Skip to main content

Bio-Production of Adeno-Associated Virus for Gene Therapy

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

Abstract

Genetic diseases are caused by absent or defective genes. Gene therapy aims to treat these conditions by delivering a functional copy of the affected gene into a patient’s cells. Gene delivery can be performed by recombinant viruses, such as Adeno-Associated Virus (AAV). AAVs are favoured due to their safety, low pathogenicity and their ability to infect multiple tissue types. Currently three AAV-based therapies are approved for the treatment of genetic diseases.

Genetic defects are usually present in every cell in a patient’s body. Therefore, gene therapy AAVs must be delivered to the majority of cells in an organ to achieve a therapeutic effect. As a result, AAV-based treatments require the administration of very high amounts of virus. Producing sufficient AAV, at an acceptable cost, without compromising safety is a major challenge in bio-production. Increasing or refining AAV production would enable the treatment of a wide variety of genetic diseases. Optimization strategies have focused on the genetic components needed for AAV assembly, the production cell lines, as well as omics-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DE :

2-dimensional gel electrophoresis

AAP :

Assembly activating protein

AAV :

Adeno-associated virus

AAVR :

Adeno-associated virus receptor

AAVS1 :

Adeno-associated virus integration site 1

BHK :

Baby hamster kidney cells

CFTR :

Cystic fibrosis transmembrane conductance regulator

E1/2/4 :

Adenovirus early region 1/2/4

FGFR :

Fibroblast growth factor receptor

FVIII :

Coagulation factor VIII

GeLC-MS :

Gel electrophoresis liquid chromatography-mass spectrometry

GFP :

Green fluorescent protein

GPN3 :

GPN-loop GTPase 3

GPR78 :

G protein-coupled receptor 78

HBoV1 :

Human bocavirus 1

HEK293 :

Human embryonic kidney 293 cells

HeLa :

Henrietta Lacks cells

HEM4 :

Uroporphyrinogen-III synthase

HGFR :

Hepatocyte growth factor receptor

HSV :

Herpes simplex viruses

ITR :

Inverted terminal repeat

LPLD :

Lipoprotein lipase deficiency

MAGv:

Multiplex AAV Genotyping

miRNA :

microRNA

ORF :

Open reading frame

PDGFR :

Platelet-derived growth factor receptor

PEI :

polyethyleneimine

PR E4 :

Proteinase yscE4

QC :

Quality control

qPCR :

quantitative polymerase chain reaction

rAAV :

recombinant Adeno-associated virus

RBE :

Rep binding element

Sf9/Sf21 :

Spodoptera frugiperda 9/21 cells

shRNA :

short hairpin RNA

SMN1 :

Survival motor neuron 1

SMRT :

Single molecule real-time

SOD1 :

Superoxide dismutase

TOP2 :

DNA topoisomerase 2

TRAP :

Tryptophan RNA-binding attenuation protein

trs :

Terminal resolution site

UTR :

Untranslated terminal region

VA-RNA :

Virus-associated RNA

VP1/2/3 :

Viral protein 1/2/3

ZF5 :

Zinc-finger 5 protein

References

  1. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451. https://doi.org/10.1038/nrg3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li C, Samulski RJ (2020) Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 21:255–272. https://doi.org/10.1038/s41576-019-0205-4

    Article  CAS  PubMed  Google Scholar 

  3. Naso MF, Tomkowicz B, Perry WL, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31:317–334. https://doi.org/10.1007/s40259-017-0234-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Im D-S, Muzyczka N (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61:447–457. https://doi.org/10.1016/0092-8674(90)90526-K

    Article  CAS  PubMed  Google Scholar 

  5. Im DS, Muzyczka N (1992) Partial purification of adeno-associated virus Rep78, Rep52, and Rep40 and their biochemical characterization. J Virol 66:1119–1128

    Article  CAS  Google Scholar 

  6. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther J Am Soc Gene Ther 14:316–327. https://doi.org/10.1016/j.ymthe.2006.05.009

