Skip to main content

Efficacy of Nanomaterials and Its Impact on Nosocomial Infections

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

Nanotechnology provides the ability to manipulate the properties of materials by using their size, and this has lead research towards a massive amount of plausible uses for nanomaterials. Irresistible maladies can occur, and they create an impressive burden on general wellbeing worldwide. The incident of these ailments is higher in developing nations. Irresistible maladies might be caused by microscopic organisms, infections, and protozoa, and the diseases they cause are often resistant to traditional treatment bringing about protracted contamination and higher mortality risk. In connection to that, the patients infected with these smaller scale creatures, that may prove resilient for an extended period of time, can be transmitters of these diseases to others. The recuperating of irresistible maladies is possible by metal-based nanoparticles that are plausible therapeutics for the treatment of irresistible ailments and their natural productivity. Metal-based nanoparticles that have been accounted for with antibacterial movement include silver, iron, iron oxide, copper oxide, zinc oxide, aluminum oxide, titanium dioxide, gold, and gallium nanoparticles. Present day improvements in nanotechnology enable us to handle this issue at two levels: diagnostics and treatment. Elimination of irresistible microorganisms requires effortless and exact recognition of the irresistible agents for suitable treatment. Various nanomaterials have been considered for the management of and cautious measures for irresistible ailments. Recently, nanomaterials have improved the treatment, diagnostics, and avoidance of irresistible illnesses. Built nanoparticles have been progressively utilized in irresistible infection management caused by microorganisms.

Progress in nanoparticle-based frameworks involve a confident research region with basic ramifications for the recuperating of bacterial contaminations. Nanosystems have been shown to be beneficial, and different approaches dependent on nanoparticles have been expanded to see unambiguous agents. Various purpose-of-care (POC) tests have been anticipated that can propose results earlier, simpler, and at less expense than known strategies and can even be used in difficult to reach areas for viral determination. Quorum sensing is a boosts reaction substance formulation strategy interrelated with population density that microorganisms use to authorize biofilms development. Research is ongoing concerning the antimicrobial movement of nanoparticles, contrasting it by methods for and the motivation behind the natural extract of therapeutic plants, and concentrating on anti-toxin protections of pathogenic microscopic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J et al (2002) Introduction to pathogens. In: Molecular biology of the cell, 4th edn. Garland Science, USA. p 1. Retrieved 26 April 2016

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419, http://dx.doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Barroso TG, Martins RC, Fernandes E, Cardoso S, Rivas J, Freitas PP (2018) Detection of BCG bacteria using a magnetoresistive biosensor: a step towards a fully electronic platform for tuberculosis point-of-care detection. Biosens Bioelectron 100:259–265

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ, Makidon P, Sower LE, Peterson JW, Baker JR (2007) Mucosal Immunization with a Novel Nanoemulsion-Based Recombinant Anthrax Protective Antigen Vaccine Protects against Bacillus anthracis Spore Challenge. Infect Immun 75:4020–4029

    Google Scholar 

  • Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554

    Google Scholar 

  • Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27

    Article  CAS  PubMed  Google Scholar 

  • Burlage RS, Tillmann J (2017) Biosensors of bacterial cells. J Microbiol Methods 138:2–11

    Article  CAS  PubMed  Google Scholar 

  • Buszewski B, Rogowska A, Pomastowski P, Zloch M, Railean-Plugaru V (2017) Identification of microorganisms by modern analytical techniques. J AOAC Int 100:1607–1623

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  • Chan YS, Don MM (2013) Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. J Korean Soc Appl Bio Chem 56:11–20

    Article  Google Scholar 

  • Chauhan P, Mishra M, Gupta D (2014) Potential application of nanoparticles as Antipathogens. In: Tiwari A, Syväjärvi M (eds) Advanced materials for agriculture, food, and environmental safety. © Scrivener Publishing LLC, USA. pp 333–368

    Google Scholar 

  • Chen Q, Yuan L, Wan J, Chen Y, Du C (2014) Colorimetric detection of hepatitis E virus based on reverse transcription loop mediated isothermal amplification (RT-LAMP) assay. J Virol Methods 197:29–33

    Article  CAS  PubMed  Google Scholar 

  • Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T (2017) Quorum-sensing systems as targets for Antivirulence therapy. Trends Microbiol 26(4):313–328

    Article  PubMed  Google Scholar 

  • Devadhasan JP, Kim S (2015) Label free quantitative immunoassay for hepatitis B. J Nanosci Nanotechnol 15:85–92

    Article  CAS  PubMed  Google Scholar 

  • Diba FS, Kim S, Lee HJ (2015) Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens Bioelectron 72:355–361

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X et al (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141

