Skip to main content
Log in

Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In Choi (Quantum Inf Process, 7:193–209, 2008), we introduced the notion of minor-embedding in adiabatic quantum optimization. A minor-embedding of a graph G in a quantum hardware graph U is a subgraph of U such that G can be obtained from it by contracting edges. In this paper, we describe the intertwined adiabatic quantum architecture design problem, which is to construct a hardware graph U that satisfies all known physical constraints and, at the same time, permits an efficient minor-embedding algorithm. We illustrate an optimal complete-graph-minor hardware graph. Given a family \({\mathcal{F}}\) of graphs, a (host) graph U is called \({\mathcal{F}}\)-minor-universal if for each graph G in \({\mathcal{F}, U}\) contains a minor-embedding of G. The problem for designing a \({{\mathcal{F}}}\)-minor-universal hardware graph U sparse in which \({{\mathcal{F}}}\) consists of a family of sparse graphs (e.g., bounded degree graphs) is open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th FOCS, pp. 42–51 (2004)

  2. Alon, N., Capalbo, M.: Optimal universal graphs with deterministic embedding. In: Proceedings of the 19th SODA (2008)

  3. Bodlaender H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boros E., Hammer P.: Pseudo-boolean optimization. Discrete Appl. Math 123, 155–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of quadratic unconstrained binary optimization. Technical report RRR 10-2006, RUTCOR research report (2006)

  6. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209, (2008). Available at arXiv:quant-ph/0804.4884

  7. Choi, V.: Systems, devices and methods for analog processing. US Patent Application US2009/0121215, May 14, (2009)

  8. Das A., Chakrabarti B.K.: Quantum annealing and analog quantum computations. Rev. Mod. Phys. 80, 1061–1081 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Diestel R.: Graph Theory. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  10. D-Wave Systems Inc.: 100-4401 Still Creek Dr., Burnaby, V5C 6G9, BC, Canada. http://www.dwavesys.com/

  11. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106 (2000)

  12. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–476 (2001)

    Article  PubMed  CAS  ADS  MathSciNet  MATH  Google Scholar 

  13. Harris, R., Johansson, J., Berkley, A.J., Johnson, M.W., Lanting, T., Han, S. et al.: Experimental Demonstration of a Robust and Scalable Flux Qubit. arXiv:quant-ph/0909.4321, (2009)

  14. Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. Quantum Computing and Quantum Bits in Mesoscopic Systems, (2004)

  15. Kaminsky, W.M., Lloyd, S., Orlando, T.P.: Scalable Superconducting Architecture for Adiabatic Quantum Computation. arXiv.org:quant-ph/0403090, (2004)

  16. Kleinberg, J.M., Rubinfeld, R.: Short paths in expander graphs. In: Proceedings of the 37th FOCS (1996)

  17. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)

    Google Scholar 

  18. Mizel A., Lidar D.A., Mitchell M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Rezakhani A.T., Kuo W.-J., Hamma A., Lidar D.A., Zanardi P.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Robertson N., Seymour P.D.: Graph minors. xiii: the disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rose, G., Bunyk, P., Coury, M.D., Macready, W., Choi, V.: Systems, Devices, and Methods For Interconnected Processor Topology. US Patent Application US2008/0176750, July 24, (2008)

  22. Thomson L.F.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, V. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf Process 10, 343–353 (2011). https://doi.org/10.1007/s11128-010-0200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0200-3

Keywords

Navigation