Skip to main content

Polymer Mixtures Based on Polyvinyl Chloride for the Production of Construction Materials

  • Conference paper
  • First Online:
Proceedings of STCCE 2021 (STCCE 2021)

Abstract

The work is devoted to the development of rigid polyvinyl chloride (PVC) compositions for obtaining materials for construction with new properties. Acrylonitrile-butadiene styrene copolymer (ABS) was added to the mixed composition in different concentrations (from 10 to 40 parts per 100 parts of PVC resin). The performance and structural parameters of the extruded flat profiles were considered. Increasing the concentration of ABS leads to changes in the technological and operational properties of the composites. This work shows the influence of the features of the supramolecular structure of composites on the properties when the concentration of copolymer is increased: weight reduction of samples, increase of high elastic deformation, hardness and bending strength, as well as increase of heat resistance and decrease of the flowing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellen, MacArthur Foundation (2017). https://doi.org/10.1103/PhysRevB.74.035409

  2. Liu, Y., Zhou, C., Li, F., Liu, H., Yang, J.: Stocks and flows of polyvinyl chloride (PVC) in China: 1980–2050. Resour. Conserv. Recycl. 154, 104584 (2020). https://doi.org/10.1016/j.resconrec.2019.104584

    Article  Google Scholar 

  3. Nizamov, R.K.: Stroit. Mater. 68 (2006)

    Google Scholar 

  4. Galeev, R., Nizamov, R., Abdrakhmanova, L., Khozin, V.: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/890/1/012111

  5. Joshi, P., Marathe, D.: Experimental investigation of mechanical properties of impact modified polyvinyl chloride-fly ash composites. J. Miner. Mater. Charact. Eng. 07(01), 34–47 (2019). https://doi.org/10.4236/jmmce.2019.71003

    Article  Google Scholar 

  6. Islamov, A., Fakhrutdmova, V.: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/890/1/012083

  7. Ashrapov, A.K., Abdrakhmanova, L.A., Nizamov, R.K., Khozin, V.G.: Nanotekhnologii v Stroit. Nauchnyy Internet-Zhurnal 3, 13 (2011)

    Google Scholar 

  8. Galeev, R., Abdrakhmanova, L., Nizamov, R.: Solid State Phenom. (2018). https://doi.org/10.4028/www.scientific.net/SSP.276.223

  9. Ciacci, L., Passarini, F., Vassura, I.: The European PVC cycle: in-use stock and flows. Resour. Conserv. Recycl. 123, 108–116 (2017). https://doi.org/10.1016/j.resconrec.2016.08.008

    Article  Google Scholar 

  10. Karaś, R.: The technology of designing plastic windows and their transport from Poland since 1990. Polimery 66(1), 21–29 (2021). https://doi.org/10.14314/polimery.2021.1.3

    Article  Google Scholar 

  11. Gholizadeh, H., Fazlollahtabar, H., Khalilzadeh, M.: J. Intell. Fuzzy Syst. 40 (2021). https://doi.org/10.3233/JIFS-190718

  12. Putrawan, I.D.G.A., Azharuddin, A., Adityawarman, D., Ar Rahim, D., Tek Kim, J.: Indones 18 (2020). https://doi.org/10.5614/jtki.2019.18.2.3

  13. Jemii, H., Bahri, A., Boubakri, A., Hammiche, D., Elleuch, K., Guermazi, N.: On the mechanical behaviour of industrial PVC pipes under pressure loading: experimental and numerical studies. J. Polym. Res. 27(8), 1–13 (2020). https://doi.org/10.1007/s10965-020-02222-1

    Article  Google Scholar 

  14. Fu, Z., Yang, Z., Rong, Y., Deng, L., Wu, J.: J. Vinyl Addit. Technol. (2021). https://doi.org/10.1002/vnl.21812

  15. Allen, N.S., Edge, M.: J. Vinyl Addit. Technol. 27 (2021). https://doi.org/10.1002/vnl.21807

  16. Abbas-Abadi, M.S.: The effect of process and structural parameters on the stability, thermo-mechanical and thermal degradation of polymers with hydrocarbon skeleton containing PE, PP, PS, PVC, NR, PBR and SBR. J. Therm. Anal. Calorim. 143(4), 2867–2882 (2020). https://doi.org/10.1007/s10973-020-09344-0

    Article  Google Scholar 

  17. Galeev, R., Nizamov, R., Abdrakhmanova, L.: E3S Web Conference (2020). https://doi.org/10.1051/e3sconf/202016414018

  18. Gilbert, M., et al.: Brydson’s Plast. Mater. (Eighth Edition, Edited by M. Gilbert, (Butterworth-Heinemann, 2017), pp. 631–652 (2017)

    Google Scholar 

  19. Lavrov, N.A., Belukhichev, E.V.: Plast. Massy (2020). https://doi.org/10.35164/0554-2901-2020-3-4-55-59

  20. Sabah, F., En-Naji, A., Wahid, A., Ghorba, M.El., Chakir, H.: Key Eng. Mater. (2019). https://doi.org/10.4028/www.scientific.net/KEM.820.40

  21. Lu, G., et al.: ACS Omega 5 (2020). https://doi.org/10.1021/acsomega.0c02803

  22. Simionescu, T.M., Spiridon, I., Varganici, C.D., Darie-Nita, R.N., Minea, A.A.: Environ. Eng. Manag. J. 19 (2020). https://doi.org/10.30638/eemj.2020.073

  23. Hu, D., Zhou, Q., Zhou, K.: J. Appl. Polym. Sci. 136 (2019). https://doi.org/10.1002/app.48220

  24. Bano, S., Ramzan, N., Iqbal, T., Mahmood, H., Saeed, F.: Polish J. Chem. Technol. 22 (2020). https://doi.org/10.2478/pjct-2020-0029

  25. Kurek, A.P., Dotto, M.E.R., de Araújo, P.H.H., Sellin, N.: J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44571

  26. Li, Y., et al.: Polymer (Guildf), 190 (2020). https://doi.org/10.1016/j.polymer.2020.122198

  27. Jaidev, K., Suresh, S.S., Gohatre, O.K., Biswal, M., Mohanty, S., Nayak, S.K.: Waste Manag. Res. 38 (2020). https://doi.org/10.1177/0734242X19890918

  28. Ehsan, K.: Fine Chem. Eng. (2020). https://doi.org/10.37256/fce.122020476

  29. Matseevich, A., Matseevich, T., Askadskii, A.: MATEC Web Conference (2018). https://doi.org/10.1051/matecconf/201819604069

  30. Chen, F., Liang, H., Yin, S., Huang, S., Tang, Q.: Fabrication of novel resinous diamond composites with acrylonitrile butadiene styrene/polyvinyl chloride/dioctyl phthalate/diamond by hot pressing molding. J. Mater. Res. 34(10), 1734–1743 (2019). https://doi.org/10.1557/jmr.2019.79

    Article  Google Scholar 

  31. Xiong, C.W., Ho, C.Y., Qiao, D.: Medziagotyra 26 (2020). https://doi.org/10.5755/j01.ms.26.1.20310

  32. Zhou, L.L., Lin, Y.S., Yang, J.Y., Wu, Q.Y.: Zhongguo Suliao/China Plast. 15, 27 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khuziakhmetova, K., Abdrakhmanova, L., Nizamov, R. (2021). Polymer Mixtures Based on Polyvinyl Chloride for the Production of Construction Materials. In: Vatin, N. (eds) Proceedings of STCCE 2021. STCCE 2021. Lecture Notes in Civil Engineering, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-030-80103-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80103-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80102-1

  • Online ISBN: 978-3-030-80103-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics