Skip to main content

Novel Organic and Inorganic Nanoparticles as a Targeted Drug Delivery Vehicle in Cancer Treatment

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

Cancer arises when the homeostatic balance between cell growth and death is disturbed. A current standard treatment for cancer not only targets cancer cells but also affects normal cells. Nanotechnology is the most advanced in the field of medicine. Nanoparticles or nanocarriers have a wide range of applications like targeted drug releasing capacity, sustainability, and high permeability at tumor tissues. Our aim is to couple anticancer drugs with nano-based encapsulation technology, for treating primary or advanced metastatic tumors. Organic and inorganic nanoparticles like polymeric micelles, liposomes, dendrimers, silica, gold, silver, carbon nanotubes, quantum dots, nanographene, and magnetic nanoparticles serve the above purpose. This review paper aims to cover the advantages of organic and inorganic nanoparticles as a novel drug carrier vehicle in cancer treatment in order to overcome the limitations of conventional drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5FU:

5-Fluorouracil

AITC-SiQDs:

Allyl isothiocyanate-silicon QDs

AKT/mTOR:

Serine/threonine-specific protein kinase/mechanistic target of rapamycin kinase

APAF1:

Apoptotic protease activating factor 1

AuNPs:

Gold nanoparticle

Bcl-2 :

B-cell lymphoma 2

CNTs:

Carbon nanotubes

DSC:

Differential scanning calorimetry

EGF:

Epidermal growth factor

FA-NGO-PVP:

Folic acid-graphene oxide-polyvinylpyrrolidone

FDA:

Food and Drug Administration

GA-CdTe:

Gambogic acid-cadmium-tellurium

GO-PVCL:

Graphene oxide-poly N-vinyl caprolactam

HA:

Hyaluronic acid

HA-DOX-GQD@MSN:

Hyaluronic acid-doxorubicin-N-graphene quantum dots-mesoporous silica nanoparticles

HCC:

Hepatocellular carcinoma

HER2 genes:

Human epidermal growth factor receptor-2 genes

HPMA:

N-2-hydroxypropyl methacrylamide

IGF1R:

Type I insulin-like growth factor receptor

MALDI-MS:

Matrix-assisted laser desorption ionization-mass spectrometry

MMP:

Matrix Metallo Proteinases

NF-kB:

Nuclear factor-κB

NGO-HA:

Nanographene oxide-hyaluronic acid

NIPAAM:

N-isopropylacrylamide

NMR:

Nuclear magnetic resonance

PAMAM:

Polyamidoamine

PEDOT:PSS:

Poly 3,4-ethylenedioxythiophene-poly styrenesulfonate

PEG:

Polyethylene glycol

PEG-A:

Polyethylene glycol monoacrylate

PEG-PE:

Polyethylene glycol-phosphatidyl ethanolamine

PEO-PCL:

Polyethylene oxide-poly epsilon-caprolactone

PLA-PEG-PLL- DTPA:

Poly lactic acid-polyethylene glycol-poly L-lysine-diethylene Triamine pentaacetic acid

PLGA:

Poly D,L-lactic acid-co-glycolic acid

PLGA:

Polylactide-co-glycolide

PLH-PEG-biotin:

Poly L-histidine-polyethylene glycol-biotin

PPI:

Polypropylene imine

PTT:

Photothermal therapy

QDs:

Quantum dots

ROS:

Reactive oxygen species

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

TPTN:

Theranostic polymeric nanoparticle

TRC-NPs:

Thermo-responsive chitosan-g-poly (N-vinylcaprolactam) nanoparticles

VP:

N-vinyl-2-pyrrolidone

γ-PGA:

Polyvinyl pyrrolidone and poly-γ-glutamic acid

References

  • Abel EE, Poonga PRJ, Panicker SG (2016) Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl Nanosci 6(1):121–129

    Article  CAS  Google Scholar 

  • Ai S, Jia T, Ai W, Duan J, Liu Y, Chen J et al (2013) Targeted delivery of doxorubicin through conjugation with EGF receptor–binding peptide overcomes drug resistance in human colon cancer cells. Br J Pharmacol 168(7):1719–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Article  Google Scholar 

  • Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M (2018) Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Adv Pharm Bull 8(1):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19(42):7879–7884

    Article  CAS  Google Scholar 

  • Aryal S, Hu CMJ, Zhang L (2011) Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm 8(4):1401–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auzenne E, Donato NJ, Li C, Leroux E, Price RE, Farquhar D, Klostergaard J (2002) Superior therapeutic profile of poly-L-glutamic acid-paclitaxel copolymer compared with taxol in xenogeneic compartmental models of human ovarian carcinoma. Clin Cancer Res 8(2):573–581

    CAS  PubMed  Google Scholar 

  • Babu A, Munshi A, Ramesh R (2017) Combinatorial therapeutic approaches with RNAi and anticancer drugs using nanodrug delivery systems. Drug Dev Ind Pharm 43(9):1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badr G, Al-Sadoon MK, Rabah DM (2013) Therapeutic efficacy and molecular mechanisms of snake (Walterinnesiaaegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer-and prostate cancer-bearing experimental mouse models. Free Radic Biol Med 65:175–189

