Skip to main content

Nano-Bioremediation Using Biologically Synthesized Intelligent Nanomaterials

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology has been developed a lot with a wide variety of application in all aspect of human needs. The most concerning part is the challenge to eradicate rapidly increasing pollutants from various sources before it poses a major risk to the environment. Nanomaterials are developing as an emerging novel method to assess environmental risk assessment, and it's remediation. Metal oxides (TiO2), silver nanoparticles, carbon allotropes nanomaterials, etc. are used as adsorbent, nanocatalyst, biosensor, etc., for remediation, reduction, or oxidation process of pollutants based on their physical and chemical properties. Nanoparticles are of two classes: one is organic nanoparticle like carbon allotropes (fullerenes, graphene, etc.), and the other is inorganic nanoparticles representing magnetic noble metals, semiconductor nanomaterials. Extensive studies have been done for different nanoparticles for their ability to be used in bioremediation of water, air, and soil pollution. Despite their promising effect against organic or inorganic pollutants, their toxicity to the organism is also high. In order to combat such problem, we must deploy intelligent nanomaterials that could be coupled with two or more compatible biologically synthesized nanomaterials for target-specific and target-effective removal or reduction of pollutants. They act as biosensor and act according to the abundance of pollutants in the environment. The materials could be tracked down and removed or changed in a periodical manner. Research on these kinds of intelligent nanomaterials is at infantry stage, but it can be an effective sustainable solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation and phytoremediation – a review. Earth Sci Rev 171:621–645

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419, https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862. https://doi.org/10.1021/ar2003368

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81(3):387–393. https://doi.org/10.1016/j.chemosphere.2010.07.007

  • Bradl H, Xenidis A (2005) Chapter 3 Remediation techniques. In: Interface science and technology, pp 165–261. https://doi.org/10.1016/s1573-4285(05)80022-5

    Chapter  Google Scholar 

  • Czurda K, Huttenloch P, Gregolec G, Roehl KE (2002) In: Simon FG, Meggyes T, McDonald C (eds) Advanced groundwater remediation: active and passive technologies. Thomas Telford, London, pp. 173–192. [31] Acar YB, Alshawabkeh AN. Environ. Sci. Technol.

    Google Scholar 

  • Chen M, Sun Y, Liang J, Zeng G, Lee Z, Tang L, Zhu Y, Jiang D, Song B (2019) Understanding the influence of carbon nanomaterials on microbial communities. Environ Int 126:690–698

    Article  CAS  Google Scholar 

  • Cui J-L, Zhao Y-P, Li J-S, Beiyuan J-Z, Tsang DC, Poon C-S, Chan T-S, Wang W-X, Li X-D (2018) Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environ Pollut 232:375–384

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199. https://doi.org/10.1897/08-341.1

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-Enhanced Accumulation of p,p′-DDE in Agricultural Crop Species. Environ Sci Technol 46(17):9315–9323. https://doi.org/10.1021/es301982w

  • Dhole A, Pitambara M (2019) Nanobiosensors: a novel approach in precision agriculture. In: Panpatte DG, Jhala YK (eds) Nanotechnology for agriculture. Springer Nature Singapore Pvt. Ltd.

    Google Scholar 

  • Ensley BD (2000) In: Raskin J, Ensley BD (eds) Phytoremediation of toxic metals – using plants to clean up the environment. Wiley, New York, pp. 3–31

    Google Scholar 

  • Gong X, Huang D, Liu Y, Peng Z, Zeng G, Xu P, Cheng M, Wang R, Wan J (2018) Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol 38(3):455–468. https://doi.org/10.1080/07388551.2017.1368446

  • Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23:1760

    Article  Google Scholar 

  • Hahn HH (1987) Wassertechnologie. Springer, Berlin

    Book  Google Scholar 

  • Haidouti C (1997) Inactivation of mercury in contaminated soils using natural zeolites. Sci Total Environ 208(1–2):105–109. https://doi.org/10.1016/S0048-9697(97)00284-2

  • Hou D, Li F (2017) Complexities surrounding China's soil action plan. Land Degrad Dev 28(7):2315–2320

    Article  Google Scholar 

  • Hu Z, Xie Y, Jin G et al. (2015) Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology 24:563–572. https://doi.org/10.1007/s10646-014-1404-6

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

  • Inamuddin, Ahamed MI, Prasad R (2021) Recent Advances in Microbial Degradation. Springer Singapore (ISBN: 978-981-16-0518-5) https://www.springer.com/gp/book/9789811605178

  • Ivask A, François M, Kahru A, Dubourguier HC, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55(2):147–156. https://doi.org/10.1016/j.chemosphere.2003.10.064

