nature11688
CAS
CrossRef
PubMed
Google Scholar
Choat B, Brodribb TJ, Brodersen CR et al (2018) Triggers of tree mortality under drought. Nature 558:531–539. https://doi.org/10.1038/s41586-018-0240-x
CAS
CrossRef
PubMed
Google Scholar
Cocozza C, Lasserre B, Giovannelli A et al (2009) Low temperature induces different cold sensitivity in two poplar clones (Populus×canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’). J Exp Bot 60:3655–3664. https://doi.org/10.1093/jxb/erp212
CAS
CrossRef
PubMed
Google Scholar
Cocozza C, Giovannelli A, Lasserre B et al (2012) A novel mathematical procedure to interpret the stem radius variation in olive trees. Agric For Meteorol 161:80–93. https://doi.org/10.1016/j.agrformet.2012.03.016
CrossRef
Google Scholar
Cocozza C, Palombo C, Tognetti R et al (2016) Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes. Tree Physiol 36:832–846. https://doi.org/10.1093/treephys/tpw009
CrossRef
PubMed
Google Scholar
Cocozza C, Tognetti R, Giovannelli A (2018) High-resolution analytical approach to describe the sensitivity of tree–environment dependences through stem radial variation. Forests 9:134. https://doi.org/10.3390/f9030134
CrossRef
Google Scholar
Dai L, Vorselen D, Korolev KS, Gore J (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336:1175–1177. https://doi.org/10.1126/science.1219805
CAS
CrossRef
PubMed
Google Scholar
Dakos V, Carpenter SR, van Nes EH, Scheffer M (2015) Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos Trans R Soc B Biol Sci 370:20130263. https://doi.org/10.1098/rstb.2013.0263
CrossRef
Google Scholar
Dawson TE, Mambelli S, Plamboeck AH et al (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
CrossRef
Google Scholar
del Río M, Pretzsch H, Bončina A, et al (2021) Assessment of indicators for climate smart management in mountain forests. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (eds) Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
DeSoto L, Cailleret M, Sterck F et al (2020) Low growth resilience to drought is related to future mortality risk in trees. Nat Commun 11:545. https://doi.org/10.1038/s41467-020-14300-5
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Dobbertin M, Neumann M, Schroeck H-W (2013) Chapter 10 – Tree growth measurements in long-term Forest monitoring in Europe. In: Ferretti M, Fischer R (eds) Developments in environmental science. Elsevier, Amsterdam, pp 183–204
Google Scholar
Drake JM, Griffen BD (2010) Early warning signals of extinction in deteriorating environments. Nature 467:456–459. https://doi.org/10.1038/nature09389
CAS
CrossRef
PubMed
Google Scholar
Farrell C, Szota C, Arndt SK (2015) Urban plantings: ‘living laboratories’ for climate change response. Trends Plant Sci 20:597–599. https://doi.org/10.1016/j.tplants.2015.08.006
CAS
CrossRef
PubMed
Google Scholar
Fierravanti A, Cocozza C, Palombo C et al (2015) Environmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in Quebec, Canada. Agric For Meteorol 213:53–63. https://doi.org/10.1016/j.agrformet.2015.06.014
CrossRef
Google Scholar
Flo V, Martinez-Vilalta J, Steppe K et al (2019) A synthesis of bias and uncertainty in sap flow methods. Agric For Meteorol 271:362–374. https://doi.org/10.1016/j.agrformet.2019.03.012
CrossRef
Google Scholar
Ford CR, Hubbard RM, Kloeppel BD, Vose JM (2007) A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agric For Meteorol 145:176–185. https://doi.org/10.1016/j.agrformet.2007.04.010
CrossRef
Google Scholar
Franz D, Acosta M, Altimir N et al (2018) Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review. Int Agrophys 32:439–455. https://doi.org/10.1515/intag-2017-0039
CAS
CrossRef
Google Scholar
Gabrys J (2020) Smart forests and data practices: from the internet of trees to planetary governance. Big Data Soc 7:2053951720904871. https://doi.org/10.1177/2053951720904871
CrossRef
Google Scholar
Gamfeldt L, Snäll T, Bagchi R et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340. https://doi.org/10.1038/ncomms2328
CAS
CrossRef
PubMed
Google Scholar
Gamon JA, Somers B, Malenovský Z et al (2019) Assessing vegetation function with imaging spectroscopy. Surv Geophys 40:489–513. https://doi.org/10.1007/s10712-019-09511-5
