Skip to main content

Advertisement

Log in

Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L (2023) Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanoparticle Research: Interdisciplinary Forum Nanoscale Sci Technol 25(3):43

    CAS  Google Scholar 

  • Abd Elmonem HA, Morsi RM, Mansour DS, El-Sayed ER (2023) Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer’s disease via acetylcholinesterase inhibition and oxidative stress reduction. Biometals: Int J role Metal ions Biology Biochem Med 36(6):1391–1404

    CAS  Google Scholar 

  • AbuDalo MA, Al-Mheidat IR, Al-Shurafat AW, Grinham C, Oyanedel-Craver V (2019) Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. PeerJ, 7, e6413

  • Adamczyk Z, Magdalena Oćwieja H, Mrowiec D (2016) Lupa Oxidative dissolution of silver nanoparticles: A new theoretical approach. Journal of Colloid and Interface Science, 469,355–364

  • Aderibigbe BA (2017) Metal-based nanoparticles for the treatment of Infectious diseases. Molecules 22(8):1370

    PubMed Central  PubMed  Google Scholar 

  • Ahmad B, Chang L, Satti UQ, Rehman SU, Arshad H, Mustafa G, Shaukat U, Wang F, Tong C (2022) Phyto-Synthesis, Characterization, and In Vitro Antibacterial Activity of Silver Nanoparticles Using Various Plant Extracts. Bioengineering (Basel, Switzerland), 9(12), 779

  • Akbar A, Sadiq MB, Ali I, Muhammad N, Rehman Z, Khan MN, Muhammad J, Khan SA, Rehman FU, Anal AK (2019) Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology, 17:36–42

  • Al Mashud MA, Moinuzzaman M, Hossain MS, Ahmed S, Ahsan G, Reza A, Anwar Ratul RB, Uddin MH, Momin MA, Hena Mostofa Jamal MA (2022) Green synthesis of silver nanoparticles using Cinnamomum tamala (Tejpata) leaf and their potential application to control multidrug resistant Pseudomonas aeruginosa isolated from hospital drainage water. Heliyon 8(7):e09920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB, Gabr GA, Kianfar E (2023) Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Brazilian J Biology = Revista brasleira de Biol, 84, e264946

  • Al-Brahim JS, Mohammed AE (2020) Antioxidant, cytotoxic and antibacterial potential of biosynthesized nanoparticles using bee honey from two different floral sources in Saudi Arabia. Saudi J Biol Sci 27(1):363–373

    CAS  PubMed  Google Scholar 

  • Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Maleki M, Azizi-Lalabadi M, Bagheri V, Safaei P, Azimi T, Hashemi M, Ehsani A (2020) Kinetics Analysis and susceptibility coefficient of the pathogenic Bacteria by Titanium Dioxide and Zinc Oxide nanoparticles. Adv Pharm Bull 10(1):56–64

    CAS  PubMed  Google Scholar 

  • Almalah HI, Alzahrani HA, Abdelkader HS (2019) Green Synthesis of Silver Nanoparticles using Cinnamomum Zylinicum and their Synergistic Effect against Multi-Drug Resistance Bacteria. Journal of Nanotechnology Research 1 (2019): 095–107

  • Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C (2021) Recent advances in Zinc Oxide nanoparticles (ZnO NPs) for Cancer diagnosis, Target Drug Delivery, and treatment. Cancers 13(18):4570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antimicrobial Resistance Collaborators (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London England) 399(10325):629–655

    Google Scholar 

  • Arakha M, Pal S, Samantarrai D, Panigrahi T, Mallick B, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle bacteria interface. Sci. Rep., 5 (2015), p. 14813

  • Aravind M, Amalanathan M, Mary MSM (2021) Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci 3:409

    CAS  Google Scholar 

  • Aritonang HF, Koleangan H, Wuntu AD (2019) Synthesis of Silver Nanoparticles Using Aqueous Extract of Medicinal Plants’ (Impatiens balsamina and Lantana camara) Fresh Leaves and Analysis of Antimicrobial Activity. International journal of microbiology, 2019, 8642303

  • Armijo LM, Wawrzyniec SJ, Kopciuch M et al (2020) Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnol 18:35

    CAS  Google Scholar 

  • Asif M, Yasmin R, Asif R, Ambreen A, Mustafa M, Umbreen S (2022) Green Synthesis of Silver Nanoparticles (AgNPs), Structural characterization, and their antibacterial potential. Dose-response: Publication Int Hormesis Soc 20(1):15593258221088709

    CAS  Google Scholar 

  • Asikin-Mijan N, Taufiq-Yap YH, Lee HV (2015) Synthesis of clamshell derived Ca(OH)2 nano-particles via simple surfactant-hydration treatment. Chemical Engineering Journal, 262:1043–1051

