Skip to main content

Improvement of Abiotic Stress Tolerance by Modulating Polyamine Pathway in Crop Plants

  • Chapter
  • First Online:
Compatible Solutes Engineering for Crop Plants Facing Climate Change

Abstract

Various abiotic stresses severely affect crop plant germination, growth, and productivity worldwide. Plants exhibit numerous mechanisms to battle against hostile abiotic stress. Out of several mechanisms, here we focused on the polyamine metabolic pathway. Polyamines exist in the plants with free or covalently/noncovalently conjugated forms and mainly three types, i.e., putrescine, spermidine, and spermine. These are involved in various cellular processes such as DNA replication, transcription, cell membrane stability, cell division, regulation of enzyme activity, and in abiotic stress, etc. Polyamines biosynthesis pathways in plants use two critical precursor substrates, i.e., L-arginine and methionine. In the present chapter, we will focus on genes and enzymes involved in polyamines biosynthetic and catabolism. Multiple functional roles of polyamines at the cellular level and during the developmental stage, during high-temperature stress, during cold and chilling stress, during water and drought stress are discussed in detail. Apart from these, we also focused on genetic engineering in polyamines pathways to develop abiotic stress-tolerant crops. Genetic manipulation using plant genetic engineering tools by targeting ADC, ODC, SPDS, SAM, and SAMDC in different plants improved abiotic stress tolerance. Apart from these genes, transcription factors regulating these pathways need to be explored to achieve better abiotic stress-tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass SM, Mohamed HI (2011) Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J Bot 40(1):75–83

    Article  Google Scholar 

  • Aghdam MS, Luo Z, Jannatizadeh A, Sheikh-Assadi M, Sharafi Y, Farmani B, Razavi F (2019) Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chem 275:549–556

    Article  PubMed  CAS  Google Scholar 

  • Alburquerque N, Egea J, Burgos L, MartÍnez-Romero D, Valero D, Serrano M (2006) The influence of polyamines on apricot ovary development and fruit set. Ann Appl Biol 149(1):27–33

    Article  CAS  Google Scholar 

  • Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  PubMed  CAS  Google Scholar 

  • Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71(16):1808–1824

    Article  PubMed  CAS  Google Scholar 

  • Bibi AC, Oosterhuis DM, Gonias ED (2010) Exogenous application of putrescine ameliorates the effect of high temperature in Gossypium hirsutum L. flowers and fruit development. J Agron Crop Sci 196(3):205–211

    Article  CAS  Google Scholar 

  • Binet R, Fernandez RE, Fisher DJ, Maurelli AT (2011) Identification and characterization of the chlamydia trachomatis L2 S-adenosylmethionine transporter. MBio 2(3):e00051–e00011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci 101(26):9909–9914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakraborty B, Bambharolia RP, Naghera YV, Sarkar M (2017) Exogenous application of polyamines maintains physico-chemical properties of mango (Mangifera indica L.) cv alphonso under aimbient storage. Environ Ecol 35(2):763–767

    Google Scholar 

  • Chen M, Chen J, Fang J, Guo Z, Lu S (2014) Down-regulation of S-adenosylmethionine decarboxylase genes results in reduced plant length, pollen viability, and abiotic stress tolerance. Plant Cell Tissue Organ Cult 116:311–322

    Article  CAS  Google Scholar 

  • Chen Y, Zou T, McCormick S (2016) S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol 172(1):244–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2018) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    Article  PubMed  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51(5):489–499

    Article  PubMed  CAS  Google Scholar 

  • Duque AS, López-Gómez M, Kráčmarová J, Gomes CN, Araújo SS, Lluch C, Fevereiro P (2016) Genetic engineering of polyamine metabolism changes Medicago truncatula responses to water deficit. Plant Cell Tissue Organ Cult 127(3):681–690

    Article  CAS  Google Scholar 

  • Dutta T, Neelapu NR, Wani SH, Challa S (2018) Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In: Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Academic, New York, pp 221–254

    Chapter  Google Scholar 

  • Espasandin FD, Calzadilla PI, Maiale SJ, Ruiz OA, Sansberro PA (2018) Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants. J Plant Growth Regul 37(1):156–165

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31(5):937–945

    Article  CAS  Google Scholar 

  • Federico R, Cona A, Angelini R, Schininà ME, Giartosio A (1990) Characterization of maize polyamine oxidase. Phytochemistry 29(8):2411–2414