    Article  CAS  PubMed  Google Scholar 

  • Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31(4):295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22(11):1360

    Article  CAS  PubMed  Google Scholar 

  • Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG, Mukhopadhyay C (2018) Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Conv 5(1):1–9

    Google Scholar 

  • Belletti D, Riva G, Luppi M, Tosi G, Forni F, Vandelli MA et al (2017) Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: diagnosis/therapy combined approach. Eur J Pharm Sci 107:230–239

    Article  CAS  PubMed  Google Scholar 

  • Bernal GM, LaRiviere MJ, Mansour N, Pytel P, Cahill KE, Voce DJ et al (2014) Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine 10(1):149–157

    Article  CAS  PubMed  Google Scholar 

  • Bhatt R, de Vries P, Tulinsky J, Bellamy G, Baker B, Singer JW, Klein P (2003) Synthesis and in vivo antitumor activity of poly (L-glutamic acid) conjugates of 20 (S)-camptothecin. J Med Chem 46(1):190–193

    Article  CAS  PubMed  Google Scholar 

  • Bielawski K, Bielawska A, Muszyńska A, Popławska B, Czarnomysy R (2011) Cytotoxic activity of G3 PAMAM-NH2 dendrimer-chlorambucil conjugate in human breast cancer cells. Environ Toxicol Pharmacol 32(3):364–372

    Article  CAS  PubMed  Google Scholar 

  • Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5(1):3

    Article  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111(40):11622–11625

    Article  CAS  PubMed  Google Scholar 

  • Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, Wu CL (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722

    Article  CAS  PubMed  Google Scholar 

  • Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrugresistant cancer cells. Small 5(23):2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Zhao T, Wei D, Wei Y, Li Y, Zhang H (2013) Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92(2):1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zheng J, Yuan X, Wang J, Zhang L (2018) Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery. Mater Sci Eng C 82:1–9

    Article  Google Scholar 

  • Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23(1):1–29

    Article  Google Scholar 

  • Cho YS, Yoon TJ, Jang ES, Hong KS, Lee SY, Kim OR, Park C, Kim YJ, Yi GC, Chang K (2010) Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer letters 299(1): 63–71

    Google Scholar 

  • Choi AO, Brown SE, Szyf M, Maysinger D (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 86(3):291–302

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Shao Y, Peng J, Dai X, Li H, Wu Q, Shi D (2013) Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34(16):4078–4088

    Article  CAS  PubMed  Google Scholar 

  • Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T (2015) Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev 16(1):169–174

    Article  PubMed  Google Scholar 

  • Dai Tran L, Hoang NMT, Mai TT, Tran HV, Nguyen NT, Tran TD et al (2010) Nanosized magnetofluorescent Fe3O4–curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf A Physicochem Eng Asp 371(1–3):104–112

    Article  Google Scholar 

  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 44(1):381–391

    Article  CAS  PubMed  Google Scholar 

  • Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, Fata JE (2013) Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines. Anti Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 13(10):1531–1539

    Article  CAS  Google Scholar 

  • de Melo-Diogo D, Pais-Silva C, Costa EC, Louro RO, Correia IJ (2017) D-α-tocopheryl polyethylene glycol 1000 succinate functionalized nanographene oxide for cancer therapy. Nanomedicine 12(5):443–456

    Article  PubMed  Google Scholar 

  • De Santi M, Antonelli A, Menotta M, Sfara C, Serafini S, Lucarini S, Magnani M (2013) Single-walled carbon nanotubes functionalization for the delivery of the water insoluble anticancer agent indole-3-carbinol cyclic. J Nanopharm Drug Deliv 1(1):45–51

    Article  Google Scholar 

  • Devalapally H, Duan Z, Seiden MV, Amiji MM (2008) Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res 14(10):3193–3203

    Article  CAS  PubMed  Google Scholar 

  • Dhanikula RS, Argaw A, Bouchard JF, Hildgen P (2008) Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 5(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Dhas TS, Kumar VG, Karthick V, Govindaraju K, Narayana TS (2014) Biosynthesis of gold nanoparticles using Sargassumswartzii and its cytotoxicity effect on HeLa cells. Spectrochim Acta A Mol Biomol Spectrosc 133:102–106

    Article  CAS  PubMed  Google Scholar 

  • Dichwalkar T, Patel S, Bapat S, Pancholi P, Jasani N, Desai B et al (2017) Omega-3 fatty acid grafted PAMAM-Paclitaxel conjugate exhibits enhanced anticancer activity in upper gastrointestinal cancer cells. Macromol Biosci 17(8):1600457

    Article  Google Scholar 

  • Duncan R, Vicent MJ, Greco F, Nicholson RI (2005) Polymer–drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer 12(Supplement_1):S189–S199

