Skip to main content

Advancement in Nanomaterial Synthesis and its Biomedical Applications

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

Infections have been the greatest challenge to the advancement of human race. With the advent of antibiotic therapy, successful treatment strategy was installed against infections. But, due to improper use and misuse of antibiotics along with the evolutionary advantage gained by microorganisms against antibiotics, resistant strains evolved that made the action of many antibiotics futile. Scientific world was after developing newer, more powerful antibiotics to counter the resistant strains, but later realised to change their strategy to adopt methods with the same set of antibiotic armamentaria used in a different way to overcome the resistance barrier created by the microbes. For implementing this strategy, nanoscience and technology came handy. This chapter describes the historical developments in the field of nanoscience briefly, the conventional management strategies for infections and the use of nanotechnology in the control of infections. A section on the use of nanotechnology in the control of other diseases is also added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Razzak R, Florence GJ, Gunn-Moore FJ (2019) Approaches to CNS drug delivery with a focus on transporter-mediated transcytosis. Int J Mol Sci 20(12):3108

    Article  CAS  PubMed Central  Google Scholar 

  • Abee T, Rombouts FM, Hugenholtz J, Guihard G, Letellier L (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl Environ Microbiol 60(6):1962–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albani D, Gloria A, Giordano C, Rodilossi S, Russo T, D’Amora U, Tunesi M, Cigada A, Ambrosio L, Forloni G (2013) Hydrogel-based nanocomposites and mesenchymal stem cells: a promising synergistic strategy for neurodegenerative disorders therapy. Sci World J. https://doi.org/10.1155/2013/270260

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128(6):1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Amaral L, Kristiansen JE (2000) Phenothiazines: an alternative to conventional therapy for the initial management of suspected multidrug resistant tuberculosis. A call for studies. Int J Antimicrob Agents 14(3):173–176

    Article  CAS  PubMed  Google Scholar 

  • Andriashvili IA, Kvachadze LI, Bashakidze RP, Adamiia R, Chanishvili TG (1986) Molecular mechanism of phage DNA protection from the restriction endonucleases of Staphylococcus aureus cells. Mol Gen Mikrobiol Virusol (8):43

    Google Scholar 

  • Attivi D, Wehrle P, Ubrich N, Damge C, Hoffman M, Maincent P (2005) Formulation of insulin-loaded polymeric nanoparticles using response surface methodology. Drug Dev Ind Pharm 31(2):179–189

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419. http://dx.doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Bal SM, Slütter B, van Riet E, Kruithof AC, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA (2010) Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release 142(3):374–383

    Article  CAS  PubMed  Google Scholar 

  • Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan− silver nanoparticle composite. Langmuir 26(8):5901–5908

    Article  CAS  PubMed  Google Scholar 

  • Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Vandelli MA, Tosi G, Grabrucker AM (2017) Novel Curcumin loaded nanoparticles engineered for Blood-Brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526(1-2):413–424

    Article  CAS  PubMed  Google Scholar 

  • Barber DJ, Freestone IC (1990) An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry 32(1):33–45

    Article  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2020) The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25(1):112

    Article  CAS  Google Scholar 

  • Benton B, Breukink E, Visscher I, Debabov D, Lunde C, Janc J, Mammen M, Humphrey P (2007) Telavancin inhibits peptidoglycan biosynthesis through preferential targeting of transglycosylation: evidence for a multivalent interaction between telavancin and lipid II. Int J Antimicrob Agents 29:S51–S52

    Article  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Google Scholar 

  • Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nano 3(Godište 2016):3–9

    Google Scholar 

  • Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170(1-2):2–7

    Article  CAS  Google Scholar 

  • Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2(5):395–401

    Article  PubMed  Google Scholar 

  • Bozdogan B, Appelbaum PC (2004) Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents 23(2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Bracci L, Falciani C, Lelli B, Lozzi L, Runci Y, Pini A, De Montis MG, Tagliamonte A, Neri P (2003) Synthetic peptides in the form of dendrimers become resistant to protease activity. J Biol Chem 278(47):46590–46595

    Article  CAS  PubMed  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner C, Seiderer J, Schlamp A, Bidlingmaier M, Eigler A, Haimerl W, Lehr HA, Krieg AM, Hartmann G, Endres S (2000) Enhanced dendritic cell maturation by TNF-α or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 165(11):6278–6286

    Article  CAS  PubMed  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64(3):545–552

    Article  CAS  PubMed  Google Scholar 

  • Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C (2019) Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 10(1):4

    Article  CAS  PubMed Central  Google Scholar 

  • Cederlund H, Mårdh PA (1993) Antibacterial activities of non-antibiotic drugs. J Antimicrob Chemother 32(3):355–365

    Article  CAS  PubMed  Google Scholar 

  • Chadwick S, Kriegel C, Amiji M (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62(4-5):394–407

    Article  CAS  PubMed  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS et al. (2009). The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clinical cancer research 15(17):5323–5337.