    Article  CAS  PubMed  Google Scholar 

  • Ducel G, Fabry J, Nicolle L, Girard R, Perraud M, Pruss A, Savey A (2002) Prevention of hospital-acquired infections, A practical guide, Department of Communicable Disease, Surveillance and Response, Editors; 2nd edn, Available at WHO/CDS/CSR/EPH/2002.12

    Google Scholar 

  • Fang Y-S, Wang H-Y, Wang L-S, Wang J-F (2014) Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites. Biosens Bioelectron 51:310–316

    Article  CAS  PubMed  Google Scholar 

  • Feynman RP (1959) Plenty of room at the bottom. Am Phy Soc. Available online: http://www.pa.msu.edu/~yang/RFeynman_plentySpace.pdf. Accessed on 30 June 2016

  • Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR (2012) Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20:449–458

    Article  CAS  PubMed  Google Scholar 

  • Halfpenny KC, Wright DW (2010) Nanoparticle detection of respiratory infection. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156:1–7

    Google Scholar 

  • Hassanpour S, Baradaran B, Hejazi M, Hasanzadeh M, Mokhtarzadeh A, de la Guardia M (2018) Recent trends in rapid detection of influenza infections by bio and nanobiosensor. TrAC Trends Anal Chem 98:201–215

    Article  CAS  Google Scholar 

  • Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1:324–336

    Google Scholar 

  • Hong KW, Koh CL, Sam CK, Yin WF, Chan KG (2013) Quorum quenching revisited–from signal decays to humoral and cellular immune responses. J Control Release 168:271–279

    Google Scholar 

  • Hoyert DL, Kochanek KD, Murphy SL (1999) Deaths: final data for 1997. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC, National Center for Health Statistics. (National vital statistics reports, vol 47, no. 19)

    Google Scholar 

  • Itah A, Essien J (2005) Growth profile and Hydrocarbonoclastic potential of microorganisms isolated from Tarballs in the bight of bonny, Nigeria. World J Microbiol Biotechnol 21: 1317–1322

    Google Scholar 

  • Jorquera PA, Tripp RA (2016) Synthetic biodegradable microparticle and nanoparticle vaccines against the respiratory syncytial virus. Vaccine 4:45

    Article  Google Scholar 

  • Kammona O, Kiparissides C (2012) Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 161:781–794

    Google Scholar 

  • Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2013) Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 3:229–233

    Article  CAS  Google Scholar 

  • Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 276:579–617

    Article  CAS  PubMed  Google Scholar 

  • Kaushik A, Tiwari S, Dev Jayant R, Marty A, Nair M (2016) Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron 75:254–272

    Article  CAS  PubMed  Google Scholar 

  • Khajanchi BK, Kirtley ML, Brackman SM, Chopra AK (2011) Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect Immun 79:2646–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KHM, Erskine W, Barbetti MJ (2013) Didymella pinodes and its management in field pea: challenges and opportunities Field Crop Res 148:61–77

    Google Scholar 

  • Kim J, Lee KS, Kim EB, Paik S, Chang CL, Park TJ, Kim HJ, Lee J (2017) Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens Bioelectron 96:68–76

    Article  CAS  PubMed  Google Scholar 

  • Krishnasami Z, Carlton D, Bimbo L, Taylor ME, Balkovetz DF, Barker J, Allon M (2002) Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int 61:1136–1142

    Google Scholar 

  • Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Jeong KJ, Hashimoto M, Kwon AH, Rwei A, Shankarappa SA, Tsui JH, Kohane DS (2014) Synthetic Ligand-Coated Magnetic Nanoparticles for Microfluidic Bacterial Separation from Blood. Nano Lett 14:1–5

    Google Scholar 

  • Lee KL, Twyman RM, Fiering S, Steinmetz NF (2016) Virus-based nanoparticles as platform technologies for modern vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:554–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HY, Huang CH, Hsieh WH, Liu LH, Lin YC, Chu CC, Wang ST, Kuo IT, Chau LK, Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532

    Google Scholar 

  • Liu Z, Parida S, Prasad R, Pandey R, Sharma D, Barman I (2021) Vibrational spectroscopy for decoding cancer microbiome interactions: Current evidence and future Perspective. Seminars in Cancer Biology. https://doi.org/10.1016/j.semcancer.2021.07.004

  • Makidon PE, Knowlton J, Groom JV, Blanco LP, LiPuma JJ, Bielinska AU, Baker JR Jr (2010) Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol 199:81–92

    Google Scholar 

  • Masalha M, Borovok I, Schreiber R, Aharonowitz Y, Cohen G (2001) Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J Bacteriol 183(24):7260–7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J et al (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. Asperellum Nanotechnol 19:075103

    Article  CAS  Google Scholar 

  • Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012) 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:679–686

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Kaittanis C, Tinkham A, Perez JM (2008) Rapid Nanoparticle-Mediated Monitoring of Bacterial Metabolic Activity and Assessment of Antimicrobial Susceptibility in Blood with Magnetic Relaxation. Anal Chem 80:1033–1038