  • Attia H, Nounou H, Shalaby M (2018) Zinc Oxide nanoparticles Induced oxidative DNA damage, inflammation and apoptosis in Rat’s brain after oral exposure. Toxics 6(2):29

    PubMed Central  PubMed  Google Scholar 

  • Badetti E, Calgaro L, Falchi L, Bonetto A, Bettiol C, Leonetti B, Ambrosi E, Zendri E, Marcomini A (2019) Interaction between copper oxide nanoparticles and amino acids: influence on the antibacterial activity. Nanomaterials (Basel Switzerland) 9(5):792

    CAS  PubMed  Google Scholar 

  • Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G (2021) Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol 19(1):86

    Google Scholar 

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2019) The history of Nanoscience and Nanotechnology: from chemical-physical applications to Nanomedicine. Molecules 25(1):112

    PubMed Central  PubMed  Google Scholar 

  • Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising Anticancer Agent. Nanobiomedicine 3:9

    PubMed Central  PubMed  Google Scholar 

  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(8):2768–2774

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22(13):7202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchovec I, Vyčaitė E, Badokas K, Sužiedelienė E, Bagdonas S (2022) Application of Antimicrobial photodynamic therapy for inactivation of Acinetobacter baumannii Biofilms. Int J Mol Sci 24(1):722

    PubMed Central  PubMed  Google Scholar 

  • Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E (2018) Biomedical Applications of Silver nanoparticles: an Up-to-date overview. Nanomaterials (Basel Switzerland) 8(9):681

    PubMed  Google Scholar 

  • Busi S, Rajkumari J (2019) Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications. Nanopart Pharmacotherapy, 485–524

  • Carson L, Bandara S, Joseph M, Green T, Grady T, Osuji G, Weerasooriya A, Ampim P, Woldesenbet S (2020) Green Synthesis of Silver Nanoparticles with Antimicrobial properties using Phyla dulcis Plant Extract. Foodborne Pathog Dis 17(8):504–511

    CAS  PubMed  Google Scholar 

  • Chakraborty N, Jha D, Roy I et al (2022) Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnol 20:375. https://doi.org/10.1186/s12951-022-01573-9

    Article  CAS  Google Scholar 

  • Chartarrayawadee W, Charoensin P, Saenma (2020) Juthaporn, Rin, Thearum, Khamai, Phichaya, Nasomjai, Pitak and On Too, Chee Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity Green Processing and Synthesis, vol. 9, no. 1,pp. 107–118

  • Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101

    ADS  PubMed  Google Scholar 

  • Chennimalai M, Do JY, Kang M, Senthil TS (2019) A facile green approach of ZnO NRs synthesized via Ricinus communis L. leaf extract for Biological activities. Mater Sci Engineering: C 103:109844

    CAS  Google Scholar 

  • Chinemerem Nwobodo D, Ugwu MC, Anie O, Al-Ouqaili C, Ikem MTSC, Victor Chigozie J, U., Saki M (2022) Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal, 36(9), e24655

  • Chinnasamy G, Chandrasekharan S, Bhatnagar S (2019) Biosynthesis of silver nanoparticles from Melia azedarach: enhancement of Antibacterial, Wound Healing, antidiabetic and antioxidant activities. Int J Nanomed 14:9823–9836

    CAS  Google Scholar 

  • Chopra ML (2022) Photocatalytic activity of zinc oxide for dye and drug degradation: a review. Mater Today: Proc 52(3):1653–1656

    Google Scholar 

  • Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, Khulaifi A, Al-Shwaiman MM, Elgorban HA, Syed AM, A., Kim HJ (2020) Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci 27(2):706–712

    CAS  PubMed  Google Scholar 

  • Costa Silva LP, Oliveira JP, Keijok WJ, Silva AR, Aguiar AR, Guimarães MCC et al (2017) Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagus fungus Duddingtonia flagans. Int J Nanomed 12:6373–6381

    Google Scholar 

  • Crisan MC, Teodora M, Lucian M (2022) Copper nanoparticles: synthesis and characterization, physiology, toxicity and antimicrobial applications. Appl Sci 12:141

    CAS  Google Scholar 

  • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dadgostar P (2019) Antimicrobial Resistance: Implications and Costs. Infection and drug resistance, 12, 3903–3910

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    PubMed Central  PubMed  Google Scholar 

  • Dasaratrao Sawle B., Salimath B, Deshpande R., Dhondojirao Bedre M, Krishnamurthy Prabhakar B, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Science and technology of advanced materials, 9(3):035012.