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262

    Article  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Cobley CM, Au L, Chen J, Xia Y (2010) Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin Drug Deliv 7(5):577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology 3(10):777–788.

    Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11(2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56(1)

    Google Scholar 

  • Diwan M, Elamanchili P, Lane H, Gainer A, Samuel J (2003) Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses. J Drug Target 11(8–10):495–507

    Article  CAS  PubMed  Google Scholar 

  • Dobson AP, Carper ER (1996) Infectious diseases and human population history. Bioscience 46(2):115–126

    Article  Google Scholar 

  • Drexler EK (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci U S A 78:5275–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler EK, Peterson C, Pergamit G (1991) Unbounding the future: the nanotechnology revolution. William Morrow and Company, Inc., New York, NY

    Google Scholar 

  • Džidić S, Šušković J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46(1)

    Google Scholar 

  • Elsner J (2013) The Lycurgus cup. New light on old glass: recent research on byzantine mosaics and glass. The British Museum, London, UK, pp 103–111

    Google Scholar 

  • Englander L, Friedman A (2010) Nitric oxide nanoparticle technology: a novel antimicrobial agent in the context of current treatment of skin and soft tissue infection. J Clin Aesthet Dermatol 3(6):45

    PubMed  PubMed Central  Google Scholar 

  • Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A (1991) Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother 35(4):770–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Florindo HF, Pandit S, Lacerda L, Gonçalves LM, Alpar HO, Almeida AJ (2009) The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-ɛ-caprolactone-based nanoparticles. Biomaterials 30(5):879–891

    Article  CAS  PubMed  Google Scholar 

  • Forouhi NG, Wareham NJ (2010) Epidemiology of diabetes. Medicine 38(11):602–606

    Article  Google Scholar 

  • Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84(5–6):577–592

    Article  CAS  PubMed  Google Scholar 

  • Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Cancer Nanotechnol. Humana Press, pp 25–37

    Chapter  Google Scholar 

  • Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368(9538):874–885

    Article  PubMed  Google Scholar 

  • Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang XY (2013) Therapeutic cancer vaccines: past, present, and future. In: Advances in cancer research, vol 119. Academic Press, pp 421–475

    Google Scholar 

  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139(5):945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser AR (2015) Cell envelope. In: Antibiotic basic for clinicians, 2nd edn. Wolters Kluwer (India) Pvt. Ltd., New Delhi, pp 3–5

    Google Scholar 

  • Heinrich MA, Martina B, Prakash J (2020) Nanomedicine strategies to target coronavirus. Nano Today:100961

    Google Scholar 

  • Hearnden C, Lavelle EC (2013) Adjuvant strategies for vaccines: the use of adjuvants within the cancer vaccine setting. In: Prendergast GC,Jaffee EM (eds) Cancer immunotherapy: immune suppression and tumor growth, 2nd edn. Elsevier, New York, 655

    Google Scholar 

  • Helgeby A, Robson NC, Donachie AM, Beackock-Sharp H, Lövgren K, Schön K, Mowat A, Lycke NY (2006) The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J Immunol 176(6):3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Higgins PG, Fluit AC, Schmitz FJ (2003) Fluoroquinolones: structure and target sites. Curr Drug Targets 4(2):181–190

    Article  CAS  PubMed  Google Scholar 

  • Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181(17):5489–5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang MH, Lin SC, Hsiao CH, Chao HJ, Yang HR, Liao CC, Chuang PW, Wu HP, Huang CY, Leng CH, Liu SJ (2010) Emulsified nanoparticles containing inactivated influenza virus and CpG oligodeoxynucleotides critically influences the host immune responses in mice. PLoS One 5(8):e12279

    Article  PubMed  PubMed Central  Google Scholar 

  • Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RK, Martinez DS, Castro GR, Durán N (2017) Nanopharmaceuticals as a solution to neglected diseases: is it possible? Acta Trop 170:16–42

    Article  CAS  PubMed  Google Scholar 

  • Jasim A, Abdelghany S, Greish K (2017) Current update on the role of enhanced permeability and retention effect in cancer nanomedicine. In Nanotechnology-based approaches for targeting and delivery of drugs and genes. Academic Press, 62–109.