CrossRef
Google Scholar
Gara TW, Darvishzadeh R, Skidmore AK, Wang T (2018) Impact of vertical canopy position on leaf spectral properties and traits across multiple species. Remote Sens 10:346. https://doi.org/10.3390/rs10020346
CrossRef
Google Scholar
Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
CrossRef
Google Scholar
Grassi G, Cescatti A, Matthews R et al (2019) On the realistic contribution of European forests to reach climate objectives. Carbon Balance Manag 14:8. https://doi.org/10.1186/s13021-019-0123-y
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Griscom BW, Adams J, Ellis PW et al (2017) Natural climate solutions. Proc Natl Acad Sci 114:11645–11650. https://doi.org/10.1073/pnas.1710465114
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Haase P, Tonkin JD, Stoll S et al (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 613–614:1376–1384. https://doi.org/10.1016/j.scitotenv.2017.08.111
CAS
CrossRef
PubMed
Google Scholar
Halbritter AH, Boeck HJD, Eycott AE et al (2020) The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol Evol 11:22–37. https://doi.org/10.1111/2041-210X.13331
CrossRef
Google Scholar
Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:E2415–E2423. https://doi.org/10.1073/pnas.1205276109
CrossRef
PubMed
PubMed Central
Google Scholar
Harmon ME, Pabst RJ (2015) Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the Oregon Cascades. J Veg Sci 26:722–732. https://doi.org/10.1111/jvs.12273
CrossRef
Google Scholar
Hartmann H, Moura CF, Anderegg WRL et al (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218:15–28. https://doi.org/10.1111/nph.15048
CrossRef
PubMed
Google Scholar
Hinckley E-LS, Anderson SP, Baron JS et al (2016) Optimizing available network resources to address questions in environmental biogeochemistry. Bioscience 66:317–326. https://doi.org/10.1093/biosci/biw005
CrossRef
Google Scholar
Jarvis PG, Morison JIL, Chaloner WG et al (1989) Atmospheric carbon dioxide and forests. Philos Trans R Soc Lond Ser B Biol Sci 324:369–392. https://doi.org/10.1098/rstb.1989.0053
CrossRef
Google Scholar
Jarvis L, McCann K, Tunney T et al (2016) Early warning signals detect critical impacts of experimental warming. Ecol Evol 6:6097–6106. https://doi.org/10.1002/ece3.2339
CrossRef
PubMed
PubMed Central
Google Scholar
Jordan BL, Batalin MA, Kaiser WJ (2007) NIMS RD: a rapidly deployable cable based robot. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 144–150
Google Scholar
Kaivosoja J, Jackenkroll M, Linkolehto R et al (2014) Automatic control of farming operations based on spatial web services. Comput Electron Agric 100:110–115. https://doi.org/10.1016/j.compag.2013.11.003
CrossRef
Google Scholar
Kannenberg SA, Novick KA, Alexander MR et al (2019) Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Glob Change Biol 25:2978–2992. https://doi.org/10.1111/gcb.14710
CrossRef
Google Scholar
Kattge J, Bönisch G, Díaz S et al (2020) TRY plant trait database – enhanced coverage and open access. Glob Change Biol 26:119–188. https://doi.org/10.1111/gcb.14904
CrossRef
Google Scholar
Klein T, Rotenberg E, Tatarinov F, Yakir D (2016) Association between sap flow-derived and eddy covariance-derived measurements of forest canopy CO2 uptake. New Phytol 209:436–446. https://doi.org/10.1111/nph.13597
CAS
CrossRef
PubMed
Google Scholar
Koeniger P, Leibundgut C, Link T, Marshall JD (2010) Stable isotopes applied as water tracers in column and field studies. Org Geochem 41:31–40. https://doi.org/10.1016/j.orggeochem.2009.07.006
CAS
CrossRef
Google Scholar
Kulmala M (2018) Build a global earth observatory. Nature 553:21–23. https://doi.org/10.1038/d41586-017-08967-y
CAS
CrossRef
PubMed
Google Scholar
Kunz M, Fichtner A, Härdtle W et al (2019) Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol Lett 22:2130–2140. https://doi.org/10.1111/ele.13400
CrossRef
PubMed
Google Scholar
Lambot S, Slob EC, Vanclooster M, Vereecken H (2006) Closed loop GPR data inversion for soil hydraulic and electric property determination. Geophys Res Lett 33. https://doi.org/10.1029/2006GL027906
