Skip to main content

An Insight on Emerging Nanomaterials for the Delivery of Various Nutraceutical Applications for the Betterment of Heath

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

From ancient time till date, the association of food with health is recognized. Two thousand five hundred years ago, Hippocrates, the founder and father of medicine, defined food as “Let food be thy medicine and medicine be thy food.” From ancient times, herbs as well as spices had their role in traditional medicine. Nutraceuticals are foods with bioactive compounds that provide essential nutrients along with health by inhibiting the development of chronic diseases and possess therapeutic functions. Although nutraceuticals have many prophylactic functions, they also have certain limitations. The limitations of nutraceuticals need to be eliminated by some delivery system to provide improved permeation of bioactive compounds. Application of nanotechnology in nutraceutical is now booming. Nanotechnology signifies interdisciplinary research on small particles (1–100 nm in size), intending to generate and develop structures in nano-level for delivering nutraceutical. The ratio of surface area to volume is greater in nanoscale structures with subsequent higher uptake and interaction with biological barriers. Nanotechnology improves health by delivering nutraceuticals and bioactive compounds, thus enhancing the effectiveness in delivering nutraceuticals. Nanotechnology has the ability to increase the solubility, aid in sustained release, augment bioavailability, and protect the stability of nutrients and bioactive and functional components. Unique properties and functions are due to their nanoscale dimensions. Examples of nutraceuticals include antioxidants, vitamins, essential minerals, bioactive compounds, prebiotics, and probiotics. Nanotechnology is exploited for the delivery of nutraceuticals efficiently. The choice of nanomaterials in the nutraceutical sector is continuously growing due to the fantastic properties conferred to the product which facilitated the progression of different nanomaterial usage to meet the challenges that occurred during the delivery of nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboalnaja KO, Yaghmoor S, Kumosani TA, McClements DJ (2016) Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opin Drug Deliv 13(9):1327–1336

    Google Scholar 

  • Acevedo-Fani A, Soliva-Fortuny R, Martı’n-Belloso O (2017) Nanostructured emulsions and nanolaminates for delivery of active ingredients: improving food safety and functionality. Trends Food Sci Technol 60:12–22

    Article  CAS  Google Scholar 

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    Article  CAS  Google Scholar 

  • Aditya NP, Espinosa YG, Norton IT (2017) Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnol Adv 35:450–457

    Article  CAS  PubMed  Google Scholar 

  • Akhlaghi SP, Berry RM, Tam KC (2015) Modified cellulose nanocrystal for vitamin C delivery. AAPS PharmSciTech 16(2):306–314

    Article  CAS  PubMed  Google Scholar 

  • Akobundu UO, Cohen NL, Laus MJ, Schulte MJ, Soussloff MN (2004) Vitamins A and C, calcium, fruit, and dairy products are limited in food pantries. J Am Diet Assoc 104(5):811–813

    Article  PubMed  Google Scholar 

  • Augustin MA, Sanguansri L (2012) Challenges in developing delivery systems for food additives, nutraceuticals, and dietary supplements. In: Garti N, Mc Clements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, Cambridge UK, pp 19–48

    Chapter  Google Scholar 

  • Augustin MA, Hemar Y (2009) Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38(4):902–912

    Article  CAS  PubMed  Google Scholar 

  • Chauhan B, Kumar G, Kalam N, Ansari SH (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park ES, Lee KC, Youn YS (2012) Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33:1536–1546

    Article  CAS  PubMed  Google Scholar 

  • Bell LN (2001) Stability testing of nutraceuticals and functional foods. In: Wildman REC (ed) Handbook of nutraceuticals and functional foods. CRC Press, New York, pp 501–516

    Google Scholar 

  • Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (2014) Handbook of nanomaterials properties. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Brayner R, Fievet F, Coradin T (2013) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, London, UK

    Book  Google Scholar 

  • Caccamo D, Curro M, Ferlazzo N, Condello S, Ientile R (2012) Monitoring of transglutaminase 2 under different oxidative stress conditions. Amino Acids 42:1037–1043

    Article  Google Scholar 

  • Cacciatore I et al (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 13:1–11

    Article  Google Scholar 

  • Campos DA, Madureira AR, Gomes AM, Sarmento B, Pintado MM (2014) Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids Surf B: Biointerfaces 115:109–117