    Article  CAS  PubMed  Google Scholar 

  • Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn ME, Ischenko I, Luedemann S, Strieth S, Papyan A, Werner A et al (2010) Vascular targeting by EndoTAG™-1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer. Int J Cancer 126(5):1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Ekladious I, Liu R, Zhang H, Foil DH, Todd DA, Graf TN et al (2017) Synthesis of poly (1, 2-glycerol carbonate)–paclitaxel conjugates and their utility as a single high-dose replacement for multi-dose treatment regimens in peritoneal cancer. Chem Sci 8(12):8443–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X (2014) Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interfaces 6(18):16416–16425

    Article  CAS  PubMed  Google Scholar 

  • Garg NK, Dwivedi P, Campbell C, Tyagi RK (2012) Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: an improved understanding of lung cancer therapeutic intervention. Eur J Pharm Sci 47(5):1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Gaucher G, Fournier E, Le Garrec D, Khalid MN, Hoarau D, Sant V, Leroux J (2004) Delivery of hydrophobic drugs through self-assembling nanostructures. In: 2004 international conference on MEMS, NANO and smart systems (ICMENS’04), August. IEEE, pp 56–57

    Chapter  Google Scholar 

  • Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G (2013) Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol 4(4–5):91–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Geim AK, Novoselov KS (2010) The rise of graphene. Nanosci Technol Collect Rev Nat J:11–19

    Google Scholar 

  • Ghasemi Y, Peymani P, Afifi S (2009) Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 80(2):156–165

    PubMed  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Girase ML, Patil PG, Ige PP (2019) Polymer-drug conjugates as nanomedicine: a review. Int J Polym Mater Polym Biomater:1–25

    Google Scholar 

  • Gong H, Cheng L, Xiang J, Xu H, Feng L, Shi X, Liu Z (2013) Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy. Adv Funct Mater 23(48):6059–6067

    Article  CAS  Google Scholar 

  • Gong F, Chen D, Teng X, Ge J, Ning X, Shen YL, Wang S (2017) Curcumin-loaded blood-stable polymeric micelles for enhancing therapeutic effect on erythroleukemia. Mol Pharm 14(8):2585–2594

    Article  CAS  PubMed  Google Scholar 

  • Goo S, Choi YJ, Lee Y, Lee S, Chung HW (2013) Selective effects of curcumin on CdSe/ZnS quantum-dot-induced phototoxicity using UVA irradiation in normal human lymphocytes and leukemia cells. Toxicol Res 29(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui W, Zhang J, Chen X, Yu D, Ma Q (2018) N-doped graphene quantum dot@ mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Microchim Acta 185(1):66

    Article  Google Scholar 

  • Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B (2015) Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm 89:248–258

    Article  CAS  PubMed  Google Scholar 

  • Hardiansyah A, Huang LY, Yang MC, Liu TY, Tsai SC, Yang CY et al (2014) Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res Lett 9(1):1–13

    Article  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  PubMed  Google Scholar 

  • Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Barnhart TE (2012a) In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6(3):2361–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ et al (2012b) In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials 33(16):4147–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu SH, Chen YW, Hung WT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24(13):1748–1754

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhang H, Yu Y, Chen Y, Wang D, Zhang G et al (2014) Biodegradable self-assembled nanoparticles of poly (d, l-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials 35(1):550–566

    Article  PubMed  Google Scholar 

  • Huo Q, Zhu J, Niu Y, Shi H, Gong Y, Li Y et al (2017) pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomedicine 12:8631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaidev LR, Krishnan UM, Sethuraman S (2015) Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Mater Sci Eng C 47:40–47

    Article  CAS  Google Scholar 

  • Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S (2011) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32(2):503–515

    Article  CAS  PubMed  Google Scholar 

  • Janaszewska A, Mączyńska K, Matuszko G, Appelhans D, Voit B, Klajnert B, Bryszewska M (2012) Cytotoxicity of PAMAM, PPI and maltose modified PPI dendrimers in Chinese hamster ovary (CHO) and human ovarian carcinoma (SKOV3) cells. New J Chem 36(2):428–437

    Article  CAS  Google Scholar 

  • Joseph MM, Aravind SR, George SK, Pillai KR, Mini S, Sreelekha TT (2014) Antitumor activity of galactoxyloglucan-gold nanoparticles against murine ascites and solid carcinoma. Colloids Surf B: Biointerfaces 116:219–227

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari ZA, Shanker V, Chakrabarti P, Singh SP (2012) The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B: Biointerfaces 95:195–200

    Article  CAS  PubMed  Google Scholar 

  • Jovin TM (2003) Quantum dots finally come of age. Nat Biotechnol 21:32–33

    Article  CAS  PubMed  Google Scholar 

  • Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, Keum DH et al (2014) Nanographene oxide–hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 8(1):260–268

    Article  CAS  Google Scholar 

  • Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M et al (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26

    Article  CAS  PubMed  Google Scholar 

  • Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W (2016) Co-delivery of rapamycin-and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv 23(7):2608–2616

    Article  CAS  PubMed  Google Scholar 

  • Kavitha T, Kang IK, Park SY (2014) Poly (N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Colloids Surf B: Biointerfaces 115:37–45.4

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH, Iyer AK (2015) Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B: Biointerfaces 136:413–423