    Article  CAS  Google Scholar 

  7. Hastie E, Samulski RJ (2015) Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success–a personal perspective. Hum Gene Ther 26:257–265. https://doi.org/10.1089/hum.2015.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naumer M, Sonntag F, Schmidt K, Nieto K, Panke C, Davey NE, Popa-Wagner R, Kleinschmidt JA (2012) Properties of the adeno-associated virus assembly-activating protein. J Virol 86:13038–13048. https://doi.org/10.1128/JVI.01675-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Earley LF, Powers JM, Adachi K, Baumgart JT, Meyer NL, Xie Q, Chapman MS, Nakai H (2017) Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J Virol 91:e01980-16. https://doi.org/10.1128/JVI.01980-16

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rose JA, Hoggan MD, Shatkin AJ (1966) Nucleic acid from an adeno-associated virus: chemical and physical studies. Proc Natl Acad Sci U S A 56:86–92. https://doi.org/10.1073/pnas.56.1.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pillay S, Carette JE (2017) Host determinants of adeno-associated viral vector entry. Curr Opin Virol 24:124–131. https://doi.org/10.1016/j.coviro.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bleker S, Sonntag F, Kleinschmidt JA (2005) Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J Virol 79:2528–2540. https://doi.org/10.1128/JVI.79.4.2528-2540.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kronenberg S, Böttcher B, von der Lieth CW, Bleker S, Kleinschmidt JA (2005) A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J Virol 79:5296–5303. https://doi.org/10.1128/JVI.79.9.5296-5303.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87:2211–2215. https://doi.org/10.1073/pnas.87.6.2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCarty DM, Young SM, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845. https://doi.org/10.1146/annurev.genet.37.110801.143717

    Article  CAS  PubMed  Google Scholar 

  16. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950

    Article  CAS  Google Scholar 

  17. Kotin RM, Linden RM, Berns KI (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11:5071–5078

    Article  CAS  Google Scholar 

  18. Schnepp BC, Jensen RL, Chen C-L, Johnson PR, Clark KR (2005) Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79:14793–14803. https://doi.org/10.1128/JVI.79.23.14793-14803.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drew HR, Lockett LJ, Both GW (2007) Increased complexity of wild-type adeno-associated virus-chromosomal junctions as determined by analysis of unselected cellular genomes. J Gen Virol 88:1722–1732. https://doi.org/10.1099/vir.0.82880-0

    Article  CAS  PubMed  Google Scholar 

  20. Deyle DR, Russell DW (2009) Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi VW, McCarty DM, Samulski RJ (2006) Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol 80:10346–10356. https://doi.org/10.1128/JVI.00841-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388. https://doi.org/10.1128/JVI.78.12.6381-6388.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445

    Article  CAS  Google Scholar 

  24. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K, Nakamura T, Watanabe M, Oshimi K, Daida H (2005) Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol 79:609–614. https://doi.org/10.1128/JVI.79.1.609-614.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ (2006) Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 80:8961–8969. https://doi.org/10.1128/JVI.00843-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther J Am Soc Gene Ther 10:302–317. https://doi.org/10.1016/j.ymthe.2004.05.024

    Article  CAS  Google Scholar 

  27. Walters RW, Yi SM, Keshavjee S, Brown KE, Welsh MJ, Chiorini JA, Zabner J (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 276:20610–20616. https://doi.org/10.1074/jbc.M101559200

    Article  CAS  PubMed  Google Scholar 

  28. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97:3428–3432. https://doi.org/10.1073/pnas.050581197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, Samulski RJ, Monahan PE (2008) Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther J Am Soc Gene Ther 16:280–289. https://doi.org/10.1038/sj.mt.6300355

    Article  CAS  Google Scholar 

  30. Ylä-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther J Am Soc Gene Ther 20:1831–1832. https://doi.org/10.1038/mt.2012.194

    Article  CAS  Google Scholar 

  31. Scott LJ (2015) Alipogene tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency. Drugs 75:175–182. https://doi.org/10.1007/s40265-014-0339-9

    Article  CAS  PubMed  Google Scholar 

  32. Stroes ES, Nierman MC, Meulenberg JJ, Remco F, Jaap T, Pieter HC, Maas MM, Zwinderman AH, Colin R, Eleonora A, High KA, Levi MM, Hayden MR, Kastelein JJ, Albert KJ (2008) Intramuscular administration of AAV1-lipoprotein LipaseS447X lowers triglycerides in lipoprotein lipase–deficient patients. Arterioscler Thromb Vasc Biol 28:2303–2304. https://doi.org/10.1161/ATVBAHA.108.175620