  • de Dicastillo CL, Patiño C, Galotto MJ, Vásquez-Martínez Y, Torrent C, Alburquenque D, Pereira A, Escrig J (2019) Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J Nanotechnol 10:1716–1725

    PubMed Central  PubMed  Google Scholar 

  • Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M (2020) Methods for reducing the toxicity of metal and metal oxide NPs as Biomedicine. Mater (Basel) 13(2):279

    ADS  Google Scholar 

  • El-Sayed ASA, Ali D (2018) Biosynthesis and comparative bactericidal activity of silver nanoparticles synthesized by aspergillus flavus and Penicillium crustosum against the multidrug-resistant bacteria. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1806.05089Advance online publication

    Article  PubMed  Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:28

    Google Scholar 

  • Erenler R, Gecer EN, Hosaflioglu I, Behcet L (2023) Green synthesis of silver nanoparticles using Stachys spectabilis: identification, catalytic degradation, and antioxidant activity. Biochem Biophys Res Commun 659:91–95

    CAS  PubMed  Google Scholar 

  • Esmail R, Afshar A, Morteza M et al (2022) Synthesis of silver nanoparticles with high efficiency and stability by culture supernatant of Bacillus ROM6 isolated from Zarshouran gold mine and evaluating its antibacterial effects. BMC Microbiol 22:97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Essien ER, Atasie VN, Okeafor AO et al (2020) Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett 10:43–48

    CAS  Google Scholar 

  • Farani R, Farsadrooh M, Zare M, Gholami I, Akhavan A, O (2023) Green synthesis of Magnesium Oxide nanoparticles and nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications. Catalysts 13:642

    Google Scholar 

  • Feng D, Zhao Y, Li W, Li X, Wan J, Wang F (2023) Copper neurotoxicity: induction of cognitive dysfunction: a review. Med (Baltim) 102(48):e36375

    CAS  Google Scholar 

  • Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, Juarez-Moreno K, Castro-Longoria E (2023) Antibacterial activity of Biosynthesized Copper Oxide nanoparticles (CuONPs) using Ganoderma sessile. Antibiot (Basel Switzerland) 12(8):1251

    Google Scholar 

  • Fouda A, Awad MA, Eid AM, Saied E, Barghoth MG, Hamza MF, Awad MF, Abdelbary S, Hassan SE (2021) An Eco-friendly Approach to the Control of Pathogenic Microbes and Anopheles Stephensi Malarial Vector using Magnesium Oxide nanoparticles (Mg-NPs) fabricated by Penicillium Chrysogenum. Int J Mol Sci 22(10):5096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Geng Z, Cao Z, Liu J (2023) Recent advances in targeted antibacterial therapy basing on nanomaterials. Explor (Beijing China) 3(1):20210117

    Google Scholar 

  • Ghosh S, Ahmad R, Zeyaullah M, Khare SK (2021) Microbial Nano-Factories: synthesis and Biomedical Applications. Front Chem 9:626834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB (2021) Do Iron Oxide nanoparticles have significant Antibacterial properties? Antibiot (Basel Switzerland) 10(7):884

    CAS  Google Scholar 

  • Guilger-Casagrande M, Lima R (2019) Synthesis of silver nanoparticles mediated by Fungi: a review. Front Bioeng Biotechnol 7:287

    PubMed Central  PubMed  Google Scholar 

  • Güler Ö, Bağcı N (2020) A short review on mechanical properties of graphene reinforced metal matrix composites. J Mater Res Technol 9:6808–6833

    Google Scholar 

  • Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S (2022) Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 16(4):115–144

    PubMed Central  PubMed  Google Scholar 

  • Hajipour MJ, Safavi-Sohi R, Sharifi S, Mahmoud N, Ashkarran AA, Voke E, Serpooshan V, Ramezankhani M, Milani AS, Landry MP, Mahmoudi M (2023) An overview of nanoparticle protein corona literature. Small (Weinheim an der Bergstrasse, Germany), 19(36):e2301838

  • Han H, Gao Y, Chai M, Zhang X, Liu S, Huang Y, Jin Q, Grzybowski A, Ji J, Yao K (2020) Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. J Controlled Release: Official J Controlled Release Soc 327:676–687

    CAS  Google Scholar 

  • Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules 12(1):31

    PubMed Central  PubMed  Google Scholar 

  • Helmy A, El-Shazly M, Seleem A, Abdelmohsen U, Salem MA, Samir A, Rabeh M, Elshamy A, Singab ANB (2020) The synergistic effect of biosynthesized silver nanoparticles from a combined extract of parsley, corn silk, and gum arabic: in vivo antioxidant, anti-inflammatory and antimicrobial activities. Mater Res Express 7:025002