    Google Scholar 

  • Nowicki M et al (2011) Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis 96:4–17

    Article  Google Scholar 

  • O’Connell KMG, Hodgkinson JT, Sore HF, Welch M, Salmond GPC, Spring DR (2013) Combating multidrug- resistant Bacteria: current strategies for the discovery of novel Antibacterials. Angew Chem Int Ed 52:10706–10733

    Article  Google Scholar 

  • Park TJ, Lee SJ, Kim DK, Heo NS, Park JY, Lee SY (2012) Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein. Talanta 89:246–252

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. Journal of Nanoparticles 2013, http://dx.doi.org/10.1155/2013/431218

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, http://dx.doi.org/10.1155/2014/963961

  • Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzym Microb Technol 49:113–123

    Article  Google Scholar 

  • Rippa M, Castagna R, Pannico M, Musto P, Bobeico E, Zhou J, Petti L (2016) High-performance nanocavities-based meta-crystals for enhanced plasmonic sensing. Opt Data Process Storage 2:22–26

    Article  Google Scholar 

  • Roco MC (2011) The long view of nanotechnology development: the national nanotechnology initiative at 10 years. Nanotechnology Research Directions for Societal Needs in 2020, Volume 1 of the series Science Policy Reports, pp 1–28

    Google Scholar 

  • Schaafsma AW, Hooker DC (2007) Climatic models to predict occurrence of fusarium toxins in wheat and maize. Int J Food Microbiol 119(1–2):116–125

    Article  CAS  PubMed  Google Scholar 

  • Schmale DG III, Bergstrom GC (2003) Fusarium head blight in wheat. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2003-0612-01

  • Sintim HO, Smith JA, Wang J, Nakayama S, Yan L (2010) Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2:1005–1035

    Article  CAS  PubMed  Google Scholar 

  • Slusarenko AJ, Fraser Alberts, van Loon LC (eds) (2000) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 21–52

    Book  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Google Scholar 

  • Spackova B, Wrobel P, Bockova M, Homola J (2016) Optical biosensors based on Plasmonic nanostructures: a review. J Proc IEEE 104:2380–2408

    Article  CAS  Google Scholar 

  • Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanwar S, Paidi SK, Prasad R, Pandey R, Barman I (2021) Advancing Raman spectroscopy from research to clinic: Translational potential and challenges. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. https://doi.org/10.1016/j.saa.2021.119957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014:541340. 7 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Tepeli Y, Ãœlkü A (2018) Electrochemical biosensors for influenza virus a detection: the potential of adaptation of these devices to POC systems. Sens Actuators B Chem 254:377–384

    Article  CAS  Google Scholar 

  • Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger KE (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Turan NB, Chormey DS, Büyükpınar Ç, Engin GO, Bakirdere S (2017) Quorum sensing: little talks for an effective bacterial coordination. TrAC Trends Anal Chem 91:1–11

    Article  CAS  Google Scholar 

  • Uehara N (2010) Polymer-functionalized Gold Nanoparticles as Versatile Sensing Materials. Anal Sci 26:1219–1228

    Google Scholar 

  • Vasudev A, Kaushik A, Tomizawa Y, Norena N, Bhansali S (2013) An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sens Actuators B Chem 182:139–146

    Article  CAS  Google Scholar 

  • Waller JM (1992) Colletotrichum diseases of perennial and other cash crops. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. CABI, Wallingford. ISBN 978-0851987569

    Google Scholar 

  • Wang L, Yang C, Tan W (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Kotov NA (2009) Simple, rapid, sensitive, and versatile SWNT_ paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster P (2005) World nanotechnology market frost and Sullivan. Nanomedicine 1(2):140–142

    Google Scholar 

  • Wilson BA, Salyers AA, Whitt DD, Winkler ME (2011) Bacterial pathogenesis: a molecular approach. American Society for Microbiology, Washington, DC

    Book  Google Scholar 

  • Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An Optofluidic Nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10:4962–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zazo H, Millán CG, Colino CI, Lanao JM (2017) Chapter 15—applications of metallic nanoparticles in antimicrobial therapy. In: Grumezescu AM (ed) Antimicrobial nanoarchitectonics. Elsevier, New York, pp 411–444

    Chapter  Google Scholar 

  • Zhang B, Zhang ZJ, Wang B, Yan J, Li JJ, Cai SM (2001) A study of designed current oscillations of Fe in H2SO4 solution. Acta Chim Sin 59:1932

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalitha Parveen, P., Christobher, S., Balasubramanian, B., Kaliannan, D., Pappusamy, M., Meyyazhagan, A. (2022). Efficacy of Nanomaterials and Its Impact on Nosocomial Infections. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_7

Download citation

Publish with us

Policies and ethics