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Dhar P (2017) A review on potential of proteins as an excipient for developing a nano-carrier delivery system. Crit Rev Ther Drug Carrier Syst 34(5):453–488

    Article  PubMed  Google Scholar 

  • Chaudhry Q, Castle L, Watkins R (eds) (2017) Nanotechnologies in food. Royal Society of Chemistry

    Google Scholar 

  • Chausali N, Jyoti Saxena J, Prasad R (2021) Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research, https://doi.org/10.1016/j.jafr.2021.100257

  • Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. Adv Polym Sci 83:57–192

    Article  CAS  Google Scholar 

  • Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Gois JR, Gil MH (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1:164–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Criado P, Fraschini C, Salmieri S, Becher D, Safrany A, Lacroix M (2016) Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiat Phys Chem 118:61–69

    Article  CAS  Google Scholar 

  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57

    Article  PubMed Central  Google Scholar 

  • De Felice SL (1995) The nutraceutical revolution: its impact on food industry R&D. Trends Food Sci Technol 6:59–61

    Article  Google Scholar 

  • de Souza Simo˜es LDA, Madalena AC, Pinheiro JA, Teixeira AA, Vicente OL, Ramos (2017) Micro- and nano bio-based delivery systems for food applications: in vitro behavior. Adv Colloid Interface Sci 243:23–45

    Article  Google Scholar 

  • Dissanayake M, Vasiljevic T (2009) Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J Dairy Sci 92:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Doktorovova S, Souto EB, Silva AM (2014) Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—a systematic review of in vitro data. Eur J Pharm Biopharm 87(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • El Sohaimy SA (2012) Functional foods and nutraceuticals-modern approach to food science. World Appl Sci J 20:691–708

    Google Scholar 

  • Engesaeter LB, Sudmann B, Sudmann E (1992) Fracture healing in rats inhibited by locally administered indomethacin. Acta Orthop Scand 63:330–333

    Article  CAS  PubMed  Google Scholar 

  • Esfanjani AF, Assadpour E, Jafari SM (2018) Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Technol 76:56–66

    Google Scholar 

  • Espín JC, GarcíaConesa MT, TomásBarberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68(22–24):2986–3008

    Article  PubMed  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  • Ezpeleta I, Irache JM, Stainmesse S, Chabenat C, Gueguen J, Popineau Y, Orecchioni A (1996) Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. Int J Pharm 131:191–200

    Article  CAS  Google Scholar 

  • Fathi M, Donsi F, Julian D, McClements (2018) Protein-based delivery Systems for the nanoencapsulation of food ingredients. Compr Rev Food Sci Food Saf 17(4):920–936

    Article  PubMed  Google Scholar 

  • Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23(1):13–27

    Article  CAS  Google Scholar 

  • Frede K, Henze A, Khalil M, Baldermann S, Schweigert FJ, Rawel H (2014) Stability and cellular uptake of lutein-loaded emulsions. J Funct Foods 8:118–127

    Article  CAS  Google Scholar 

  • Friess W (1998) Collagenebiomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Spilk S, Momen A, Muller MD, Leuenberger UA, Sinoway LI (2012) Vitamin C prevents hyperoxia-mediated coronary vasoconstriction and impairment ofmyocardial function in healthy subjects. Eur J Appl Physiol 112:483–492

    Article  CAS  PubMed  Google Scholar 

  • Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N (1980) What should be called lectin? Nature 285:66–69

    Article  Google Scholar 

  • Gowda R, Kardos G, Sharma A, Singh S, Robertson GP (2017) Nanoparticlebasedcelecoxib and plumbagin for the synergistic treatment of melanoma. Mol Cancer Ther 16(3):440–452

    Article  CAS  PubMed  Google Scholar 

  • Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    Article  CAS  Google Scholar 

  • Gunasekaran S, Xiao L, OuldEleya MM (2006) Whey protein concentrate hydrogels as bioactive carriers. J Appl Polym Sci 99:2470–2476

    Article  Google Scholar 

  • Huq T, Fraschini C, Khan A, Riedl B, Bouchard J, Lacroix M (2017) Alginate based nanocomposite for microencapsulation of probiotic: effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr Polym 168:61–69

    Article  CAS  PubMed  Google Scholar 

  • Jampilek J, Kralova K (2017) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, Singapore, pp 177–226