    CAS  ADS  Google Scholar 

  • Hetta HF, Ramadan YN, Al-Harbi AI, Ahmed A, Battah E, Abd Ellah B, Zanetti NH, S., Donadu MG (2023) Nanotechnology as a Promising Approach to Combat Multidrug resistant Bacteria: a Comprehensive Review and Future perspectives. Biomedicines 11(2):413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hozyen HF, Ibrahim ES, Khairy EA, El-Dek SI (2019) Enhanced antibacterial activity of capped zinc oxide nanoparticles: a step towards the control of clinical bovine mastitis. Veterinary World 12(8):1225–1232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR (2021) Synthesis, Chemical-Physical characterization, and Biomedical Applications of Functional Gold nanoparticles: a review. Molecules 26(19):5823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jagadeesh NMNM, Karabasappa M (2020) Control of microbial biofilms: application of natural and synthetic compounds. Editor(s): Mukesh Kumar Yadav, Bhim Pratap Singh, New and Future developments in Microbial Biotechnology and Bioengineering. Microbial Biofilms, pp 101–115

  • Javed R, Zia M, Naz S et al (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18:172

    Google Scholar 

  • Javed R, Sajjad A, Naz S, Sajjad H, Ao Q (2022) Significance of Capping agents of Colloidal nanoparticles from the perspective of drug and Gene Delivery, Bioimaging, and Biosensing: an insight. Int J Mol Sci 23:10521

    CAS  PubMed Central  PubMed  Google Scholar 

  • John MS, Nagoth JA, Ramasamy KP, Mancini A, Giuli G, Natalello A, Ballarini P, Miceli C, Pucciarelli S (2020) Synthesis of Bioactive Silver nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii. Mar Drugs 18(1):38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi AS, Singh P, Mijakovic I (2020) Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. Int J Mol Sci 21(20):7658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20:262

    Google Scholar 

  • Kapoor RT, Salvadori MR, Rafatullah M, Siddiqui MR, Khan MA, Alshareef SA (2021) Exploration of microbial factories for synthesis of Nanoparticles – A Sustainable Approach for Bioremediation of Environmental contaminants. Front Microbiol 12:658294. https://doi.org/10.3389/fmicb.2021.658294

    Article  PubMed Central  PubMed  Google Scholar 

  • Katas H, Lim C, Nor Azlan AYH, Buang F, Mh Busra MF (2019) Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus Rhinocerotis and Chitosan. Saudi Pharm J 27(2):283–292

    PubMed  Google Scholar 

  • Khan A, Rashid A, Younas R et al (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 6:21–26

    CAS  Google Scholar 

  • Kirtane AR, Verma M, Karandikar P et al (2021) Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 16, 369–384 (2021)

  • Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G (2021a) Nanotechnology approaches for global infectious diseases. Nat Nanotechnol 16(4):369–384

    CAS  ADS  PubMed  Google Scholar 

  • Kubacka A, Diez M, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134

    PubMed Central  PubMed  Google Scholar 

  • Kumar S, Bhushan P, Bhattacharya S (2017) Fabrication of nanostructures with bottom-up Approach and their utility in Diagnostics, therapeutics, and others. Environmental, Chemical and Medical Sensors, pp 167–198

  • Kumar SSD, Houreld NN, Kroukamp EM, Abrahamse H (2018) Cellular imaging and bactericidal mechanism of green-synthesized silver nanoparticles against human pathogenic bacteria. J Photochem Photobiol B 178:259–269

    CAS  PubMed  Google Scholar 

  • Kumari M, Sarkar B, Mukherjee K (2023) Nanoscale calcium oxide and its biomedical applications: a comprehensive review. Biocatal Agric Biotechnol 47:2023102506

    Google Scholar 

  • Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR (2021) Microbiologically-synthesized nanoparticles and their role in silencing the Biofilm Signaling Cascade. Front Microbiol 12:636588

    PubMed Central  PubMed  Google Scholar 

  • Lallo da Silva B, Abuçafy MP, Berbel Manaia E, Oshiro Junior JA, Chiari-Andréo BG, Pietro RCR, Chiavacci LA (2019) Relationship between structure and antimicrobial activity of Zinc Oxide nanoparticles: an overview. Int J Nanomed 14:9395–9410

    Google Scholar 

  • Lee SH, Jun BH (2019) Silver nanoparticles: synthesis and application for Nanomedicine. Int J Mol Sci 20(4):865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee E, Lee M, Kwon S et al (2022) Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Convergence 9:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Zhuang S (2020) Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138

  • Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, Chen L (2019) Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed 14:1469–1487

    CAS  Google Scholar 

  • Lin J, Nguyen NT, Zhang C, Ha A, Liu HH (2020) Antimicrobial properties of MgO nanostructures on Magnesium substrates. ACS Omega 5(38):24613–24627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC, Bohara RA (2018) Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep 17:71–80