Lauteri M, Alessio GA, Paris P (2005) Using oxygen stable isotopes Tto investigate the soil-plant-atmosphere hydraulic continuum in complex stands of walnut. Acta Hortic 223–230. https://doi.org/10.17660/ActaHortic.2005.705.27
Law BE, Hudiburg TW, Berner LT et al (2018) Land use strategies to mitigate climate change in carbon dense temperate forests. Proc Natl Acad Sci 115:3663–3668. https://doi.org/10.1073/pnas.1720064115
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. https://doi.org/10.1016/j.foreco.2009.09.023
CrossRef
Google Scholar
Lindner M, Fitzgerald JB, Zimmermann NE et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. https://doi.org/10.1016/j.jenvman.2014.07.030
CrossRef
Google Scholar
Link CM, Thevathasan NV, Gordon AM, Isaac ME (2015) Determining tree water acquisition zones with stable isotopes in a temperate tree-based intercropping system. Agrofor Syst 89:611–620. https://doi.org/10.1007/s10457-015-9795-9
CrossRef
Google Scholar
Liu Y, Zhang X, Zhao S et al (2019) The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests 10:121. https://doi.org/10.3390/f10020121
CrossRef
Google Scholar
Luyssaert S, Marie G, Valade A et al (2018) Trade-offs in using European forests to meet climate objectives. Nature 562:259–262. https://doi.org/10.1038/s41586-018-0577-1
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Marchi S, Guidotti D, Ricciolini M, Petacchi R (2016) Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. Int J Biometeorol 60:1681–1694. https://doi.org/10.1007/s00484-016-1159-2
CrossRef
PubMed
Google Scholar
Markwitz C, Siebicke L (2019) Low-cost eddy covariance: a case study of evapotranspiration over agroforestry in Germany. Atmos Meas Tech 12:4677–4696. https://doi.org/10.5194/amt-12-4677-2019
CrossRef
Google Scholar
Marshall JD, Cuntz M, Beyer M et al (2020) Borehole equilibration: testing a new method to monitor the isotopic composition of tree xylem water in situ. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00358
Martinez-Vilalta J, Anderegg WRL, Sapes G, Sala A (2019) Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol 223:22–32. https://doi.org/10.1111/nph.15644
CrossRef
PubMed
Google Scholar
Marvin DC, Koh LP, Lynam AJ et al (2016) Integrating technologies for scalable ecology and conservation. Glob Ecol Conserv 7:262–275. https://doi.org/10.1016/j.gecco.2016.07.002
CrossRef
Google Scholar
McDowell NG, Fisher RA, Xu C et al (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol 200:304–321. https://doi.org/10.1111/nph.12465
CAS
CrossRef
PubMed
Google Scholar
Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349:823–826. https://doi.org/10.1126/science.aaa9933
CAS
CrossRef
PubMed
Google Scholar
Munson SM, Reed SC, Peñuelas J et al (2018) Ecosystem thresholds, tipping points, and critical transitions. New Phytol 218:1315–1317. https://doi.org/10.1111/nph.15145
CrossRef
PubMed
Google Scholar
Nadezhdina N, Čermák J, Gašpárek J et al (2006) Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland. Tree Physiol 26:1277–1288. https://doi.org/10.1093/treephys/26.10.1277
CrossRef
PubMed
Google Scholar
Nadezhdina N, David TS, David JS et al (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3:431–444. https://doi.org/10.1002/eco.148
CrossRef
Google Scholar
Nadrowski K, Pietsch K, Baruffol M et al (2014) Tree species traits but not diversity mitigate stem breakage in a subtropical Forest following a rare and extreme ice storm. PLoS One 9:e96022. https://doi.org/10.1371/journal.pone.0096022
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
National Research Council (1995) Finding the forest in the trees: the challenge of combining diverse environmental data. National Academies Press, Washington, DC
Google Scholar
Naudts K, Chen Y, McGrath MJ et al (2016) Europe’s forest management did not mitigate climate warming. Science 351:597–600. https://doi.org/10.1126/science.aad7270
CAS
CrossRef
PubMed
Google Scholar
Niinemets Ü, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993. https://doi.org/10.1111/nph.13096
CAS
CrossRef
PubMed
Google Scholar