    Article  CAS  PubMed  Google Scholar 

  • Khandanlou R, Murthy V, Saranath D, Damani H (2018) Synthesis and characterization of gold-conjugated Backhousiacitriodora nanoparticles and their anticancer activity against MCF-7 breast and HepG2 liver cancer cell lines. J Mater Sci 53(5):3106–3118

    Article  CAS  Google Scholar 

  • Kiew LV, Cheong SK, Sidik K, Chung LY (2010) Improved plasma stability and sustained release profile of gemcitabine via polypeptide conjugation. Int J Pharm 391(1–2):212–220

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Lee YK, Lee JY, Hong JH, Khang D (2017) PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology 28(46):465102

    Article  PubMed  Google Scholar 

  • Koizumi F, Kitagawa M, Negishi T, Onda T, Matsumoto SI, Hamaguchi T, Matsumura Y (2006) Novel SN-38–incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor–secreting bulky tumors. Cancer Res 66(20):10048–10056

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy K, Orsat V (2017) Sustainable delivery systems through green nanotechnology. In: Nano-and microscale drug delivery systems. Elsevier, Amsterdam, pp 17–32

    Chapter  Google Scholar 

  • Kulhari H, Pooja D, Shrivastava S, Kuncha M, Naidu VGM, Bansal V et al (2016) Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Kuruvilla SP, Tiruchinapally G, Crouch AC, ElSayed ME, Greve JM (2017) Dendrimer-doxorubicin conjugates exhibit improved anticancer activity and reduce doxorubicin-induced cardiotoxicity in a murine hepatocellular carcinoma model. PLoS One 12(8):e0181944

    Article  PubMed  PubMed Central  Google Scholar 

  • Labi V, Erlacher M (2015) How cell death shapes cancer. Cell Death Dis 6(3):e1675–e1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson N, Yang J, Ray A, Cheney DL, Ghandehari H, Kopeček J (2013) Biodegradable multiblock poly (N-2-hydroxypropyl) methacrylamide gemcitabine and paclitaxel conjugates for ovarian cancer cell combination treatment. Int J Pharm 454(1):435–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee PC, Chiou YC, Wong JM, Peng CL, Shieh MJ (2013) Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials 34(34):8756–8765

    Article  CAS  PubMed  Google Scholar 

  • Li C, Price JE, Milas L, Hunter NR, Ke S, Yu DF et al (1999) Antitumor activity of poly (L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res 5(4):891–897

    CAS  PubMed  Google Scholar 

  • Li M, Song W, Tang Z, Lv S, Lin L, Sun H et al (2013) Nanoscaled poly (L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl Mater Interfaces 5(5):1781–1792

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang N, Hao Y, Wang Y, Jia S, Zhang H, Zhang Z (2014) Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv 21(5):379–387

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu Y, Hou Y, Shen X, Xu G, Dai L et al (2015) Phase-change material filled hollow magnetic nanoparticles for cancer therapy and dual modal bioimaging. Nanoscale 7(19):9004–9012

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Cai Y, Zhao Y, Yu H, Zhou H, Chen M (2017) Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy. Int J Nanomedicine 12:6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008a) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008b) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Kopečková P, Pan H, Sima M, Bühler P, Wolf P et al (2012a) Prostate-cancer-targeted N-(2-hydroxypropyl) methacrylamide copolymer/docetaxel conjugates. Macromol Biosci 12(3):412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Zhang J, Sun W, Xie QR, Xia W, Gu H (2012b) Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells. Int J Nanomedicine 7:999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Feng L, Liu T, Zhang L, Yao Y, Yu D, Zhang N (2014) Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 6(6):3231–3242

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Behray M, Wang Q, Wang W, Zhou Z, Chao Y, Bao Y (2018) Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Sci Rep 8(1):1–11

    Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, Tamanoi F (2007) Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. NanoBiotechnology 3(2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Huang Y, Zhao W, Marquez RT, Meng X, Li J et al (2013) PEG-derivatizedembelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials 34(5):1591–1600

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Tang Z, Li M, Lin J, Song W, Liu H et al (2014) Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 35(23):6118–6129

    Article  CAS  PubMed  Google Scholar 

  • Ma’mani L, Nikzad S, Kheiri-Manjili H, al-Musawi S, Saeedi M, Askarlou S, Shafiee A (2014) Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy. Eur J Med Chem 83:646–654

    Article  PubMed  Google Scholar 

  • Marcinkowska M, Stanczyk M, Janaszewska A, Sobierajska E, Chworos A, Klajnert-Maculewicz B (2019) Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy. Pharm Res 36(11):154

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M (2018) Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater 65:393–404

    Article  PubMed  Google Scholar 

  • Maya S, Sarmento B, Lakshmanan VK, Menon D, Jayakumar R (2014) Actively targeted cetuximab conjugated γ-poly (glutamic acid)-docetaxel nanomedicines for epidermal growth factor receptor over expressing colon cancer cells. J Biomed Nanotechnol 10(8):1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Meena R, Singh R, Marappan G, Kushwaha G, Gupta N, Meena R et al (2019) Fluorescent carbon dots driven from ayurvedic medicinal plants for cancer cell imaging and phototherapy. Heliyon 5(9):e02483