    Chapter  Google Scholar 

  • Javed S, Kohli K, Ali M (2011) Reassessing bioavailability of silymarin. Altern Med Rev 16(3):239–249

    PubMed  Google Scholar 

  • Kalra EK (2003) Nutraceutical-definition and introduction. AAPS Pharm Sci 5:27–28

    Article  Google Scholar 

  • Katata-Seru L, Lebepe TC, Aremu OS, Bahadur I (2017) Application of Taguchi method to optimize garlic essential oil nanoemulsions. J Mol Liq 244:279–284

    Article  CAS  Google Scholar 

  • Khan A, Wen Y, Huq T, Ni Y (2017) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66(1):8–19

    Google Scholar 

  • Klyachko NL, Manickam DS, Brynskikh AM, Uglanova SV, Li S, Higginbotham SM et al (2012) Crosslinked antioxidant nanozymes for improved delivery to CNS. Nanomedicine 8:119–129

    Article  CAS  PubMed  Google Scholar 

  • Lazko J, Popineau Y, Legrand J (2004) Soy glycinin microcapsules by simple coacervation method. Colloids Surf B Biointerfaces 37:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lee DM, Jackson KW, Knowlton N, Wages J, Alaupovic P, Samuelsson O et al (2011) Oxidative stress and inflammation in renal patients and healthy subjects. PLoS One 6:e22360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Alwahab NS, Moazzam ZM (2013) Zein-based oral drug delivery system targeting activated macrophages. Int J Pharm 454:388–393

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sun Q, Wang H, Zhang L, Wang JY (2005) Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 26:109–115

    Article  PubMed  Google Scholar 

  • MacAdam AB, Shafi ZB, James SL, Marriott C, Martin GP (1997) Preparation of hydrophobic and hydrophilic albumin microspheres and determination of surface carboxylic acid and amino residues. Int J Pharm 151:47–55

    Article  CAS  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3:1377–1397

    Article  CAS  Google Scholar 

  • Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A (2015) Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 495(1):439–446

    Article  CAS  PubMed  Google Scholar 

  • Mc Clements DJ (2012) Requirements for food ingredient and nutraceutical delivery systems. In: Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Wood head Publishing, Cambridge, pp 3–18

    Chapter  Google Scholar 

  • Menrad K (2003) Market and marketing of functional food in Europe. J Food Eng 56:181–188

    Article  Google Scholar 

  • Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711–719

    Google Scholar 

  • Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  PubMed  Google Scholar 

  • Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    Article  CAS  PubMed  Google Scholar 

  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235

    Article  CAS  PubMed  Google Scholar 

  • Ozturk B (2017) Nanoemulsions for food fortification with lipophilic vitamins: production challenges, stability, and bioavailability. Eur J Lipid Sci Technol 119:1–18

    Article  Google Scholar 

  • Palzer S (2009) Food structures for nutrition, health and wellness. Trends Food Sci Technol 20(5):194–200

    Google Scholar 

  • Pandey M, Verma RK, Saraf SA (2010) Nutraceuticals: new era of medicine and health. Asian J Pharm Clin Res 3:11–15

    Google Scholar 

  • Payne RG, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 23:4359–4371

    Article  CAS  PubMed  Google Scholar 

  • Picot ALC (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14:505–515

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Choudhary D (2019) Nanobiotechnology in Bioformulations. Springer International Publishing (ISBN 978-3-030-17061-5) https://www.springer.com/gp/book/9783030170608

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural Polymers for Drug Delivery (eds. Kharkwal H and Janaswamy S), CAB International, UK 53–70

    Google Scholar 

  • Prasad R, Kumar V, Kumar M (2017c) Nanotechnology: Food and Environmental Paradigm. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-4678-0)

    Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Ramos OL, Pereira RN, Martins A, Rodrigues R, Fucinos C, Teixeira JA, Pastrana L, Malcata FX, Vicente AA (2017) Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit Rev Food Sci Nutr 57:1377–1393

    Article  CAS  PubMed  Google Scholar 

  • Rapaka RS, Coates PM (2006) Dietary supplements and related products: a brief summary. Life Sci 78:2026–2032

    Article  CAS  PubMed  Google Scholar 

  • Riemann A, Schneider B, Ihling A, Nowak M, Sauvant C, Thews O, Gekle M (2011) Acidic environment leads to ROS-inducedMAPKsignaling in cancer cells. PLoS One 6:e22445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanap GS, Mohanta GP (2013) Design and evaluation of miconazole nitrate loaded nanostructured lipid carriers (NLC) for improving the antifungal therapy. J Appl Pharm Sci 3:46–54