O’Brien MJ, Engelbrecht BMJ, Joswig J et al (2017) A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J Appl Ecol 54:1669–1686. https://doi.org/10.1111/1365-2664.12874
CrossRef
Google Scholar
O’Sullivan OS, Heskel MA, Reich PB et al (2017) Thermal limits of leaf metabolism across biomes. Glob Change Biol 23:209–223. https://doi.org/10.1111/gcb.13477
CrossRef
Google Scholar
Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363. https://doi.org/10.1007/s00442-005-0108-2
CrossRef
PubMed
Google Scholar
Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609
CAS
CrossRef
PubMed
Google Scholar
Park Williams A, Allen CD, Macalady AK et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3:292–297. https://doi.org/10.1038/nclimate1693
CrossRef
Google Scholar
Peltola H, Kellomäki S (1993) A mechanistic model for calculating windthrow and stem breakage of Scots pines at stand age. Silva Fenn. https://doi.org/10.14214/sf.a15665
Perone A, Lombardi F, Marchetti M et al (2016) Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America. Glob Planet Change 145:1–10. https://doi.org/10.1016/j.gloplacha.2016.08.004
CrossRef
Google Scholar
Pfautsch S, Hölttä T, Mencuccini M (2015) Hydraulic functioning of tree stems—fusing ray anatomy, radial transfer and capacitance. Tree Physiol 35:706–722. https://doi.org/10.1093/treephys/tpv058
CAS
CrossRef
PubMed
Google Scholar
Polade SD, Pierce DW, Cayan DR et al (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364. https://doi.org/10.1038/srep04364
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Poyatos R, Granda V, Molowny-Horas R et al (2016) SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiol 36:1449–1455. https://doi.org/10.1093/treephys/tpw110
CrossRef
PubMed
Google Scholar
Poyatos R, Granda V, Flo V et al (2020) Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst Sci Data Discuss:1–57. https://doi.org/10.5194/essd-2020-227
Pretzsch H, del Río M, Giammarchi F, Uhl E, Tognetti R (2021a) Changes of tree and stand growth. Review and implications. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (eds) Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
Pretzsch H, Hilmers T, Uhl E, et al (2021b) Efficacy of trans-geographic observational network design for revelation of growth pattern in mountain forests across Europe. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (eds) Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
Prislan P, Gričar J, Čufar K et al (2019) Growing season and radial growth predicted for Fagus sylvatica under climate change. Clim Chang 153:181–197. https://doi.org/10.1007/s10584-019-02374-0
CrossRef
Google Scholar
Rahman G, Sohag H, Chowdhury R et al (2020) SoilCam: a fully automated minirhizotron using multispectral imaging for root activity monitoring. Sensors 20:787. https://doi.org/10.3390/s20030787
CrossRef
PubMed Central
Google Scholar
Raschi A, Tognetti R, Ridder H-W, Berés C (1995) The use of computer tomography in the study of pollution effects on oak trees. Agric Mediterr Special Volume:298–306
Google Scholar
Rautiainen M, Lukeš P, Homolová L et al (2018) Spectral properties of coniferous forests: a review of in situ and laboratory measurements. Remote Sens 10:207. https://doi.org/10.3390/rs10020207
CrossRef
Google Scholar
Rebmann C, Aubinet M, Schmid H et al (2018) ICOS eddy covariance flux-station site setup: a review. Int Agrophys 32:471–494. https://doi.org/10.1515/intag-2017-0044
CrossRef
Google Scholar
Richter DD, Billings SA, Groffman PM et al (2018) Ideas and perspectives: strengthening the biogeosciences in environmental research networks. Biogeosciences 15:4815–4832. https://doi.org/10.5194/bg-15-4815-2018
CrossRef
Google Scholar
Rita A, Camarero JJ, Nolè A et al (2020) The impact of drought spells on forests depends on site conditions: the case of 2017 summer heat wave in southern Europe. Glob Change Biol 26:851–863. https://doi.org/10.1111/gcb.14825
CrossRef
Google Scholar
Robinson DA, Hopmans JW, Filipovic V et al (2019) Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob Change Biol 25:1895–1904. https://doi.org/10.1111/gcb.14626
CrossRef
Google Scholar
Rosenbaum U, Bogena HR, Herbst M et al (2012) Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour Res 48. https://doi.org/10.1029/2011WR011518