    PubMed Central  PubMed  Google Scholar 

  • Ma X, Zhou S, Xu X, Du Q (2022) Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg. 9:905892

  • Mahlangeni NT, Magura J, Moodley R et al (2020) Biogenic synthesis, antioxidant and antimicrobial activity of silver and manganese dioxide nanoparticles using Cussonia Zuluensis Strey. Chem Pap 74:4253–4265

    CAS  Google Scholar 

  • Maji J, Pandey S, Basu S (2020) Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bull Mater Sci 43:25

    CAS  Google Scholar 

  • Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C (2023) The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: Attack on Titan. Microorganisms, 11(8), 1912

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    PubMed Central  PubMed  Google Scholar 

  • Maringgal B, Hashim N, Syafinaz I, Tawakkal MA, Hamzah MH, Mohamed MTM (2020) Biosynthesis of CaO nanoparticles using Trigona sp. Honey: physicochemical characterization, antifungal activity, and cytotoxicity properties. J Mater Res Technol 9(5):11756–11768

    CAS  Google Scholar 

  • Mazayen ZM, Ghoneim AM, Elbatanony RS et al (2022) Pharmaceutical nanotechnology: from the bench to the market. Futur J Pharm Sci 8:12

    PubMed Central  PubMed  Google Scholar 

  • Mba IE, Nweze EI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37(6):108

    PubMed Central  PubMed  Google Scholar 

  • Mba IE, Nweze EI (2022) Application of Nanotechnology in the treatment of infectious diseases: an overview. In: Hameed S, Rehman S (eds) Nanotechnology for infectious diseases. Springer, Singapore

    Google Scholar 

  • McNeilly O, Mann R, Hamidian M, Gunawan C (2021) Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and other Bacteria. Front Microbiol 12:652863. https://doi.org/10.3389/fmicb.2021.652863

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendes CR, Dilarri G, Forsan CF, Sapata VMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12(1):2658

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Mikhailova EO (2020) Silver nanoparticles: mechanism of action and probable Bio-application. J Funct Biomaterials 11(4):84

    CAS  Google Scholar 

  • Mohammed AE, Al-Qahtani A, Al-Mutairi A, Al-Shamri B, Aabed KF (2018) Antibacterial and cytotoxic potential of Biosynthesized Silver nanoparticles by some plant extracts. 8(6):382 Nanomaterials (Basel, Switzerland)

  • Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014) Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Appl Biochem Biotechnol 173(1):318–331

    CAS  PubMed  Google Scholar 

  • Mohanta YK, Nayak D, Mishra AK, Chakrabartty I, Ray MK, Mohanta TK, Tayung K, Rajaganesh R, Vasanthakumaran M, Muthupandian S, Murugan K, Sharma G, Dahms HU, Hwang JS (2022) Green Synthesis of Endolichenic Fungi Functionalized Silver nanoparticles: the role in Antimicrobial, Anti-cancer, and Mosquitocidal activities. Int J Mol Sci 23(18):10626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohd Yusof H, Mohamad R, Zaidan UH et al (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10:57

    PubMed Central  PubMed  Google Scholar 

  • Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV (2018) Silver nanoparticles synthesized by using the Endophytic Bacterium Pantoea ananatis are promising Antimicrobial agents against Multidrug resistant Bacteria. Molecules 23(12):3220

    PubMed Central  PubMed  Google Scholar 

  • More PR, Pandit S, Filippis A, Franci G, Mijakovic I, Galdiero M (2023) Silver nanoparticles: bactericidal and mechanistic Approach against Drug Resistant pathogens. Microorganisms 11(2):369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mou X, Pilozzi A, Tailor B, Yi J, Cahill C, Rogers J, Huang X (2020) Exposure to CuO nanoparticles mediates NFκB activation and enhances amyloid precursor protein expression. Biomedicines 8(3):45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulens-Arias V, Rojas JM, Barber DF (2020) The intrinsic Biological identities of Iron Oxide nanoparticles and their Coatings: unexplored territory for combinatorial therapies, vol 10. Nanomaterials, p 837

  • Munjal S, Singh A, kumar VA (2017) Synthesis and characterization of MgO nanoparticles by Orange Fruit Waste through Green Method. Int J Adv Res Chem Sci (IJARCS) 4(9):36–42

    Google Scholar 

  • Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP (2023) Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol 14:1227951

    PubMed Central  PubMed  Google Scholar 

  • Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ (2022) A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int J Environ Res Public Health 19(2):674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nahar K, Aziz S, Bashar MS, Haque MdA, Al-Reza SM (2020) Synthesis and characterization of silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. Int J Nano Dimens 11(1):88–98