    Article  CAS  PubMed  Google Scholar 

  33. Keeler AM, Flotte TR (2019) Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol 6:601–621. https://doi.org/10.1146/annurev-virology-092818-015530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DailyMed – ZOLGENSMA- onasemnogene abeparvovec-xioi kit. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=68cd4f06-70e1-40d8-bedb-609ec0afa471. Accessed 21 Apr 2020

  35. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359:eaan4672. https://doi.org/10.1126/science.aan4672

    Article  CAS  PubMed  Google Scholar 

  36. EMA (2018) Luxturna. European Medcine Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/luxturna. Accessed 21 Apr 2020

  37. Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378. https://doi.org/10.1038/s41573-019-0012-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Penaud-Budloo M, François A, Clément N, Ayuso E (2018) Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180. https://doi.org/10.1016/j.omtm.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaemmerer WF (2018) How will the field of gene therapy survive its success? Bioeng Transl Med 3:166–177. https://doi.org/10.1002/btm2.10090

    Article  PubMed  PubMed Central  Google Scholar 

  40. Spinal Muscular Atrophy. NORD National Organization for Rare Disorders. https://rarediseases.org/rare-diseases/spinal-muscular-atrophy/. Accessed 23 Apr 2020

  41. Number of births and deaths per year. Our World Data. https://ourworldindata.org/grapher/births-and-deaths-projected-to-2100. Accessed 23 Apr 2020

  42. CDC (2018) What is hemophilia? | CDC. Centers for Disease Control and Prevention. https://www.cdc.gov/ncbddd/hemophilia/facts.html. Accessed 1 May 2020

  43. Brimble M, Zhou J, Morton C, Meagher M, Nathwani A, Gray J, Davidoff A (2016) AAV preparations contain contamination from DNA sequences in production plasmids directly outside of the ITRs. Mol Ther 24:S218

    Article  Google Scholar 

  44. Hauck B, Murphy SL, Smith PH, Qu G, Liu X, Zelenaia O, Mingozzi F, Sommer JM, High KA, Wright JF (2009) Undetectable transcription of cap in a clinical AAV vector: implications for preformed capsid in immune responses. Mol Ther J Am Soc Gene Ther 17:144–152. https://doi.org/10.1038/mt.2008.227

    Article  CAS  Google Scholar 

  45. Wright JF (2009) Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 20:698–706. https://doi.org/10.1089/hum.2009.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grieger JC, Soltys SM, Samulski RJ (2016) Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther J Am Soc Gene Ther 24:287–297. https://doi.org/10.1038/mt.2015.187

    Article  CAS  Google Scholar 

  47. Aslanidi G, Lamb K, Zolotukhin S (2009) An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc Natl Acad Sci U S A 106:5059–5064. https://doi.org/10.1073/pnas.0810614106

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22:1021–1030. https://doi.org/10.1089/hum.2010.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas DL, Wang L, Niamke J, Liu J, Kang W, Scotti MM, Ye G, Veres G, Knop DR (2009) Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther 20:861–870. https://doi.org/10.1089/hum.2009.004

    Article  CAS  PubMed  Google Scholar 

  50. Clément N, Knop DR, Byrne BJ (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 20:796–806. https://doi.org/10.1089/hum.2009.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mietzsch M, Grasse S, Zurawski C, Weger S, Bennett A, Agbandje-McKenna M, Muzyczka N, Zolotukhin S, Heilbronn R (2014) OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1–12 vectors for gene therapy. Hum Gene Ther 25:212–222. https://doi.org/10.1089/hum.2013.184

    Article  CAS  PubMed  Google Scholar 

  52. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  53. Robert M-A, Chahal PS, Audy A, Kamen A, Gilbert R, Gaillet B (2017) Manufacturing of recombinant adeno-associated viruses using mammalian expression platforms. Biotechnol J 12:1600193. https://doi.org/10.1002/biot.201600193

    Article  CAS  Google Scholar 

  54. Kotin RM (2011) Large-scale recombinant adeno-associated virus production. Hum Mol Genet 20:R2–R6. https://doi.org/10.1093/hmg/ddr141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clément N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3:16002. https://doi.org/10.1038/mtm.2016.2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15:840–848. https://doi.org/10.1038/gt.2008.65