Rothfuss Y, Javaux M (2017) Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods. Biogeosciences 14:2199–2224. https://doi.org/10.5194/bg-14-2199-2017
CAS
CrossRef
Google Scholar
Rundel PW, Graham EA, Allen MF et al (2009) Environmental sensor networks in ecological research. New Phytol 182:589–607. https://doi.org/10.1111/j.1469-8137.2009.02811.x
CrossRef
PubMed
Google Scholar
Sabo JL, Post DM (2008) Quantifying periodic, stochastic, and catastrophic environmental variation. Ecol Monogr 78:19–40. https://doi.org/10.1890/06-1340.1
CrossRef
Google Scholar
Saito K, Nakamura K, Ueta M et al (2015) Utilizing the cyberforest live sound system with social media to remotely conduct woodland bird censuses in Central Japan. Ambio 44:572–583. https://doi.org/10.1007/s13280-015-0708-y
CrossRef
PubMed
PubMed Central
Google Scholar
Santopuoli G, Temperli C, Alberdi I et al (2020) Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe1. Can J For Res. https://doi.org/10.1139/cjfr-2020-0166
Schwendenmann L, Veldkamp E, Moser G et al (2010) Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob Change Biol 16:1515–1530. https://doi.org/10.1111/j.1365-2486.2009.02034.x
CrossRef
Google Scholar
Seidel D, Annighöfer P, Stiers M et al (2019) How a measure of tree structural complexity relates to architectural benefit-to-cost ratio, light availability, and growth of trees. Ecol Evol 9:7134–7142. https://doi.org/10.1002/ece3.5281
CrossRef
PubMed
PubMed Central
Google Scholar
Sethi SS, Ewers RM, Jones NS et al (2018) Robust, real-time and autonomous monitoring of ecosystems with an open, low-cost, networked device. Methods Ecol Evol 9:2383–2387. https://doi.org/10.1111/2041-210X.13089
CrossRef
Google Scholar
Shestakova TA, Voltas J, Saurer M et al (2019) Spatio-temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Glob Ecol Biogeogr 28:1295–1309. https://doi.org/10.1111/geb.12933
CrossRef
Google Scholar
Sillmann J, Kharin VV, Zhang X et al (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmo 118:1716–1733. https://doi.org/10.1002/jgrd.50203
CrossRef
Google Scholar
Sillmann J, Kharin VV, Zwiers FW et al (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188
CrossRef
Google Scholar
Steppe K, De Pauw DJW, Doody TM, Teskey RO (2010) A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric For Meteorol 150:1046–1056. https://doi.org/10.1016/j.agrformet.2010.04.004
CrossRef
Google Scholar
Steppe K, von der Crone JS, De Pauw DJW (2016) TreeWatch.net: a water and carbon monitoring and Modeling network to assess instant tree hydraulics and carbon status. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00993
Stover DB, Day FP, Butnor JR, Drake BG (2007) Effect of elevated Co2 on coarse-root biomass in Florida Scrub detected by ground-penetrating radar. Ecology 88:1328–1334. https://doi.org/10.1890/06-0989
CrossRef
PubMed
Google Scholar
Subashini MM, Das S, Heble S et al (2018) Internet of things based wireless plant sensor for smart farming. Indones J Electr Eng Comput Sci 10:456–468. https://doi.org/10.11591/ijeecs.v10.i2.pp456-468
CrossRef
Google Scholar
Sun S-J, Meng P, Zhang J-S, Wan X (2011) Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. Tree Physiol 31:1378–1389. https://doi.org/10.1093/treephys/tpr116
CAS
CrossRef
PubMed
Google Scholar
Talla V, Hessar M, Kellogg B et al (2017) LoRa backscatter: enabling the vision of ubiquitous connectivity. Proc ACM Interact Mob Wearable Ubiquitous Technol 1:105:1–105:24. https://doi.org/10.1145/3130970
CrossRef
Google Scholar
Tang J, Baldocchi DD (2005) Spatial–temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 73:183–207. https://doi.org/10.1007/s10533-004-5889-6
CrossRef
Google Scholar
Teets A, Fraver S, Hollinger DY et al (2018) Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agric For Meteorol 249:479–487. https://doi.org/10.1016/j.agrformet.2017.08.007
CrossRef
Google Scholar
Temperli C, Santopuoli G, Bottero A, et al (2021) National Forest Inventory data to evaluate Climate-Smart Forestry. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (eds) Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