    Article  PubMed  PubMed Central  Google Scholar 

  • Méndez J, Morales Cruz M, Delgado Y, Figueroa CM, Orellano EA, Morales M, Griebenow K (2014) Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm 11(1):102–111

    Article  PubMed  Google Scholar 

  • Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6):1689–1698

    Article  CAS  PubMed  Google Scholar 

  • Mignani S, Majoral JP (2013) Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. New J Chem 37(11):3337–3357

    Article  CAS  Google Scholar 

  • Minko T, Paranjpe PV, Qiu B, Lalloo A, Won R, Stein S, Sinko PJ (2002) Enhancing the anticancer efficacy of camptothecin using biotinylated poly (ethyleneglycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 50(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Mocan T, Matea CT, Cojocaru I, Ilie I, Tabaran FA, Zaharie F, Mocan L (2014) Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. J Cancer 5(8):679

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed EA, Hashim IIA, Yusif RM, Shaaban AAA, El-Sheakh AR, Hamed MF, Badria FAE (2018) Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. Int J Nanomedicine 13:1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollick MMR, Bhowmick B, Mondal D, Maity D, Rana D, Dash SK, Chakraborty M (2014) Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschusesculentus (L.) pulp extract via a green route. RSC Adv 4(71):37838–37848

    Article  Google Scholar 

  • Mondal G, Almawash S, Chaudhary AK, Mahato RI (2017) EGFR-targeted cationic polymeric mixed micelles for codelivery of gemcitabine and miR-205 for treating advanced pancreatic cancer. Mol Pharm 14(9):3121–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M et al (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66(24):11913–11921

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A (2016) Comparison of properties among dendritic and hyperbranched poly (ether ether ketone) s and linear poly (ether ketone) s. Molecules 21(2):219

    Article  PubMed Central  Google Scholar 

  • Muddineti OS, Kumari P, Ray E, Ghosh B, Biswas S (2017) Curcumin-loaded chitosan–cholesterol micelles: evaluation in monolayers and 3D cancer spheroid model. Nanomedicine 12(12):1435–1453

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee SP, Lyng FM, Garcia A, Davoren M, Byrne HJ (2010) Mechanistic studies of in vitro cytotoxicity of poly (amidoamine) dendrimers in mammalian cells. Toxicol Appl Pharmacol 248(3):259–268

    Article  CAS  PubMed  Google Scholar 

  • Munaweera I, Shi Y, Koneru B, Patel A, Dang MH, Di Pasqua AJ, Balkus KJ Jr (2015) Nitric oxide-and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer. J Inorg Biochem 153:23–31

    Article  CAS  PubMed  Google Scholar 

  • Muntimadugu E, Kumar R, Saladi S, Rafeeqi TA, Khan W (2016) CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B: Biointerfaces 143:532–546

    Article  CAS  PubMed  Google Scholar 

  • Nakajima TE, Yasunaga M, Kano Y, Koizumi F, Kato K, Hamaguchi T et al (2008) Synergistic antitumor activity of the novel SN-38-incorporating polymeric micelles, NK012, combined with 5-fluorouracil in a mouse model of colorectal cancer, as compared with that of irinotecan plus 5-fluorouracil. Int J Cancer 122(9):2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Nakkala JR, Mata R, Bhagat E, Sadras SR (2015) Green synthesis of silver and gold nanoparticles from Gymnemasylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res 17(3):151

    Article  Google Scholar 

  • Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Nguyen NH, Tran NQ, Nguyen CK (2015) Improved method for preparing cisplatin-dendrimer nanocomplex and its behavior against NCI-H460 lung cancer cell. J Nanosci Nanotechnol 15(6):4106–4110

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y et al (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63(24):8977–8983

    CAS  PubMed  Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldham EA, Li CHUN, Ke S, Wallace SIDNEY, Huang PENG (2000) Comparison of action of paclitaxel and poly (L-glutamic acid)-paclitaxel conjugate in human breast cancer cells. Int J Oncol 16(1):125–157

    CAS  PubMed  Google Scholar 

  • O’Shaughnessy JA (2003) Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer 4(5):318–328

    Article  PubMed  Google Scholar 

  • Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R et al (2007) Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67(17):8156–8163

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Mai Z, Wang B, Wang L, Wu L, Wang X, Chen T (2017) Artesunate-modified nano-graphene oxide for chemo-photothermal cancer therapy. Oncotarget 8(55):93800

    Article  PubMed  PubMed Central  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson JJ (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  CAS  Google Scholar 

  • Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    CAS  PubMed  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Article  Google Scholar 

  • Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR (2004) Synthesis and in vitro testing of J591 antibody− dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15(6):1174–1181

    Article  CAS  PubMed  Google Scholar 

  • Pautler M, Brenner S (2010) Nanomedicine: promises and challenges for the future of public health. Int J Nanomedicine 5:803