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3):682– 689. https://doi.org/10.1007/s10971-018-4666-2

  • Khan NT, Jameel N, Khan MJ (2018) A brief overview of contaminated soil remediation methods. Biotechnol Ind J 14(4):171

    Google Scholar 

  • Kumar V, Prasad R, Kumar M (2021) Rhizobiont in Bioremediation of Hazardous Waste. Springer Singapore (ISBN 978-981-16-0601-4) https://www.springer.com/gp/book/9789811606014

  • Marklund LG, Batello C (2008) FAO datasets on land use, land use change, agriculture and forestry and their applicability for National Greenhouse Gas reporting

    Google Scholar 

  • Mazaheri-Tirani M, Dayani S (2020) In vitro effect of zinc oxide nanoparticles on Nicotiana tabacum callus compared to ZnO micro particles and zinc sulfate (ZnSO4). Plant Cell Tiss Organ Cult 140:279–289. https://doi.org/10.1007/s11240-019-01725-0

  • Lagaly G (1986) In Campbell FT, Pfefferkom R, Rounsaville JR (eds) Ullmann’s encyclopedia of industrial chemistry, vol A7. Verlag Chemie, Weinheim, pp. 341–367

    Google Scholar 

  • Le TT, Nguyen K-H, Jeon J-R, Francis AJ, Chang Y-S (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341. https://doi.org/10.1016/j.jhazmat.2015.02.001

  • Lei C, Sun Y, Tsang DCW, Lin D (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30. https://doi.org/10.1016/j.envpol.2017.09.052

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Liang S-x, Jin Y, Liu W, Li X, Shen S-g, Ding L (2017) Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment. J Environ Manage 190:170–175

    Google Scholar 

  • Lin D, Xing B (2007) Phototoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of Nanomaterials in the Environment. Environ Sci Technol 46(13):6893–6899. https://doi.org/10.1021/es300839e

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burtonc ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic sorption to perilla leaf biochar in aqueous environments: an advanced spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  Google Scholar 

  • Philip LK (2001) Eng Geol 60:209

    Article  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, functional applications, vol 2. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in Bioremediation. Springer International Publishing https://www.springer.com/de/book/9783030023683

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Reddi LN, Inyang HI (2000) Geoenvironmental engineering- principles and applications. Marcel Dekker, New York

    Book  Google Scholar 

  • Racuciu M, Creanga DE (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52:395–402

    CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 33–58

    Google Scholar 

  • Sarkar SK, Mondal P, Biswas JK, Kwon EE, Ok YS, Rinklebe J (2017) Trace elements in surface sediments of the Hooghly (Ganges) estuary: distribution and contamination risk assessment. Environ Geochem Health:1–14

    Google Scholar 

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased Nanotechnology for Green Applications. Springer International Publishing (ISBN 978-3-030-61985-5) https://www.springer.com/gp/book/9783030619848

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J (2020) Biological Biosensors for Monitoring and Diagnosis. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial Biotechnology: Basic Research and Applications. Springer Nature Singapore 317–336

    Google Scholar 

  • Singh M, Manikandan S, Kumaraguru AK (2011) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1(1):1–11

    Article  CAS  Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Virendra Misra (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258–259:35–41. https://doi.org/10.1016/j.jhazmat.2013.04.016

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21(2):245–265

    Google Scholar 

  • Starr RC, Cherry JA (1994) Ground water. 32:465

    Google Scholar 

  • US Environmental Protection Agency (1989) Stabilization/solidification of CERCLA and RCRA wastes, physical tests, chemical testing procedures, technology screening and field activities, EPA/625/6-89/022. Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • WHO (2018) Lead Poisoning and Health. http://www.who.int/en/news-room/fact-sheets/detail/lead-poisoning-and-health

  • Wilichowski M (2001) In: Stegmann R, Brunner G, Calmano W, Matz G (eds) Treatment of contaminated soil. Springer, Berlin, Heidelberg, pp. 417–433

    Google Scholar 

  • Wu F, You Y, Wemer D, Jiao S, Hi J, Zhang X, Wan Y, Liu J, Wang B, Wang X (2020) Carbon nanomaterials affect carbon cycle-related functions of the soil microbial community and coupling of nutrient cycles. J Hazard Mater 390:122–144

    Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2014) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49(2):750–759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakthinarendran, S., Ravi, M., Mirunalini, G. (2022). Nano-Bioremediation Using Biologically Synthesized Intelligent Nanomaterials. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_18

Download citation

Publish with us

Policies and ethics