    Article  CAS  PubMed  Google Scholar 

  57. Invitrogen (2017) Growth and maintenance of insect cell lines: user guide. https://tools.thermofisher.com/content/sfs/manuals/Insect_Cell_Lines_UG.pdf. Accessed 21 Apr 2020

  58. Kotin RM, Snyder RO (2017) Manufacturing clinical grade recombinant adeno-associated virus using invertebrate cell lines. Hum Gene Ther 28:350–360. https://doi.org/10.1089/hum.2017.042

    Article  CAS  PubMed  Google Scholar 

  59. Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D (2018) Molecular design for recombinant adeno-associated virus (rAAV) vector production. Appl Microbiol Biotechnol 102:1045–1054. https://doi.org/10.1007/s00253-017-8670-1

    Article  CAS  PubMed  Google Scholar 

  60. Kondratov O, Marsic D, Crosson SM, Mendez-Gomez HR, Moskalenko O, Mietzsch M, Heilbronn R, Allison JR, Green KB, Agbandje-McKenna M, Zolotukhin S (2017) Direct head-to-head evaluation of recombinant adeno-associated viral vectors manufactured in human versus insect cells. Mol Ther 25:2661–2675. https://doi.org/10.1016/j.ymthe.2017.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bosma B, du Plessis F, Ehlert E, Nijmeijer B, de Haan M, Petry H, Lubelski J (2018) Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Ther 25:415–424. https://doi.org/10.1038/s41434-018-0034-7

    Article  CAS  PubMed  Google Scholar 

  62. Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943. https://doi.org/10.1089/10430340260355347

    Article  CAS  PubMed  Google Scholar 

  63. Smith RH, Levy JR, Kotin RM (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther J Am Soc Gene Ther 17:1888–1896. https://doi.org/10.1038/mt.2009.128

    Article  CAS  Google Scholar 

  64. Wu Y, Jiang L, Geng H, Yang T, Han Z, He X, Lin K, Xu F (2018) A recombinant baculovirus efficiently generates recombinant adeno-associated virus vectors in cultured insect cells and larvae. Mol Ther Methods Clin Dev 10:38–47. https://doi.org/10.1016/j.omtm.2018.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu Y, Mei T, Jiang L, Han Z, Dong R, Yang T, Xu F (2019) Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production. Hum Gene Ther Methods 30:172–183. https://doi.org/10.1089/hgtb.2019.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt M, Afione S, Kotin RM (2000) Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 74:9441–9450. https://doi.org/10.1128/jvi.74.20.9441-9450.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thorne BA, Takeya RK, Peluso RW (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum Gene Ther 20:707–714. https://doi.org/10.1089/hum.2009.070

    Article  CAS  PubMed  Google Scholar 

  68. Wang Q, Wu Z, Zhang J, Firrman J, Wei H, Zhuang Z, Liu L, Miao L, Hu Y, Li D, Diao Y, Xiao W (2017) A robust system for production of superabundant VP1 recombinant AAV vectors. Mol Ther Methods Clin Dev 7:146–156. https://doi.org/10.1016/j.omtm.2017.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Z, Cheng F, Engelhardt JF, Yan Z, Qiu J (2018) Development of a novel recombinant adeno-associated virus production system using human Bocavirus 1 helper genes. Mol Ther Methods Clin Dev 11:40–51. https://doi.org/10.1016/j.omtm.2018.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Deng X, Zou W, Engelhardt JF, Yan Z, Qiu J (2017) Human Bocavirus 1 is a novel helper for adeno-associated virus replication. J Virol 91:e00710-17. https://doi.org/10.1128/JVI.00710-17

    Article  PubMed  PubMed Central  Google Scholar 

  71. Conway JE, Zolotukhin S, Muzyczka N, Hayward GS, Byrne BJ (1997) Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing rep and cap. J Virol 71:8780–8789

    Article  CAS  Google Scholar 

  72. Knop DR et al (2011) 593. SFM rHSV-based production of rAAV vectors in suspension BHK cells. Mol Ther 19:S227. https://doi.org/10.1016/S1525-0016(16)37166-0

    Article  Google Scholar 

  73. Adamson-Small L, Potter M, Falk DJ, Cleaver B, Byrne BJ, Clément N (2016) A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol Ther Methods Clin Dev 3:16031. https://doi.org/10.1038/mtm.2016.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Backovic A, Cervelli T, Salvetti A, Zentilin L, Giacca M, Galli A (2012) Capsid protein expression and adeno-associated virus like particles assembly in Saccharomyces cerevisiae. Microb Cell Factories 11:124. https://doi.org/10.1186/1475-2859-11-124