    PubMed  PubMed Central  Google Scholar 

  • Pedro-Hernández LD, Martínez-Klimova E, Martínez-Klimov ME, Cortez-Maya S, Vargas-Medina AC, Ramírez-Ápan T et al (2018) Anticancer activity of resorcinarene-PAMAM-dendrimer conjugates of flutamide. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 18(7):993–1000

    Article  Google Scholar 

  • Peng YH, Jin Y, Wang XX, Sun SB (2010) Study on the enhancement of anticancer effects of cisplatin by single-walled carbon nanotubes with larger diameters [J]. Chin J Clin Pharmacol 26(12):920–922

    CAS  Google Scholar 

  • Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J et al (2011) A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104(4):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK 53–70

    Google Scholar 

  • Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21(40):15872–15884

    Article  CAS  Google Scholar 

  • Qi N, Tang B, Liu G, Liang X (2017) Poly (γ-glutamic acid)-coated lipoplexes loaded with doxorubicin for enhancing the antitumor activity against liver tumors. Nanoscale Res Lett 12(1):1–9

    Article  Google Scholar 

  • Qin XC, Guo ZY, Liu ZM, Zhang W, Wan MM, Yang BW (2013) Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J Photochem Photobiol B Biol 120:156–162

    Article  CAS  Google Scholar 

  • Qiu K, He C, Feng W, Wang W, Zhou X, Yin Z, Mo X (2013) Doxorubicin-loaded electrospun poly (L-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B 1(36):4601–4611

    Article  CAS  PubMed  Google Scholar 

  • Quader S, Liu X, Chen Y, Mi P, Chida T, Ishii T et al (2017) cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. J Control Release 258:56–66

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14(1):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadass SK, Anantharaman NV, Subramanian S, Sivasubramanian S, Madhan B (2015) Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids Surf B: Biointerfaces 125:65–72

    Article  CAS  PubMed  Google Scholar 

  • Rana V, Sharma R (2019) Recent advances in development of nano drug delivery. In: Applications of targeted nano drugs and delivery systems. Elsevier, Amsterdam, pp 93–131

    Chapter  Google Scholar 

  • Rejinold NS, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R (2011) Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci 360(1):39–51

    Article  PubMed  Google Scholar 

  • Rezvani M, Ahmadnezhad I, Darvish Ganji M, Fotukian M (2016) Theoretical insights into the encapsulation of anticancer Oxaliplatin drug into single walled carbon nanotubes. J Nanoanal 3(3):69–75

    Google Scholar 

  • Rijcken CJF, Soga O, Hennink WE, Van Nostrum CF (2007) Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J Control Release 120(3):131–148

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Datta S, Bhatia KS, Bhumika, Jha P, Prasad R (2021) Role of plant derived bioactive compounds against cancer. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2021.10.015

  • Ruan J, Song H, Qian Q, Li C, Wang K, Bao C, Cui D (2012) HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials 33(29):7093–7102

    Article  CAS  PubMed  Google Scholar 

  • Ruttala HB, Ko YT (2015) Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf B: Biointerfaces 128:419–426

    Article  CAS  PubMed  Google Scholar 

  • Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saengkrit N, Saesoo S, Srinuanchai W, Phunpee S, Ruktanonchai UR (2014) Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B: Biointerfaces 114:349–356

    Article  CAS  PubMed  Google Scholar 

  • Salcedo ARM, Sevilla FB III (2013) Citrate-capped gold nanoparticles as colorimetric reagent for copper (II) ions. Philipp Sci Lett 6:90–96

    Google Scholar 

  • Salmanpour M, Yousefi G, Samani SM, Mohammadi S, Anbardar MH, Tamaddon A (2019) Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. Eur J Pharm Sci 136:104941

    Article  CAS  PubMed  Google Scholar 

  • Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    Article  CAS  PubMed  Google Scholar 

  • Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, Bianco A (2010) Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chem Commun 46(9):1494–1496

    Article  Google Scholar 

  • Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC (2016) Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta (BBA)-Gen Subj 1860(10):2065–2075

    Article  CAS  Google Scholar 

  • Sawant RR, Sawant RM, Torchilin VP (2008) Mixed PEG–PE/vitamin E tumor-targeted immunomicelles as carriers for poorly soluble anti-cancer drugs: improved drug solubilization and enhanced in vitro cytotoxicity. Eur J Pharm Biopharm 70(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seixas N, Ravanello BB, Morgan I, Kaluđerović GN, Wessjohann LA (2019) Chlorambucil conjugated Ugi dendrimers with PAMAM-NH2 core and evaluation of their anticancer activity. Pharmaceutics 11(2):59

    Article  CAS  PubMed Central  Google Scholar 

  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M (2019) Transdermal and intravenous nano drug delivery systems: present and future. In: Applications of targeted nano drugs and delivery systems. Elsevier, Amsterdam, pp 499–550

    Chapter  Google Scholar 

  • Shiah JG, Dvořák M, Kopečková P, Sun Y, Peterson CM, Kopeček J (2001) Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl) methacrylamide copolymer–doxorubicin conjugates in nude mice. Eur J Cancer 37(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Shivaji K, Mani S, Ponmurugan P, De Castro CS, Lloyd Davies M, Balasubramanian MG, Pitchaimuthu S (2018) Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl Nano Mater 1(4):1683–1693