    Google Scholar 

  • Jiang T, Mo R, Bellotti A, Zhou J, Gu Z (2014) Gel–liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv Funct Mater 24(16):2295–2304

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J Food Sci 74(1):M46–M52

    Article  CAS  PubMed  Google Scholar 

  • Johnston NJ, Mukhtar TA, Wright GD (2002) Streptogramin antibiotics: mode of action and resistance. Curr Drug Targets 3(4):335–344

    Article  CAS  PubMed  Google Scholar 

  • Jones GR (1996) Successful cancer therapy with promethazine: the rationale. Med Hypotheses 46(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105(2):425–448

    Article  CAS  PubMed  Google Scholar 

  • Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33(3):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan F, Khattak NS, Khan US, Rahman A (2011) Historical development of magnetite nanoparticles synthesis. J Chem Soc Pak 33(6):793

    CAS  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kwak SY, Sohn BH, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85

    Article  CAS  PubMed  Google Scholar 

  • Korani M, Rezayat SM, Gilani K, Bidgoli SA, Adeli S (2011) Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine 6:855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57(10):1486–1513

    Article  CAS  PubMed  Google Scholar 

  • Kumar Khanna V (2012) Targeted delivery of nanomedicines. ISRN Pharmacol 2012

    Google Scholar 

  • Kumar V, Bayda S, Hadla M, Caligiuri I, Russo Spena C, Palazzolo S, Kempter S, Corona G, Tooli G, Rizzolio F (2016a) Enhanced chemotherapeutic behavior of open-caged DNA@doxorubicin nanostructures for cancer cells. J Cell Physiol 231:106–110

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Palazzolo S, Bayda S, Corona G, Tooli G, Rizzolio F (2016b) DNA nanotechnology for cancer therapy. Theranostics 6:710–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11(1):69–86

    Article  CAS  PubMed  Google Scholar 

  • Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57(10):1471–1485

    Article  CAS  PubMed  Google Scholar 

  • Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, Gadwood RC, Shinabarger D, Xiong L, Mankin AS (2007) The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 26(3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30(30):5969–5978

    Article  CAS  PubMed  Google Scholar 

  • Lin ST, Franklin MT, Klabunde KJ (1986) Nonaqueous colloidal gold. Clustering of metal atoms in organic media. 12. Langmuir 2(2):259–260

    Article  CAS  Google Scholar 

  • Lind K, Kristiansen JE (2000) Effect of some psychotropic drugs and a barbiturate on mycoplasmas. Int J Antimicrob Agents 14(3):235–238

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu Z, Chen H, Liu H, Gao Q, Cong F, Gao G, Chen Y (2020) Subunit nanovaccine with potent cellular and mucosal immunity for COVID-19. ACS Appl Biol Mater

    Google Scholar 

  • Liu YJ, He LL, Mustapha A, Li H, Hu ZQ, Lin MS (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Lorch A (1999) Bacteriophages: an alternative to antibiotics. Biotechnol Dev Monit 39:14–17

    Google Scholar 

  • Logothetidis S (2006) Nanotechnology in medicine: The medicine of tomorrow and nanomedicine. Hippokratia 10:7–21

    Google Scholar 

  • Luby Š, Lubyová M, Šiffalovič P, Jergel M, Majková E (2015) A brief history of nanoscience and foresight in nanotechnology. In: Nanomaterials and nanoarchitectures. Springer, Dordrecht, pp 63–86

    Chapter  Google Scholar 

  • Luo S, Ma C, Zhu MQ, Ju WN, Yang Y, Wang X (2020) Application of Iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer’s disease. Front Cell Neurosci 14

    Google Scholar 

  • Ma Y, Zhou T, Zhao C (2008) Preparation of chitosan–nylon-6 blended membranes containing silver ions as antibacterial materials. Carbohydr Res 343(2):230–237

    Article  CAS  PubMed  Google Scholar 

  • MacDougall C (2017) Penicillins, cephalosporins, and other β-lactam antibiotics. In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13th edn. McGraw-Hill Education, New York, 1023–1038.