    Article  CAS  Google Scholar 

  75. Barajas D, Aponte-Ubillus JJ, Akeefe H, Cinek T, Peltier J, Gold D (2017) Generation of infectious recombinant adeno-associated virus in Saccharomyces cerevisiae. PLoS One 12:e0173010. https://doi.org/10.1371/journal.pone.0173010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aponte J (2018) Optimization of recombinant adeno-associated virus (aav) vector production in saccharomyces cerevisiae. KGI Theses Diss

    Google Scholar 

  77. Martin J, Frederick A, Luo Y, Jackson R, Joubert M, Sol B, Poulin F, Pastor E, Armentano D, Wadsworth S, Vincent K (2013) Generation and characterization of adeno-associated virus producer cell lines for research and preclinical vector production. Hum Gene Ther Methods 24:253–269. https://doi.org/10.1089/hgtb.2013.046

    Article  CAS  PubMed  Google Scholar 

  78. Qiao C, Li J, Skold A, Zhang X, Xiao X (2002) Feasibility of generating adeno-associated virus packaging cell lines containing inducible adenovirus helper genes. J Virol 76:1904–1913. https://doi.org/10.1128/jvi.76.4.1904-1913.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Samulski RJ, Chang LS, Shenk T (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 61:3096–3101. https://doi.org/10.1128/JVI.61.10.3096-3101.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Savy A, Dickx Y, Nauwynck L, Bonnin D, Merten O-W, Galibert L (2017) Impact of inverted terminal repeat integrity on rAAV8 production using the Baculovirus/Sf9 cells system. Hum Gene Ther Methods 28:277–289. https://doi.org/10.1089/hgtb.2016.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Earley LF, Conatser LM, Lue VM, Dobbins AL, Li C, Hirsch ML, Samulski RJ (2020) Adeno-associated virus serotype-specific inverted terminal repeat sequence role in vector transgene expression. Hum Gene Ther 31:151–162. https://doi.org/10.1089/hum.2019.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bishop BM, Santin AD, Quirk JG, Hermonat PL (1996) Role of the terminal repeat GAGC trimer, the major Rep78 binding site, in adeno-associated virus DNA replication. FEBS Lett 397:97–100. https://doi.org/10.1016/s0014-5793(96)01149-0

    Article  CAS  PubMed  Google Scholar 

  83. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10:2112–2118. https://doi.org/10.1038/sj.gt.3302134

    Article  CAS  PubMed  Google Scholar 

  84. Plotkin JB, Robins H, Levine AJ (2004) Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A 101:12588–12591. https://doi.org/10.1073/pnas.0404957101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Quax TEF, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59:149–161. https://doi.org/10.1016/j.molcel.2015.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Greig JA, Wang Q, Reicherter AL, Chen S-J, Hanlon AL, Tipper CH, Clark KR, Wadsworth S, Wang L, Wilson JM (2017) Characterization of adeno-associated viral vector-mediated human factor VIII gene therapy in hemophilia A mice. Hum Gene Ther 28:392–402. https://doi.org/10.1089/hum.2016.128

    Article  CAS  PubMed  Google Scholar 

  87. Yan Z, Sun X, Feng Z, Li G, Fisher JT, Stewart ZA, Engelhardt JF (2015) Optimization of recombinant adeno-associated virus-mediated expression for large transgenes, using a synthetic promoter and tandem array enhancers. Hum Gene Ther 26:334–346. https://doi.org/10.1089/hum.2015.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, Nair N, Willems J, Evens H, Rincon MY, Matrai J, Di Matteo M, Samara-Kuko E, Yan B, Acosta-Sanchez A, Meliani A, Cherel G, Blouin V, Christophe O, Moullier P, Mingozzi F, VandenDriessche T (2014) Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther J Am Soc Gene Ther 22:1605–1613. https://doi.org/10.1038/mt.2014.114

