Skip to main content

Weighted Ricci Curvature

  • Chapter
  • First Online:
Comparison Finsler Geometry

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 927 Accesses

Abstract

In Part I, we saw that the natural notions of Finsler curvatures (the flag and Ricci curvatures) can be introduced through the behavior of geodesics, and then several comparison theorems follow smoothly by similar arguments to the Riemannian case, or through the characterizations of these curvatures from the Riemannian geometric point of view.

In order to proceed further in this direction, we would like to equip our Finsler manifold with a measure on it. At this point, however, we face a difficulty in choosing a measure, because a Finsler manifold does not necessarily have a unique canonical measure like the volume measure in the Riemannian case.

Then our standpoint is that, instead of choosing some constructive measure, we begin with an arbitrary measure and modify the Ricci curvature into the weighted Ricci curvature according to the choice of a measure. This is motivated by the theory deeply investigated in the Riemannian case by Lichnerowicz, Bakry and others. It will turn out that this strategy fits the Finsler setting very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Álvarez Paiva, J.C., Thompson, A.C.: Volumes in normed and Finsler spaces. In: Bao, D., Bryant, R.L., Chern, S.-S., Shen, Z. (eds.) A Sampler of Riemann–Finsler Geometry, pp. 1–48. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. (French) In: Bernard, P. (eds.) Lectures on Probability Theory. Lecture Notes in Mathematics, vol. 1581, pp. 1–114. Springer, Berlin (1994)

    Google Scholar 

  5. Bakry, D., Émery, M.: Diffusions hypercontractives. (French) In: Azéma, J., Yor, M. (eds.) Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  6. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  Google Scholar 

  7. Bakry, D., Gentil, I., Scheffer, G.: Sharp Beckner-type inequalities for Cauchy and spherical distributions. Studia Math. 251, 219–245 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. Academic, New York, London (1964)

    MATH  Google Scholar 

  9. Chavel, I.: Riemannian Geometry. A Modern Introduction, 2nd edn. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  10. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geometry 6, 119–128 (1971/72)

    Article  MathSciNet  Google Scholar 

  11. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fukaya, K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87, 517–547 (1987)

    Article  MathSciNet  Google Scholar 

  13. Gentil, I., Zugmeyer, S.: A family of Beckner inequalities under various curvature-dimension conditions. Bernoulli 27, 751–771 (2021)

    Article  MathSciNet  Google Scholar 

  14. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Based on the 1981 French Original. With appendices by Katz, M., Pansu, P., Semmes, S. Birkhäuser Boston, Inc., Boston, MA (1999)

    Google Scholar 

  15. Ivanov, S.: Volume comparison via boundary distances. In: Bhatia, R., Pal, A., Rangarajan, G., Srinivas, V., Vanninathan, M. (eds.) Proceedings of the International Congress of Mathematicians. Volume II, pp. 769–784. Hindustan Book Agency, New Delhi (2010)

    Google Scholar 

  16. Kolesnikov, A.V., Milman, E.: Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary. J. Geom. Anal. 27, 1680–1702 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lakzian, S.: Differential Harnack estimates for positive solutions to heat equation under Finsler–Ricci flow. Pacif. J. Math. 278, 447–462 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. (French) C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970)

    Google Scholar 

  19. Lu, Y., Minguzzi, E., Ohta, S.: Comparison theorems on weighted Finsler manifolds and spacetimes with 𝜖-range. Preprint (2020). Available at arXiv:2007.00219

    Google Scholar 

  20. Mai, C.H.: On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension. Kyushu J. Math. 73, 205–218 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mai, C.H.: Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds. Geom. Dedicata 202, 213–232 (2019)

    Article  MathSciNet  Google Scholar 

  22. Milman, E.: Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension. Trans. Am. Math. Soc. 369, 3605–3637 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ohta, S.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)

    Article  MathSciNet  Google Scholar 

  24. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211–249 (2009)

    Article  MathSciNet  Google Scholar 

  25. Ohta, S.: Ricci curvature, entropy, and optimal transport. In: Ollivier, Y., Pajot, H., Villani, C. (eds.) Optimal Transportation. London Mathematical Society Lecture Note Series, vol. 413, pp. 145–199. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  26. Ohta, S.: (K, N)-convexity and the curvature-dimension condition for negative N. J. Geom. Anal. 26, 2067–2096 (2016)

    Google Scholar 

  27. Ohta, S.: Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Jpn. 70, 651–693 (2018)

    Article  MathSciNet  Google Scholar 

  28. Ohta, S., Takatsu, A.: Displacement convexity of generalized relative entropies. Adv. Math. 228, 1742–1787 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ohta, S., Takatsu, A.: Displacement convexity of generalized relative entropies. II. Commun. Anal. Geom. 21, 687–785 (2013)

    Article  MathSciNet  Google Scholar 

  30. Qian, Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxford Ser. (2) 48, 235–242 (1997)

    Google Scholar 

  31. Scheffer, G.: Local Poincaré inequalities in non-negative curvature and finite dimension. J. Funct. Anal. 198, 197–228 (2003)

    Article  MathSciNet  Google Scholar 

  32. Shen, Y.-B., Shen, Z.: Introduction to Modern Finsler Geometry. World Scientific Publishing Co., Singapore (2016)

    Book  Google Scholar 

  33. Shen, Z.: Volume comparison and its applications in Riemann–Finsler geometry. Adv. Math. 128, 306–328 (1997)

    Article  MathSciNet  Google Scholar 

  34. Shen, Z.: Lectures on Finsler Geometry. World Scientific Publishing Co., Singapore (2001)

    Book  Google Scholar 

  35. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  36. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  Google Scholar 

  37. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wylie, W.: A warped product version of the Cheeger–Gromoll splitting theorem. Trans. Am. Math. Soc. 369, 6661–6681 (2017)

    Article  MathSciNet  Google Scholar 

  39. Wylie, W., Yeroshkin, D.: On the geometry of Riemannian manifolds with density. Preprint (2016). Available at arXiv:1602.08000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohta, Si. (2021). Weighted Ricci Curvature. In: Comparison Finsler Geometry. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-80650-7_9

Download citation

Publish with us

Policies and ethics