    CAS  Google Scholar 

  • Najahi-Missaoui W, Arnold RD, Cummings BS (2020) Safe nanoparticles: are we there yet? Int J Mol Sci 22(1):385

    PubMed Central  PubMed  Google Scholar 

  • Nawabjohn MS, Sivaprakasam P, Anandasadagopan SK, Begum AA, Pandurangan AK (2022) Green Synthesis and characterisation of silver nanoparticles using Cassia tora seed extract and investigation of Antibacterial potential. Appl Biochem Biotechnol 194(1):464–478

    CAS  PubMed  Google Scholar 

  • Nejabatdoust A, Zamani H, Salehzadeh A (2019) Functionalization of ZnO Nanoparticles by Glutamic Acid and Conjugation with Thiosemicarbazide Alters Expression of Efflux Pump Genes in Multiple Drug-Resistant Staphylococcus aureus Strains. Microbial drug resistance (Larchmont, N.Y.), 25(7), 966–974.hanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific reports, 12(1), 2658

  • Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed 12:1621–1637

    CAS  Google Scholar 

  • Nguyen NYT, Grelling N, Wetteland CL et al (2018) Antimicrobial activities and mechanisms of Magnesium Oxide nanoparticles (nMgO) against Pathogenic Bacteria, yeasts, and Biofilms. Sci Rep 8:16260

    PubMed Central  ADS  PubMed  Google Scholar 

  • Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F (2019) Molecular mechanisms of Bacterial Resistance to Metal and Metal Oxide nanoparticles. Int J Mol Sci 20(11):2808

    PubMed Central  PubMed  Google Scholar 

  • Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P (2021) Photocatalytic behaviour of Zinc Oxide nanostructures on Surface activation of Polymeric Fibres. Polymers 13(8):1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogungemi SO, Zhang F, Abdallah Y, Zhang M, Wang Y, Sun G, Qiu W, Li B (2019) Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria Chamomilla leaf extract and its inhibitoru effect on Acidovorax oryzae strain RS-2. Artif Cells Nanomed Biotechnol. 2019;47(1):2230–2239

  • Pagnout C, Jomini S, Dadhwal M, Caillet C, Thomas F, Bauda P (2012) Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloid Surface B. 2012;92:315–321

  • Pandit C, Arpita Roy S, Ghotekar A, Khusro MN, Islam TB, Emran Siok Ee Lam, Mayeen Uddin Khandaker, David Andrew Bradley (2022). Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ - Sci, 34,3101869

  • Paramasivam G, Palem VV, Sundaram T, Sundaram V, Kishore SC, Bellucci S (2021) Nanomaterials: synthesis and applications in Theranostics. Nanomaterials (Basel Switzerland) 11(12):3228

    CAS  PubMed  Google Scholar 

  • Parra-Ortiz E, Malmsten M (2022) Photocatalytic nanoparticles – from membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 299:102526

    CAS  PubMed  Google Scholar 

  • Pietrowska A, Hołowacz I, Ulatowska-Jarża A, Guźniczak M, Matczuk AK, Wieliczko A, Wolf-Baca M, Buzalewicz I (2022) The enhancement of Antimicrobial Photodynamic Therapy of Escherichia Coli by a Functionalized combination of Photosensitizers: in Vitro examination of single cells by quantitative phase imaging. Int J Mol Sci 23(11):6137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pourhajibagher M, Kazemian H, Chiniforush N, Hosseini N, Pourakbari B, Azizollahi A, Rezaei F, Bahador A (2018) Exploring different photosensitizers to optimize elimination of planktonic and biofilm forms of Enterococcus faecalis from infected root canal during antimicrobial photodynamic therapy. Photodiagn Photodyn Ther 24:206–211

    CAS  Google Scholar 

  • Pourhajibagher M, Alaeddini M, Etemad-Moghadam S, Rahimi Esboei B, Bahrami R, Mousavi M, R. S., Bahador A (2022) Quorum quenching of Streptococcus mutans via the nano-quercetin-based antimicrobial photodynamic therapy as a potential target for cariogenic biofilm. BMC Microbiol 22(1):125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pranjali L, Meher MK, Raj R, Prasad N, Poluri KM, Kumar D, Guleria A (2019) Physiochemical and antibacterial properties of PEGylated zinc oxide nanoparticles dispersed in peritoneal dialysis fluid. ACS Omega 4:19255–19264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasanth R, Kumar SD, Jayalakshmi1 A, Singaravelu1 G, Govindaraju K, Kumar VG (2019) Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian Journal of Geo Marine Sciences Vol. 48 (08), 1210–1215

  • Qasim M, Lim DJ, Park H, Na D (2014) Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol 14(10):7374–7387