    Article  PubMed  CAS  Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2010) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62(3):1155–1168

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Gu Q, Dong Q, Zhang Z, Lin C, Hu W, Pan R, Guan Y, Hu J (2019) Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism. Molecules 24(7):1395

    Article  PubMed Central  CAS  Google Scholar 

  • Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16(5):446

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y (2018) Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol 177(1):339–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han L (2016) Studies on mechanism of low temperature storage and polyamine impact in cut flowers of herbaceous peony postharvest senescence. Shandong Agricultural University, Shandong

    Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27(6):551–560

    Article  PubMed  CAS  Google Scholar 

  • Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K (2015) Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of× Triticosecale Wittm. PLoS One 10(8):e0135002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2015) Modulation of protein synthesis by polyamines. IUBMB Life 67:160–169

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135(3):1565–1573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Sun J, Guo S (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19(1):1–16

    Article  CAS  Google Scholar 

  • Janda T, Khalil R, Tajti J, Pál M, Darkó É (2019) Responses of young wheat plants to moderate heat stress. Acta Physiol Plant 41(8):137

    Article  CAS  Google Scholar 

  • Kamada-Nobusada T et al (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72(3):257–268

    Article  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45(6):712–722

    Article  PubMed  CAS  Google Scholar 

  • Kuehn GD, Rodriguez-Garay B, Bagga S, Phillips GC (1990) Novel occurrence of uncommon polyamines in higher plants. Plant Physiol 94(3):855–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Zhou H, Peng Y, Zhang X, Ma X, Huang L et al (2015) Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul 76:71–82

    Article  CAS  Google Scholar 

  • Li S, Jin H, Zhang Q (2016) The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Front Plant Sci 7:1221

    PubMed  PubMed Central  Google Scholar 

  • Li K, Xing C, Yao Z, Huang X (2017) Pbr MYB 21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15(9):1186–1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Kim DW, Niitsu M, Maeda S, Watanabe M, Kamio Y, Berberich T, Kusano T (2014) Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol 55(6):1110–1122

    Article  PubMed  CAS  Google Scholar 

  • Liu T et al (2014a) Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol 55:1110–1122

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Wang Y, Gu D, Nan J, Chen S, Li H (2017) Overexpression of S-adenosyl-L-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci 18(4):847

    Article  PubMed Central  CAS  Google Scholar 

  • Mahdi AHA (2016) Improvement of salt tolerance in Vicia faba (L.) plants by exogenous application of polyamines. Egypt J Agron 38:1–21

    Article  Google Scholar 

  • Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, Minocha SC (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Masson PH, Takahashi T, Angelini R (2017) Molecular mechanisms underlying polyamine functions in plants. Front Plant Sci 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael AJ (2018) Polyamine function in archaea and bacteria. J Biol Chem 293(48):18693–18701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirdehghan SH, Rahemi M, Castillo S, Martínez-Romero D, Serrano M, Valero D (2007) Pre-storage application of polyamines by pressure or immersion improves shelf-life of pomegranate stored at chilling temperature by increasing endogenous polyamine levels. Postharvest Biol Technol 44(1):26–33

    Article  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism. Plant Signal Behav 3:1061–1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Rahman A, Alam M, Mahmud JA, Suzuki T, Fujita M (2016) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci 7:1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63(5):836–847

    Article  PubMed  CAS  Google Scholar 

  • Ono Y, Kim DW, Watanabe K, Sasaki A, Niitsu M, Berberich T, Kusano T, Takahashi Y (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42:867–876

    Article  PubMed  CAS  Google Scholar 

  • Patel N, Gantait S, Panigrahi J (2019) Extension of postharvest shelf-life in green bell pepper (Capsicum annuum L.) using exogenous application of polyamines (spermidine and putrescine). Food Chem 275:681–687

    Article  PubMed  CAS  Google Scholar 

  • Peng D, Wang X, Li Z, Zhang Y, Peng Y, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y (2016) NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. Protoplasma 253(5):1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130(3):1454–1463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peynevandi KM, Razavi SM, Zahri S (2018) The ameliorating effects of polyamine supplement on physiological and biochemical parameters of Stevia rebaudiana Bertoni under cold stress. Plant Prod Sci 21:123–131