    Google Scholar 

  • Madou MJ (2011) Manufacturing techniques for microfabrication and nanotechnology. CRC press

    Book  Google Scholar 

  • Martinez LR, Han G, Chacko M, Mihu MR, Jacobson M, Gialanella P, Friedman AJ, Nosanchuk JD, Friedman JM (2009) Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. J Investig Dermatol 129(10):2463–2469

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6(5):681–688

    Article  CAS  PubMed  Google Scholar 

  • Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA (2009) Regulating immune response using polyvalent nucleic acid− gold nanoparticle conjugates. Mol Pharm 6(6):1934–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice F, Broutin I, Podglajen I, Benas P, Collatz E, Dardel F (2008) Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance. EMBO Rep 9(4):344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinn RE (2012) What’s Different, Ethically, About Nanotechnology? Foundational Questions and Answers. In A. S. Khan (Ed.), Nanotechnology: ethical and Social Implications. CRC Press, Boca Raton, Florida, pp. 67–89

    Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita M, Morishita I, Takayama K, Machida Y, Nagai T (1992) Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. Int J Pharm 78(1–3):1–7

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A (2020) Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater 2003054

    Google Scholar 

  • Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon JK, Wang C, Hickey AJ, Edwards D (2010) Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J 12(3):330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandy SK, Bapat PM, Venkatesh KV (2007) Sporulating bacteria prefers predation to cannibalism in mixed cultures. FEBS Lett 581(1):151–156

    Article  CAS  PubMed  Google Scholar 

  • Nigam A, Gupta D, Sharma A (2014) Treatment of infectious disease: beyond antibiotics. Microbiol Res 169(9-10):643–651

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H, Zgurskaya HI (1999) Antibiotic efflux mechanisms. Curr Opin Infect Dis 12(6):529–536

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Chen J, Gao J (2019) Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J Pharm Sci 14(5):480–496

    Article  PubMed  Google Scholar 

  • O’sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84(5–6):593–604

    Article  PubMed  Google Scholar 

  • O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Padovani S, Sada C, Mazzoldi P, Brunetti B, Borgia I, Sgamellotti A, Giulivi A, d’Acapito F, Battaglin G (2003) Copper in glazes of renaissance luster pottery: nanoparticles, ions, and local environment. J Appl Phys 93(12):10058–10063

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzolo S, Hadla M, Spena CR, Bayda S, Kumar V, Lo Re F, Adeel M, Caligiuri I, Romano F, Corona G et al (2019a) Proof-of-concept multistage biomimetic liposomal DNA origami nanosystem for the remote loading of doxorubicin. ACS Med Chem Lett 10:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzolo S, Hadla M, Russo Spena C, Caligiuri I, Rotondo R, Adeel M, Kumar V, Corona G, Canzonieri V, Tooli G et al (2019b) An effective multi-stage liposomal DNA origami nanosystem for in vivo cancer therapy. Cancers 11:1997

    Article  CAS  PubMed Central  Google Scholar 

  • Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3(2):90

    Article  CAS  PubMed  Google Scholar 

  • Perica K, Varela JC, Oelke M, Schneck J (2015) Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 6(1):e0004

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13(3):155–168

    Article  CAS  PubMed  Google Scholar 

  • Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:174–196

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK 53–70

    Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. Journal of Nanoparticles 2013, http://dx.doi.org/10.1155/2013/431218

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP (2016) Novel drug delivery system: an immense hope for diabetics. Drug Deliv 23(7):2371–2390

    Article  CAS  PubMed  Google Scholar 

  • Rakotoarisoa M, Angelova A (2018) Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines 5(4):126

    Article  CAS  PubMed Central  Google Scholar 

  • Ranade AV, Acharya R (2015) Arka and its pharmaceutical attributes in Indian alchemy (Rasashastra): a comprehensive review. Int J Ayurvedic Med 6(4):280–288

    Article  Google Scholar 

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8(11):943–950

    Article  CAS  PubMed  Google Scholar 

  • Richard F (1960) There’s plenty of space at the bottom. Caltech Eng Sci 23(5):22–36

    Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  • Roco MC (2007). National nanotechnology initiative-past, present, future. In Goddard III WA, Brenner D, Lyshevski SE and Iafrate GJ (eds) Handbook on nanoscience, engineering and technology, 2nd ed, CRC Press, Boca Raton, Florida, pp. 3.1–3.26.

    Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    Article  CAS  PubMed  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  PubMed  Google Scholar 

  • Mobashery S, Azucena EF (1999) Bacterial antibiotic resistance. In: Encyclopedia of life sciences. Nature Publishing Group, London, UK

    Google Scholar 

  • Sablon E, Contreras B, Vandamme E (2000) Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. In: New products and new areas of bioprocess engineering. Springer, Berlin, Heidelberg, pp 21–60

    Chapter  Google Scholar 

  • Saglam N, Korkusuz, F, Prasad R (2021) Nanotechnology Applications in Health and Environmental Sciences. Springer International Publishing (ISBN: 978-3-030-64410-9) https://www.springer.com/gp/book/9783030644093