    CAS  PubMed  Google Scholar 

  • Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327

    CAS  Google Scholar 

  • Rai A, Ferreira L (2021) Biomedical applications of the peptide decorated gold nanoparticles. Crit Rev Biotechnol 41(2):186–215

    CAS  PubMed  Google Scholar 

  • Raja A, Ashokkumar S, Marthandam P, Jayachandiran R, Khatiwada J, Kaviyarasu CP, Raman KG, R., Swaminathan M (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of photochemistry and photobiology. B, Biology, 181, 53–58

  • Rasli NI, Basri H, Harun Z (2020) Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters. Heliyon 6(1):e03156

    PubMed Central  PubMed  Google Scholar 

  • Rattanata N, Klaynongsruang S, Leelayuwat C, Limpaiboon T, Lulitanond A, Boonsiri P, Chio-Srichan S, Soontaranon S, Rugmai S, Daduang J (2016) Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. Int J Nanomed 27(11):3347–3356

    Google Scholar 

  • Rotti RB, Sunitha DV, Manjunath R, Roy A, Mayegowda SB, Gnanaprakash AP, Alghamdi S, Almehmadi M, Abdulaziz O, Allahyani M, Aljuaid A, Alsaiari AA, Ashgar SS, Babalghith AO (2023) Abd El-Lateef AE and Khidir EB Green synthesis of MgO nanoparticles and its antibacterial properties. Front. Chem. 11:1143614

  • Roy A, Gauri SS, Bhattacharya M, Bhattacharya J (2013) Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol 9(9):1570–1578

    CAS  PubMed  Google Scholar 

  • Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC (2020) Tailoring Iron Oxide nanoparticles for efficient Cellular internalization and endosomal escape. Nanomaterials 10(9):1816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M (2023) Copper oxide nanoparticles: in vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology, vol 271. Toxicology & Pharmacology, Comparative Biochemistry and Physiology Part C, p 109682

    Google Scholar 

  • Saka A, Shifera Y, Jule LT et al (2022) Biosynthesis of TiO2 nanoparticles by Caricaceae (papaya) shell extracts for antifungal application. Sci Rep 12:15960

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA (2023) Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel, Switzerland), 11(13), 1946

  • Samrot AV, Prakash NR, L. X (2023) Nanoparticles Induced oxidative damage in Reproductive System and Role of antioxidants on the Induced toxicity. Life (Basel Switzerland) 13(3):767

    CAS  PubMed  Google Scholar 

  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog 117:68–72

    CAS  PubMed  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green Synthesis of Metallic Nanoparticles via Biological entities. Mater (Basel Switzerland) 8(11):7278–7308

    CAS  Google Scholar 

  • Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials (Basel Switzerland) 6(4):71

    PubMed  Google Scholar 

  • Sharmila G, Pradeep R, Sandiya K, Santhiya S, Muthukumaran C, Jeyanthi J, Kumar M, Thirumarimurugan M (2018) Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: characterization and its antibacterial application. J Mol Struct 1165. https://doi.org/10.1016/j.molstruc.2018.04.011

    Article  Google Scholar 

  • Siddiqui H, Qureshi MS, Haque FZ (2020) Biosynthesis of Flower-shaped CuO nanostructures and their photocatalytic and antibacterial activities. Nano-micro Lett 12(1):29

    CAS  ADS  Google Scholar 

  • Singh J, Dutta T, Kim KH et al (2018) Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84

    CAS  Google Scholar 

  • Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP (2018a) Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater Chem Phys 203:40–48

    CAS  Google Scholar 

  • Smitha SL, Gopchandran KG (2013) Surface enhance raman scattering, antibacterial and antifungal active triangular gold nanoparticles spectromchim. Spectrochim Acta A 102:114–119

    CAS  ADS  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805

    CAS  PubMed  Google Scholar 

  • Suay-García B, Pérez-Gracia MT (2019) Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics. 8:122

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Pt A):28–51

    CAS  PubMed  Google Scholar 

  • Sun J, Song L, Fan Y, Tian L, Luan S, Niu S, Ren L, Ming W, Zhao J (2019) Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR Light source. ACS Appl Mater Interfaces 11(30):26581–26589

    CAS  PubMed  Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taghizadeh SM, Lal N, Ebrahiminezhad A, Moeini F, Seifan M, Ghasemi Y, Berenjian A (2020) Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV blocker and Antimicrobial Agent. Nanomaterials (Basel Switzerland) 10(3):530

    CAS  PubMed  Google Scholar 

  • Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Takáčová G (2023) The role of silver nanoparticles in the diagnosis and treatment of Cancer: are there any perspectives for the future? Life (Basel Switzerland) 13(2):466