    Article  CAS  Google Scholar 

  89. Rincon MY, Sarcar S, Danso-Abeam D, Keyaerts M, Matrai J, Samara-Kuko E, Acosta-Sanchez A, Athanasopoulos T, Dickson G, Lahoutte T, De Bleser P, VandenDriessche T, Chuah MK (2015) Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional Cis-regulatory motifs that enable efficient cardiac gene therapy. Mol Ther J Am Soc Gene Ther 23:43–52. https://doi.org/10.1038/mt.2014.178

    Article  CAS  Google Scholar 

  90. Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther J Am Soc Gene Ther 4:383–391. https://doi.org/10.1006/mthe.2001.0456

    Article  CAS  Google Scholar 

  91. Hirsch ML, Wolf SJ, Samulski RJ (2016) Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol Biol Clifton NJ 1382:21–39. https://doi.org/10.1007/978-1-4939-3271-9_2

    Article  CAS  Google Scholar 

  92. Hirsch ML, Li C, Bellon I, Yin C, Chavala S, Pryadkina M, Richard I, Samulski RJ (2013) Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway. Mol Ther J Am Soc Gene Ther 21:2205–2216. https://doi.org/10.1038/mt.2013.184

    Article  CAS  Google Scholar 

  93. Ghosh A, Yue Y, Lai Y, Duan D (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther J Am Soc Gene Ther 16:124–130. https://doi.org/10.1038/sj.mt.6300322

    Article  CAS  Google Scholar 

  94. Fakhiri J, Schneider MA, Puschhof J, Stanifer M, Schildgen V, Holderbach S, Voss Y, El Andari J, Schildgen O, Boulant S, Meister M, Clevers H, Yan Z, Qiu J, Grimm D (2019) Novel chimeric gene therapy vectors based on adeno-associated virus and four different mammalian bocaviruses. Mol Ther Methods Clin Dev 12:202–222. https://doi.org/10.1016/j.omtm.2019.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tornabene P, Trapani I, Minopoli R, Centrulo M, Lupo M, de Simone S, Tiberi P, Dell’Aquila F, Marrocco E, Iodice C, Iuliano A, Gesualdo C, Rossi S, Giaquinto L, Albert S, Hoyng CB, Polishchuk E, Cremers FPM, Surace EM, Simonelli F, De Matteis MA, Polishchuk R, Auricchio A (2019) Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 11:eaav4523. https://doi.org/10.1126/scitranslmed.aav4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Strobel B, Klauser B, Hartig JS, Lamla T, Gantner F, Kreuz S (2015) Riboswitch-mediated attenuation of transgene cytotoxicity increases adeno-associated virus vector yields in HEK-293 cells. Mol Ther J Am Soc Gene Ther 23:1582–1591. https://doi.org/10.1038/mt.2015.123

    Article  CAS  Google Scholar 

  97. Nomura Y, Zhou L, Miu A, Yokobayashi Y (2013) Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2:684–689. https://doi.org/10.1021/sb400037a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maunder HE, Wright J, Kolli BR, Vieira CR, Mkandawire TT, Tatoris S, Kennedy V, Iqball S, Devarajan G, Ellis S, Lad Y, Clarkson NG, Mitrophanous KA, Farley DC (2017) Enhancing titres of therapeutic viral vectors using the transgene repression in vector production (TRiP) system. Nat Commun 8:14834. https://doi.org/10.1038/ncomms14834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reid CA, Boye SL, Hauswirth WW, Lipinski DM (2017) miRNA-mediated post-transcriptional silencing of transgenes leads to increased adeno-associated viral vector yield and targeting specificity. Gene Ther 24:462–469. https://doi.org/10.1038/gt.2017.50

    Article  CAS  PubMed  Google Scholar 

  100. Geisler A, Fechner H (2016) MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 6:37–54. https://doi.org/10.5493/wjem.v6.i2.37

    Article  PubMed  PubMed Central  Google Scholar 

  101. Guimaro MC, Afione S, Tanaka T, Chiorini J (2020) Rescue of AAV production by shRNA cotransfection. Hum Gene Ther 31:1068. https://doi.org/10.1089/hum.2019.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Warrington KH, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N (2004) Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78:6595–6609. https://doi.org/10.1128/JVI.78.12.6595-6609.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ried MU, Girod A, Leike K, BĂ¼ning H, Hallek M (2002) Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol 76:4559–4566. https://doi.org/10.1128/JVI.76.9.4559-4566.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. MĂ¼nch RC, Muth A, Muik A, Friedel T, Schmatz J, Dreier B, Trkola A, PlĂ¼ckthun A, BĂ¼ning H, Buchholz CJ (2015) Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun 6:6246. https://doi.org/10.1038/ncomms7246