  • Sanpui P, Murugadoss A, Prasad PD, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124(2):142–146

    Article  CAS  PubMed  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24(12):2198–2206

    Article  CAS  PubMed  Google Scholar 

  • Sciau P (2012) Nanoparticles in ancient materials: the metallic lustre decorations of medieval ceramics. INTECH Open Access Publisher

    Google Scholar 

  • Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun Arch 12(1)

    Google Scholar 

  • Sebastian R (2017) Nanomedicine-the future of cancer treatment: a review. J Cancer Prev Curr Res 8(1):00–265

    Article  Google Scholar 

  • Šebestík J, Reiniš M, Ježek J (2012) Dendrimers in Neurodegenerative Diseases. In: Biomedical applications of peptide-, glyco-and glycopeptide dendrimers, and analogous dendrimeric structures. Springer, Vienna, pp 209–221

    Chapter  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Park S, Aglyamov SR, Larson T, Ma L, Sokolov KV, Johnston KP, Milner TE, Emelianov SY (2008) Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J Biomed Opt 13(3):034024

    Article  PubMed  Google Scholar 

  • Sharma N, Sharma M, Sajid Jamal QM, Kamal MA, Akhtar S (2019) Nanoinformatics and biomolecular nanomodeling: a novel move en route for e_ective cancer treatment. Environ Sci Pollut Res Int:1–15

    Google Scholar 

  • Si PZ, Zhang ZD, Geng DY, You CY, Zhao XG, Zhang WS (2003) Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor. Carbon 41(2):247–251

    Article  CAS  Google Scholar 

  • Singh B (2020) Biomimetic nanovaccines for COVID-19. Appl Sci Technol Ann 1(1):176–182

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  PubMed  Google Scholar 

  • Song HY, Ko KK, Oh LH, Lee BT (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater 11(Suppl 1):58

    Google Scholar 

  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57(12):3613–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strateva T, Yordanov D (2009) Pseudomonas aeruginosa–a phenomenon of bacterial resistance. J Med Microbiol 58(9):1133–1148

    Article  CAS  PubMed  Google Scholar 

  • Straus SK, Hancock RE (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta (BBA) 1758(9):1215–1223

    Article  CAS  Google Scholar 

  • Subramani K, Pathak S, Hosseinkhani H (2012) Recent trends in diabetes treatment using nanotechnology. Dig J Nanomater Bios 7(1)

    Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIX™. Vaccine 27(33):4388–4401

    Article  CAS  PubMed  Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectronic and Biomedical Materials 4(3):53–59

    Google Scholar 

  • Tam JP, Lu YA, Yang JL (2002) Antimicrobial dendrimeric peptides. Eur J Biochem 269(3):923–932

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N (1974) On the basic concept of “nano-technology”. In: Proceedings of international conference on production engineering. Part II, Japan Society of Precision Engineering, Tokyo

    Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119(6):S3–10

    Article  Google Scholar 

  • Tolmasky ME (2000) Bacterial resistance to aminoglycosides and beta-lactams: the Tn1331 transposon paradigm. RNA 5(10):11

    Google Scholar 

  • Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci 99(19):12001–12005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannuffel P, Cocito C (1996) Mechanism of action of streptogramins and macrolides. Drugs 51(1):20–30

    Article  CAS  PubMed  Google Scholar 

  • Strohl WR (1997) Biotechnology of antibiotics. Marcel Dekker Inc., New York, NY

    Book  Google Scholar 

  • Webber MA, Piddock LJ (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51(1):9–11

    Article  CAS  PubMed  Google Scholar 

  • Williams JD (1995) Selective toxicity and concordant pharmacodynamics of antibiotics and other drugs. J Antimicrob Chemother 35(6):721–737

    Article  CAS  PubMed  Google Scholar 

  • Wise R (1999) A review of the mechanisms of action and resistance of antimicrobial agents. Can Respir J 6:20A-A

    Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. https://doi.org/10.5101/nbe.v9i1.p9-14

  • Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97(6):1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama H, Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem 70(5):1060–1075

    Article  CAS  PubMed  Google Scholar 

  • Zhang E, Xu H (2017) A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol 10(1):1–1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chen G, Yu B, Cong H (2018) Emerging advanced nanomaterials for cancer photothermal therapy. Rev Adv Mater Sci 53(2):131–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariadhas Valan Arasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharathan, B.P., Rajagopal, R., Alfarhan, A., Arasu, M.V., Al-Dhabi, N.A. (2022). Advancement in Nanomaterial Synthesis and its Biomedical Applications. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_14

Download citation

Publish with us

Policies and ethics