    CAS  Google Scholar 

  • Schwarz C, Mehnert W, Lucks JS, Müller RH (1994) Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 30:83–96

    Article  CAS  Google Scholar 

  • Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MHA, Silva AM, Souto EB (2012) Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv 12:1–10

    Article  Google Scholar 

  • Sen S, Pathak Y (2016) Nanotechnology in nutraceuticals: production to consumption. CRC Press. 465 pages

    Book  Google Scholar 

  • Shoji Y, Nakashima H (2004) Nutraceutics and delivery systems. J Drug Target 12:385–391

    Article  CAS  PubMed  Google Scholar 

  • Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar M, Tang SY, Tan KW (2014) Cavitation technology—a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason Sonochem 21:2069–2083

    Article  CAS  PubMed  Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garciacelma M (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10(3–4):102–110

    Article  CAS  Google Scholar 

  • Souyoul SA, Saussy KP, Lupo MP (2018) Nutraceuticals: a review. Dermatol Ther:1–12

    Google Scholar 

  • Swatschek D, Schatton W, Muller W, Kreuter J (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133

    Article  CAS  PubMed  Google Scholar 

  • Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC (2013) Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice. J Neuroinflammation 10(1):842

    Article  Google Scholar 

  • Taneja A, Singh H (2012) Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu Rev Food Sci Technol 3:105–123

    Article  Google Scholar 

  • Tasset I, Pontes AJ, Hinojosa AJ, de la Torre R, Tunez I (2011) Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington’s disease-like rat model. Nutr Neurosci 14:106–111

    Article  CAS  PubMed  Google Scholar 

  • Tolles WM, Rath BB (2003) Nanotechnology, a stimulus for innovation. Curr Sci 85:1746–1759

    CAS  Google Scholar 

  • Tomlinson E, Burger JJ (1985) Incorporation of water-soluble drugs in albumin microspheres. Methods Enzymol 112:27–43

    Article  CAS  PubMed  Google Scholar 

  • Tshweu L, Katata L, Kalombo L, Chiappetta DA, Hocht C, Sosnik A et al (2014) Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine (Lond) 9(12):1821–1833

    Article  CAS  Google Scholar 

  • Tshweu L, Katata L, Kalombo L, Swai H (2013) Nanoencapsulation of water-soluble drug, lamivudine, using a double emulsion spray-drying technique for improving HIV treatment. J Nanopart Res 15:1–11

    Article  Google Scholar 

  • Vorhies JS, Nemunaitis JJ (2009) Synthetic vs. natural/biodegradable polymers for delivery of shRNA-based cancer therapies. Methods Mol Biol 480:11–29

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhao P, Cuia F, Li X (2007) Preparation and characterization of solid lipid nanoparticles loaded with total flavones of Hippophae rhamnoides (TFH). PDA J Pharm Sci Technol 61:110–120

    CAS  PubMed  Google Scholar 

  • Wang Y, Xu H, Fu Q, Ma R, Xiang J (2011) Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. J Neurol Sci 304:29–34

    Article  CAS  PubMed  Google Scholar 

  • Weber S, Zimmer A, Pardeike J (2014) Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86:722

    Article  Google Scholar 

  • Westesen K, Bunjes H, Koch MHJ (1997) Physicochemical characterisation of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48:223–236

    Article  CAS  Google Scholar 

  • Weyermanna J, Lochmanna D, Georgensa C, Zimmer A (2005) Albumin–protamine–oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect. Eur J Pharm Biopharm 59:431–438

    Article  Google Scholar 

  • Yoon G, Park JW, Yoon IS (2013) Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. J Pharm Investig 43(5):353–362

    Article  CAS  Google Scholar 

  • Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their Sapplications. Carbohydr Res 405:23–32

    Article  CAS  PubMed  Google Scholar 

Web Reference

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karpagam, T., Balamuralikrishnan, B., Varalakshmi, B., Anand, A.V., Sugunabai, J. (2022). An Insight on Emerging Nanomaterials for the Delivery of Various Nutraceutical Applications for the Betterment of Heath. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_1

Download citation

Publish with us

Policies and ethics