    ADS  PubMed  Google Scholar 

  • Tariq F, Ahmed N, Afzal M, Khan MAU, Zeshan B (2020) Synthesis, characterization and Antimicrobial Activity of Bacillus subtilis-Derived Silver Nanoparticles against Multidrug-Resistant Bacteria. Jundishapur J Microbiol 13(5):e91934

    Google Scholar 

  • Tripathi RM, Yoon SY, Ahn D, Chung SJ (2019) Facile synthesis of triangular and hexagonal anionic gold nanoparticles and evaluation of their cytotoxicity. Nanomaterials (Basel Switzerland) 9(12):1774

    CAS  PubMed  Google Scholar 

  • Uchechukwu S, Ezealigo, Blessing N, Ezealigo SO, Aisida, Fabian I, Ezema (2021) Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open 4:100027

    Google Scholar 

  • Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, Bogdanchikova N, Vazquez-Duhalt R, Huerta-Saquero A (2019) Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE, 14(11), e0224904

  • Verma V, Al-Dossari M, Singh J, Rawat M, Kordy MGM, Shaban M (2022) A review on Green synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 14(7):1444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vögeling H, Plenagl N, Seitz BS, Duse L, Pinnapireddy SR, Dayyoub E, Jedelska J, Brüßler J, Bakowsky U (2019) Synergistic effects of ultrasound and photodynamic therapy leading to biofilm eradication on polyurethane catheter surfaces modified with hypericin nanoformulations. Mater Sci Eng C Mater Biol Appl 103:109749

    PubMed  Google Scholar 

  • Wang B, Wu S, Lin Z, Jiang Y, Chen Y, Chen ZS, Yang X, Gao W (2018) A personalized and long-acting local therapeutic platform combining photothermal therapy and chemotherapy for the treatment of multidrug-resistant colon tumor. Int J Nanomed 13:8411–8427

    CAS  Google Scholar 

  • Wang C, Zhang Y, Dong Y (2021) Lipid Nanoparticle-mRNA formulations for therapeutic applications. Acc Chem Res 54(23):4283–4293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y (2022) Cytotoxicity of metal-based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv Sci (Weinh) 9(16):e2106049

    PubMed  Google Scholar 

  • Yamamoto O, Ohira T, Alvarez K, Fukuda M (2010) Antibacterial characteristics of CaCO3–MgO composites. Mater Sci Eng B 173:208–212

    CAS  Google Scholar 

  • Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O (2020) Therapeutic nanoparticles and their targeted delivery applications. Molecules 25(9):2193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ying S, Zhenru Guan PC, Ofoegbu P, Clubb C, Rico F, He J Hong (2022) Green synthesis of nanoparticles: current developments and limitations. Environmental Technology & Innovation. Volume 26,102336,

  • Yonathan K, Mann R, Mahbub KR, Gunawan C (2022) The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environ Pollution (Barking Essex: 1987) 293:118506

    CAS  Google Scholar 

  • Yuan Z, Lin C, He Y, Tao B, Chen M, Zhang J, Liu P, Cai K (2020) Near-Infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature Photothermal Therapy for Biofilm Elimination. ACS Nano 14(3):3546–3562

    CAS  PubMed  Google Scholar 

  • Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS (2023) Nanoparticles as Drug Delivery systems: a review of the implication of nanoparticles’ Physicochemical properties on responses in Biological systems. Polymers 15(7):1596. https://doi.org/10.3390/polym15071596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on Antibiotic Resistance: Alarm bells are ringing. Cureus 9:e1403

    PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Ji Y, Liu D, Zhou S, Wang Z, Chen R, Li T, Zhao B, Yao H, Du M (2023) Heat shock protein inhibitors show synergistic Antibacterial effects with photodynamic therapy on Caries-related Streptococci in Vitro and in vivo. mSphere, 8(2), e0067922

  • Zhan X, Yan J, Tang H, Xia D, Lin H (2022) Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics. 14(12):2654

  • Zhu X, Wu D, Wang W, Tan F, Wong PK, Wang X, Qiu X, Qiao X (2016) Highly effective antibacterial activity and synergistic effect of Ag-MgO nanocomposite against Escherichia coli. J Alloy Compd 684:282–290

    CAS  Google Scholar 

  • Zou L, Zhu F, Long ZE, Huang Y (2021) Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. J Nanobiotechnol 19(1):120

    Google Scholar 

Download references

Funding

The authors received no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

IEM conceptualized the idea and wrote the original manuscript text, prepared the figures and tables. All other authors contribute equally by participating in writing the manuscript. IEM proofread and reviewed the manuscript.

Corresponding author

Correspondence to Ifeanyi Elibe Mba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anyaegbunam, N.J., Mba, I.E., Ige, A.O. et al. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 40, 102 (2024). https://doi.org/10.1007/s11274-024-03925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-024-03925-z

Keywords

Navigation