Skip to main content

Resolution of the Frobenius Problem with an Adiabatic Quantum Computer

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 283))

  • 2393 Accesses

Abstract

The (Diophantine) Frobenius problem is a well-known NP-hard problem (also called the stamp problem or the chicken nugget problem) whose origins lie in the realm of combinatorial number theory. In this paper we present an algorithm which solves it, via a translation into a QUBO problem of the so-called Apéry set of a numerical semigroup. This algorithm was specifically designed to run in an adiabatic quantum computer (a D-Wave 2X machine), and the performance problems for this precise setting are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)

    MathSciNet  MATH  Google Scholar 

  2. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). In: Luminy Conference on Arithmetic. Astérisque, vol. 61, pp. 11–13 (1979)

    Google Scholar 

  3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 32–41 (1982)

    Article  MathSciNet  Google Scholar 

  4. Boixo, S., et al.: Quantum annealing with more than one hundred qubits. arXiv preprint arXiv:1304.4595 (2013)

  5. Boot, M., Reinhardt, S., Roy, A.: Partitioning optimization problems for hybrid classical/quantum execution. Technical report, D-Wave Systems, Inc. (2017)

    Google Scholar 

  6. Brauer, A.: On a problem of partitions. Am. J. Math. 64, 299–312 (1942)

    Article  Google Scholar 

  7. Brauer, A., Shockley, J.E.: On a problem of Frobenius. J. Reine Angew. Math. 211, 215–220 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)

    Google Scholar 

  9. Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)

    Article  MathSciNet  Google Scholar 

  10. D-Wave Systems Inc: D-Wave: Programming with QUBOs. Release 1.5.1-beta4, 09-1002A-B (2016)

    Google Scholar 

  11. D-Wave Systems Inc: D-Wave: Programming with QUBOs. Release 2.3, 09-1002A-B (2016)

    Google Scholar 

  12. Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Manag. Sci. 36(5), 519–554 (1990)

    Article  Google Scholar 

  13. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press (2002)

    Google Scholar 

  14. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  Google Scholar 

  15. Greenberg, H.: An algorithm for a linear Diophantine equation and a problem of Frobenius. Numer. Math. 34(4), 349–352 (1980)

    Article  MathSciNet  Google Scholar 

  16. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2018). http://www.gurobi.com. Accessed 23 Feb 2019

  17. Ising, E.: Report on the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925)

    Article  Google Scholar 

  18. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194 (2011)

    Article  Google Scholar 

  19. McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: theory and practice. Synth. Lect. Quantum Comput. 5(2), 1–93 (2014)

    Article  Google Scholar 

  20. Ossorio-Castillo, J.: jqnoc/numsem: numsem console (2018). https://doi.org/10.5281/zenodo.1257967

  21. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Corporation (1998)

    Google Scholar 

  22. Ramírez-Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996)

    Article  MathSciNet  Google Scholar 

  23. Ramírez-Alfonsín, J.L.: The Diophantine Frobenius problem. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  24. Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0160-6

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ossorio-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ossorio-Castillo, J., Tornero, J.M. (2022). Resolution of the Frobenius Problem with an Adiabatic Quantum Computer. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_16

Download citation

Publish with us

Policies and ethics