    Article  CAS  Google Scholar 

  • Qiu Z, Yan S, Xia B, Jiang J, Yu B, Lei J, Tian S (2019) The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. J Exp Bot 70(19):5343–5354

    Article  PubMed  CAS  Google Scholar 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185

    Article  PubMed  CAS  Google Scholar 

  • Raman VP, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  Google Scholar 

  • Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol Plant 98(1):196–200

    Article  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160(5):869–875

    Article  PubMed  CAS  Google Scholar 

  • Saleem BA, Malik AU, Anwar R, Farooq M (2006, August) Exogenous application of polyamines improves fruit set, yield and quality of sweet oranges. In: XXVII international horticultural congress-IHC2006: international symposium on endogenous and exogenous plant bioregulators 774, pp 187–194

    Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56(2):114–121

    Article  PubMed  CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sobieszczuk-Nowicka E (2017) Polyamine catabolism adds fuel to leaf senescence. Amino Acids 49(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Wang Y, Tan J, Al E (2018) Effects of exogenous putrescine and D-Arg on physiological and biochemical indices of anthurium under chilling stress. Jiangsu J Agric Sci 34:152–157

    Google Scholar 

  • Takahashi Y, Ono K, Akamine Y, Asano T, Ezaki M, Mouri I (2017) Highly-expressed polyamine oxidases catalyze polyamine back conversion in Brachypodium distachyon. J Plant Res 131:341–348

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Wang J, Miao J, Chen J, Wu S, Zhu J, Zhang D, Gu H, Cui H, Shi S, Xu M (2018) The spermine synthase OsSPMS1 regulates seed germination, grain size, and yield. Plant Physiol 178(4):1522–1536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tassoni A, Fornalè S, Bagni N (2003) Putative ornithine decarboxylase activity in Arabidopsis thaliana: inhibition and intracellular localisation. Plant Physiol Biochem 41:871–875

    Article  CAS  Google Scholar 

  • Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824

    Article  PubMed  PubMed Central  Google Scholar 

  • Vondráková Z, Eliášová K, Vágner M, Al E (2015) Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul 75:405–414

    Article  CAS  Google Scholar 

  • Vuosku J, Suorsa M, Ruottinen M, Sutela S, Muilu-Mäkelä R, Julkunen-Tiitto R (2012) Polyamine metabolism during exponential growth transition in scots pine embryogenic cell culture. Tree Physiol 32:1274–1287

    Article  PubMed  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164(5):727–734

    Article  CAS  Google Scholar 

  • Wang J, Liu JH (2009) Change in free polyamine contents and expression profiles of two polyamine biosynthetic genes in citrus embryogenic callus under abiotic stresses. Biotechnol Biotechnol Equip 29:1289–1293

    Article  Google Scholar 

  • Wang W, Liu JH (2015) Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis). Gene 555:421–429

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164(8):1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Paschalidis K, Feng JC, Song J, Liu JH (2019) Polyamine catabolism in plants: a universal process with diverse functions. Front Plant Sci 10

    Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17(2):251–263

    Article  PubMed  CAS  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19(1):91–103

    Article  PubMed  CAS  Google Scholar 

  • Wi SJ, Kim SJ, Kim WT, Park KY (2014) Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta 239:979–988

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Xing ST, Sun X (2014) Effects of polyamines on hormones contents and the relationship with the flower bud differentiation in chrysanthemum. Plant Physiol J 50(8):1195–1202

    CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58(6):1545–1555

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Horticult 122:200–208

    Article  Google Scholar 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hortic 116(4):442–447

    Article  CAS  Google Scholar 

  • Zhao H, Zhang K, Zhou X, Xi L, Wang Y, Xu H, Pan T, Zou Z (2017) Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism. Sci Rep 7(1):4998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuo C, Liang L, Zhao Y, Guo Z, Lu S (2018) A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell Environ 41(9):2021–2032

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Panjab University Chandigarh, CIAB Mohali, and Department of Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alok, A., Nag, A., Kumar, J., Jogam, P., Singh, K., Singh, S.P. (2021). Improvement of Abiotic Stress Tolerance by Modulating Polyamine Pathway in Crop Plants. In: Wani, S.H., Gangola, M.P., Ramadoss, B.R. (eds) Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-80674-3_5

Download citation

Publish with us

Policies and ethics