    Article  CAS  Google Scholar 

  • Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK et al (2006) HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 17(5):1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, de Vries P (2001) Water-soluble poly-(l-glutamic acid)–Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release 74(1–3):243–247

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces 3(3):842–856

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Sharma M, Gupta PK (2014) Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Lasers Med Sci 29(2):645–652

    Article  PubMed  Google Scholar 

  • Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    Article  CAS  Google Scholar 

  • Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908

    Article  CAS  PubMed  Google Scholar 

  • Sreeranganathan M, Uthaman S, Sarmento B, Mohan CG, Park IK, Jayakumar R (2017) In vivo evaluation of cetuximab-conjugated poly (γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. Int J Nanomedicine 12:7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU et al (2015) Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Funct Mater 25(34):5472–5478

    Article  CAS  Google Scholar 

  • Sztandera K, Działak P, Marcinkowska M, Stańczyk M, Gorzkiewicz M, Janaszewska A, Klajnert-Maculewicz B (2019) Sugar modification enhances cytotoxic activity of PAMAM-doxorubicin conjugate in glucose-deprived MCF-7 cells–possible role of GLUT1 transporter. Pharm Res 36(10):140

    Article  PubMed  PubMed Central  Google Scholar 

  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638

    Article  CAS  PubMed  Google Scholar 

  • Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ (2014) Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid. Drug Des Devel Ther 8:2333

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavassolian F, Kamalinia G, Rouhani H, Amini M, Ostad SN, Khoshayand MR et al (2014) Targeted poly (l-γ-glutamyl glutamine) nanoparticles of docetaxel against folate over-expressed breast cancer cells. Int J Pharm 467(1–2):123–138

    Article  CAS  PubMed  Google Scholar 

  • Tengdelius M, Gurav D, Konradsson P, Påhlsson P, Griffith M, Oommen OP (2015) Synthesis and anticancer properties of fucoidan-mimetic glycopolymer coated gold nanoparticles. Chem Commun 51(40):8532–8535

    Article  CAS  Google Scholar 

  • Thakur M, Mewada A, Pandey S, Bhori M, Singh K, Sharon M, Sharon M (2016) Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C 67:468–477

    Article  CAS  Google Scholar 

  • Thambi T, Deepagan VG, Yoon HY, Han HS, Kim SH, Son S et al (2014) Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35(5):1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T et al (2005) Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93(6):678–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291

    Article  CAS  Google Scholar 

  • Uma Suganya KS, Govindaraju K, Prabhu D, Arulvasu C, Karthick V, Changmai N (2016) Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl Surf Sci 371:415–424

    Article  Google Scholar 

  • Ungari AQ, Pereira LRL, Nunes AA, Peria FM (2017) Cost-effectiveness analysis of XELOX versus XELOX plus bevacizumab for metastatic colorectal cancer in a public hospital school. BMC Cancer 17(1):691

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdés Lizama O, Vilos C, Durán-Lara E (2016) Techniques of structural characterization of dendrimers. Curr Org Chem 20(24):2591–2605

    Article  Google Scholar 

  • van Vlerken LE, Duan Z, Seiden MV, Amiji MM (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67(10):4843–4850

    Article  PubMed  Google Scholar 

  • Venkatpurwar V, Shiras A, Pokharkar V (2011) Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Int J Pharm 409(1–2):314–320

    Article  CAS  PubMed  Google Scholar 

  • Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65(5):663–676

    Article  CAS  PubMed  Google Scholar 

  • Vijayan R, Joseph S, Mathew B (2018) Indigoferatinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol 46(4):861–871

    Article  CAS  PubMed  Google Scholar 

  • Vijayan R, Joseph S, Mathew B (2019) Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng 42(2):305–319

    Article  CAS  PubMed  Google Scholar 

  • Vittorio O, Brandl M, Cirillo G, Spizzirri UG, Picci N, Kavallaris M, Hampel S (2014) Novel functional cisplatin carrier based on carbon nanotubes–quercetinnanohybrid induces synergistic anticancer activity against neuroblastoma in vitro. RSC Adv 4(59):31378–31384

    Article  CAS  Google Scholar 

  • Voon KL, Keng CS, Ramli E, Sidik K, Lim TM (2012) Efficacy of a poly-L-glutamic acid-gemcitabine conjugate in tumor-bearing mice. Drug Dev Res 73(3):120–129

    Article  Google Scholar 

  • Wang S, Li Y, Bai J, Yang Q, Song Y, Zhang C (2009) Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene. Bull Mater Sci 32(5):487

    Article  CAS  Google Scholar 

  • Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, Cheng Y (2013) Glutathione-triggered “off–on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J Am Chem Soc 135(26):9805–9810

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li X, Wang D, Zou Y, Qu X, He C et al (2017) Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Actabiomaterialia 62:144–156