    Article  CAS  PubMed  Google Scholar 

  105. MĂ¼nch RC, Janicki H, Völker I, Rasbach A, Hallek M, BĂ¼ning H, Buchholz CJ (2013) Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther J Am Soc Gene Ther 21:109–118. https://doi.org/10.1038/mt.2012.186

    Article  CAS  Google Scholar 

  106. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M, Herzog RW, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A (2008) Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202. https://doi.org/10.1016/j.virol.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  107. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW, Zolotukhin I, Warrington KH, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105:7827–7832. https://doi.org/10.1073/pnas.0802866105

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801. https://doi.org/10.1128/JVI.76.2.791-801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Domenger C, Grimm D (2019) Next-generation AAV vectors – don’t judge a virus (only) by its cover. Hum Mol Genet 28:R3. https://doi.org/10.1093/hmg/ddz148

    Article  CAS  PubMed  Google Scholar 

  110. Dao LTM, Galindo-AlbarrĂ¡n AO, Castro-Mondragon JA, Andrieu-Soler C, Medina-Rivera A, Souaid C, Charbonnier G, Griffon A, Vanhille L, Stephen T, Alomairi J, Martin D, Torres M, Fernandez N, Soler E, van Helden J, Puthier D, Spicuglia S (2017) Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49:1073–1081. https://doi.org/10.1038/ng.3884

    Article  CAS  PubMed  Google Scholar 

  111. Nguyen TA, Jones RD, Snavely AR, Pfenning AR, Kirchner R, Hemberg M, Gray JM (2016) High-throughput functional comparison of promoter and enhancer activities. Genome Res 26:1023–1033. https://doi.org/10.1101/gr.204834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12:585–591. https://doi.org/10.1038/nm1398

    Article  CAS  PubMed  Google Scholar 

  113. Cathomen T, Stracker TH, Gilbert LB, Weitzman MD (2001) A genetic screen identifies a cellular regulator of adeno-associated virus. Proc Natl Acad Sci U S A 98:14991–14996. https://doi.org/10.1073/pnas.261567198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Herrmann A-K, Grimm D (2018) High-throughput dissection of AAV-host interactions: the fast and the curious. J Mol Biol 430:2626–2640. https://doi.org/10.1016/j.jmb.2018.05.022

    Article  CAS  PubMed  Google Scholar 

  115. Davidsson M, Wang G, Aldrin-Kirk P, Cardoso T, Nolbrant S, Hartnor M, Mudannayake J, Parmar M, Björklund T (2019) A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci 116:27053–27062. https://doi.org/10.1073/pnas.1910061116

    Article  CAS  PubMed Central  Google Scholar 

  116. de Alencastro G, Pekrun K, Valdmanis P, Tiffany M, Xu J, Kay MA (2020) Tracking adeno-associated virus capsid evolution by high-throughput sequencing. Hum Gene Ther 31:553. https://doi.org/10.1089/hum.2019.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pekrun K, Alencastro GD, Luo Q-J, Liu J, Kim Y, Nygaard S, Galivo F, Zhang F, Song R, Tiffany MR, Xu J, Hebrok M, Grompe M, Kay MA (2019) Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight 4:e131610. https://doi.org/10.1172/jci.insight.131610

    Article  PubMed Central  Google Scholar 

  118. Körbelin J, Hunger A, Alawi M, Sieber T, Binder M, Trepel M (2017) Optimization of design and production strategies for novel adeno-associated viral display peptide libraries. Gene Ther 24:470–481. https://doi.org/10.1038/gt.2017.51

    Article  CAS  PubMed  Google Scholar 

  119. Märsch S, Huber A, Hallek M, BĂ¼ning H, Perabo L (2010) A novel directed evolution method to enhance cell-type specificity of adeno-associated virus vectors. Comb Chem High Throughput Screen 13:807–812. https://doi.org/10.2174/138620710792927385

    Article  PubMed  Google Scholar 

  120. Varadi K, Michelfelder S, Korff T, Hecker M, Trepel M, Katus HA, Kleinschmidt JA, MĂ¼ller OJ (2012) Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther 19:800–809. https://doi.org/10.1038/gt.2011.143