Teskey R, Wertin T, Bauweraerts I et al (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712. https://doi.org/10.1111/pce.12417
CrossRef
PubMed
Google Scholar
Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781. https://doi.org/10.1111/brv.12193
CrossRef
PubMed
Google Scholar
Tognetti R, Raschi A, Béres C et al (1996) Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant Cell Environ 19:928–938. https://doi.org/10.1111/j.1365-3040.1996.tb00457.x
CrossRef
Google Scholar
Tognetti R, Lasserre B, Di Febbraro M, Marchetti M (2019) Modeling regional drought-stress indices for beech forests in Mediterranean mountains based on tree-ring data. Agric For Meteorol 265:110–120. https://doi.org/10.1016/j.agrformet.2018.11.015
CrossRef
Google Scholar
Torresan C, Benito Garzon M, O’Grady M et al (2021) A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can J For Res. https://doi.org/10.1139/cjfr-2020-0295
Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818. https://doi.org/10.1126/science.aac6759
CAS
CrossRef
PubMed
Google Scholar
Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol 88:574–580
CAS
CrossRef
Google Scholar
United Nations (ed) (2015) Transforming our world: the 2030 agenda for sustainable development. United Nations, New York
Google Scholar
Valentini R, Marchesini LB, Gianelle D et al (2019) New tree monitoring systems: from Industry 4.0 to Nature 4.0. Ann Silvic Res 43:84–88. https://doi.org/10.12899/asr-1847
CrossRef
Google Scholar
Vandegehuchte MW, Steppe K (2013) Sap-flux density measurement methods: working principles and applicability. Funct Plant Biol 40:213–223. https://doi.org/10.1071/FP12233
CrossRef
PubMed
Google Scholar
Veraart AJ, Faassen EJ, Dakos V et al (2012) Recovery rates reflect distance to a tipping point in a living system. Nature 481:357–359. https://doi.org/10.1038/nature10723
CAS
CrossRef
Google Scholar
Vernay A, Tian X, Chi J et al (2020) Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances. Plant Cell Environ 43:2124–2142. https://doi.org/10.1111/pce.13835
CAS
CrossRef
PubMed
Google Scholar
Vicca S, Stocker BD, Reed S et al (2018) Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environ Res Lett 13:125006. https://doi.org/10.1088/1748-9326/aaeae7
CAS
CrossRef
Google Scholar
Weatherall A, Nabuurs G-J, Velikova V, et al (2021) Defining Climate-Smart Forestry. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (eds) Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG
Google Scholar
Wei L, Zhou H, Link TE et al (2018) Forest productivity varies with soil moisture more than temperature in a small montane watershed. Agric For Meteorol 259:211–221. https://doi.org/10.1016/j.agrformet.2018.05.012
Wissel C (1984) A universal law of the characteristic return time near thresholds. Oecologia 65:101–107. https://doi.org/10.1007/BF00384470
CAS
CrossRef
PubMed
Google Scholar
Zapata-Rios X, McIntosh J, Rademacher L et al (2015) Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone. Water Resour Res 51:6036–6051. https://doi.org/10.1002/2015WR017018
CAS
CrossRef
Google Scholar
Zhao Y, Gao S, Zhu J et al (2019) Multifunctional stretchable sensors for continuous monitoring of long-term leaf physiology and microclimate. ACS Omega 4:9522–9530. https://doi.org/10.1021/acsomega.9b01035
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Zhu Z, Kin Tam T, Sun F et al (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 5:3026. https://doi.org/10.1038/ncomms4026
CAS
CrossRef
PubMed
Google Scholar
Zreda M, Shuttleworth WJ, Zeng X et al (2012) COSMOS: the COsmic-ray soil moisture observing system. Hydrol Earth Syst Sci 16:4079–4099. https://doi.org/10.5194/hess-16-4079-2012
CrossRef
Google Scholar
Zweifel R (2016) Radial stem variations – a source of tree physiological information not fully exploited yet. Plant Cell Environ 39:231–232. https://doi.org/10.1111/pce.12613
CAS
CrossRef
PubMed
Google Scholar
Zweifel R, Haeni M, Buchmann N, Eugster W (2016) Are trees able to grow in periods of stem shrinkage? New Phytol 211:839–849. https://doi.org/10.1111/nph.13995
CrossRef
PubMed
Google Scholar