    CAS  Google Scholar 

  • Wei QY, He KM, Chen JL, Xu YM, Lau AT (2019) Phytofabrication of nanoparticles as novel drugs for anticancer applications. Molecules 24(23):4246

    Article  CAS  PubMed Central  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Wong MY, Chiu GN (2011) Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine 7(6):834–840

    Article  CAS  PubMed  Google Scholar 

  • Wu P, He Y, Wang HF, Yan XP (2010) Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem 82(4):1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Duan X, Hu C, Wu C, Chen X, Huang J, Cui S (2019) Synthesis and characterization of gold nanoparticles from Abiesspectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol 47(1):512–523

    Article  PubMed  Google Scholar 

  • Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D (2015) Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7(42):17745–17755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Du X, Kleitz F, Qiao SZ (2015) Cancer-cell-specific nuclear-targeted drug delivery by dual ligand modified mesoporous silica nanoparticles. Small 11(44):5919–5926

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liu L, Brown NJ, Christian S, Hornby D (2012) Quantum dot-conjugated anti-GRP78 scFv inhibits cancer growth in mice. Molecules 17(1):796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Siddiqui IA, Nihal M, Pilla S, Rosenthal K, Mukhtar H, Gong S (2013a) Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34(21):5244–5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Li J, Shi L, Selke M, Chen B, Wang X (2013b) Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomedicine 8:3729

    Article  PubMed  PubMed Central  Google Scholar 

  • Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, Chauhan SC (2011) Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32(7):1890–1905

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, Haam S (2007) Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem 17(26):2695–2699

    Article  CAS  Google Scholar 

  • Yang C, Attia ABE, Tan JP, Ke X, Gao S, Hedrick JL, Yang YY (2012a) The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 33(10):2971–2979

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X et al (2012b) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24(14):1868–1872

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012c) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Feng L, Dougherty CA, Luker KE, Chen D, Cauble MA et al (2016a) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Feng L, Liu Z (2016b) Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv Drug Deliv Rev 105:228–241

    Article  CAS  PubMed  Google Scholar 

  • Yeh CY, Hsiao JK, Wang YP, Lan CH, Wu HC (2016) Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 99:1–15

    Article  CAS  PubMed  Google Scholar 

  • Yigit MV, Moore A, Medarova Z (2012) Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 29(5):1180–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, Okano T (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release 50(1–3):79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C (2013) Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 5(1):178–183

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Yang Z, Li H, Hao Y, Liu C, Zhu L et al (2017) Multifunctional nanographene oxide for targeted gene-mediated thermochemotherapy of drug-resistant tumour. Sci Rep 7:43506

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine (Lond) 3:83–91

    Article  CAS  Google Scholar 

  • Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009a) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30):6041–6047

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sachdev D, Wang C, Hubel A, Gaillard-Kelly M, Yee D (2009b) Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 114(2):277–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Huang Y, Li S (2014a) Nanomicellar carriers for targeted delivery of anticancer agents. Ther Deliv 5(1):53–68

    Article  PubMed  Google Scholar 

  • Zhang R, Yang J, Sima M, Zhou Y, Kopeček J (2014b) Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl) methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proc Natl Acad Sci 111(33):12181–12186

    Google Scholar 

  • Zhang P, Wang P, Yan L, Liu L (2018) Synthesis of gold nanoparticles with Solanumxanthocarpum extract and their in vitro anticancer potential on nasopharyngeal carcinoma cells. Int J Nanomedicine 13:7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Wu S, Wu B, Chen WR, Xing D (2011) Mitochondriatargeting singlewalled carbon nanotubes for cancer photothermal therapy. Small 7(19):2727–2735

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wen H, Gu L, Fu J, Guo J, Du L et al (2017) Aminoglucose-functionalized, redox-responsive polymer nanomicelles for overcoming chemoresistance in lung cancer cells. J Nanobiotechnol 15(1):87

    Article  Google Scholar 

  • Zou YIYU, Wu QP, Tansey W, Chow D, Hung MC, Charnsangavej C et al (2001) Effectiveness of water soluble poly (L-glutamic acid)-camptothecin conjugate against resistant human lung cancer xenografted in nude mice. Int J Oncol 18(2):331–336

    CAS  PubMed  Google Scholar 

  • Zou Y, Fu H, Ghosh S, Farquhar D, Klostergaard J (2004) Antitumor activity of hydrophilic paclitaxel copolymer prodrug using locoregional delivery in human orthotopic non–small cell lung cancer xenograft models. Clin Cancer Res 10(21):7382–7391

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Sarisozen C, Torchilin VP (2017) The reversal of multidrug resistance in ovarian carcinoma cells by co-application of tariquidar and paclitaxel in transferrin-targeted polymeric micelles. J Drug Target 25(3):225–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saradhadevi Muthukrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthukrishnan, S., Anand, A.V., Palanisamy, K., Gunasangkaran, G., Ravi, A.K., Balasubramanian, B. (2022). Novel Organic and Inorganic Nanoparticles as a Targeted Drug Delivery Vehicle in Cancer Treatment. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_4

Download citation

Publish with us

Policies and ethics