    Article  CAS  PubMed  Google Scholar 

  121. Zhang L, Rossi A, Lange L, Meumann N, Koitzsch U, Christie K, Nesbit MA, Moore CBT, Hacker UT, Morgan M, Hoffmann D, Zengel J, Carette JE, Schambach A, Salvetti A, Odenthal M, BĂ¼ning H (2019) Capsid engineering overcomes barriers toward adeno-associated virus vector-mediated transduction of endothelial cells. Hum Gene Ther 30:1284–1296. https://doi.org/10.1089/hum.2019.027

    Article  CAS  PubMed  Google Scholar 

  122. Grimm D, BĂ¼ning H (2017) Small but increasingly mighty: latest advances in AAV vector research, design, and evolution. Hum Gene Ther 28:1075–1086. https://doi.org/10.1089/hum.2017.172

    Article  CAS  PubMed  Google Scholar 

  123. Ogden PJ, Kelsic ED, Sinai S, Church GM (2019) Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366:1139–1143. https://doi.org/10.1126/science.aaw2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brown KE, Muramatsu S, Handa A, Kajigaya S (1998) Transcription-positive cofactor 4 enhances rescue of adeno-associated virus genome from an infectious clone. J Gen Virol 79:2157–2161. https://doi.org/10.1099/0022-1317-79-9-2157

    Article  PubMed  Google Scholar 

  125. Weger S, Wendland M, Kleinschmidt JA, Heilbronn R (1999) The adeno-associated virus type 2 regulatory proteins Rep78 and Rep68 interact with the transcriptional coactivator PC4. J Virol 73:260–269

    Article  CAS  Google Scholar 

  126. Smith-Moore S, Neil SJD, Fraefel C, Linden RM, Bollen M, Rowe HM, Henckaerts E (2018) Adeno-associated virus rep proteins antagonize phosphatase PP1 to counteract KAP1 repression of the latent viral genome. Proc Natl Acad Sci U S A 115:E3529–E3538. https://doi.org/10.1073/pnas.1721883115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmitt M, Pawlita M, Kleinschmidt J (2010) Genotyping of AAV plasmid stocks: quality control in adeno-associated virus vector production. Microb Physiol 19:204–212. https://doi.org/10.1159/000321449

    Article  CAS  Google Scholar 

  128. Lecomte E, Leger A, Penaud-Budloo M, Ayuso E (2019) Single-stranded DNA virus sequencing (SSV-Seq) for characterization of residual DNA and AAV vector genomes. Methods Mol Biol Clifton NJ 1950:85–106. https://doi.org/10.1007/978-1-4939-9139-6_5

    Article  CAS  Google Scholar 

  129. Dong B, Duan X, Chow HY, Chen L, Lu H, Wu W, Hauck B, Wright F, Kapranov P, Xiao W (2014) Proteomics analysis of co-purifying cellular proteins associated with rAAV vectors. PLoS One 9:e86453. https://doi.org/10.1371/journal.pone.0086453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tai PWL, Xie J, Fong K, Seetin M, Heiner C, Su Q, Weiand M, Wilmot D, Zapp ML, Gao G (2018) Adeno-associated virus genome population sequencing achieves full vector genome resolution and reveals human-vector chimeras. Mol Ther Methods Clin Dev 9:130–141. https://doi.org/10.1016/j.omtm.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wallen AJ, Barker GA, Fein DE, Jing H, Diamond SL (2011) Enhancers of adeno-associated virus AAV2 transduction via high throughput siRNA screening. Mol Ther 19:1152–1160. https://doi.org/10.1038/mt.2011.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Weinmann J, Grimm D (2017) Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes 53:707–713. https://doi.org/10.1007/s11262-017-1502-7

    Article  CAS  PubMed  Google Scholar 

  133. Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E, Shah S, Shelke R, Maurer AC, Plovie E, Xiao R, Vandenberghe LH (2015) In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 12:1056–1068. https://doi.org/10.1016/j.celrep.2015.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interests

All authors declare they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall Barron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donohue, N., Keogh, N., Boi, S., Barron, N. (2021). Bio-Production of Adeno-Associated Virus for Gene Therapy. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_11

Download citation

Publish with us

Policies and ethics