Skip to main content

Targeting Carbonic Anhydrase IX in Tumor Imaging and Theranostic Cancer Therapy

  • Chapter
  • First Online:
The Carbonic Anhydrases: Current and Emerging Therapeutic Targets

Part of the book series: Progress in Drug Research ((PDR,volume 75))

  • 456 Accesses

Abstract

Carbonic anhydrase IX (CA-IX) is an endogenous marker for hypoxia and is regulated by the von Hippel-Lindau/hypoxia-inducible factor (VHL/HIF) oxygen-sensing pathway. CA-IX is overexpressed in many solid malignancies where aberrant vasculature and limited perfusion create low oxygen niches within the tumor microenvironment. Dysregulation of the VHL/HIF signaling pathway can lead to constitutive expression of CA-IX—a phenotype associated with clear cell renal cell carcinomas (ccRCCs). As a cell-surface metalloenzyme, CA-IX works in tandem with other proteins to regulate intracellular pH in response to hypoxia-induced metabolism. In recent years, there has been evidence implicating CA-IX in potentiating cancer invasion and metastasis. Accordingly, the inhibition of CA-IX catalytic activity represents an attractive option for the management of ccRCC and other solid tumors. In this chapter, we discuss the development of CA-IX radiopharmaceuticals and their roles in delineating tumoral CA-IX expression through imaging in preclinical and clinical settings. We will also review agents that have been repositioned as endoradiotherapeutic agents for theranostic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlskog JKJ, Schliemann C, Mårlind J, Qureshi U, Ammar A, Pedley RB, Neri D (2009) Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer 101:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 112:4421–4468

    Article  CAS  PubMed  Google Scholar 

  • Askoxylakis V, Garcia-Boy R, Rana S, Krämer S, Hebling U, Mier W, Altmann A, Markert A, Debus J, Haberkorn U (2010) A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology. PLoS One 5:e15962

    Google Scholar 

  • Bennewith KL, Dedhar S (2011) Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer 11:504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Brouwers AH, Buijs WCAM, Oosterwijk E, Boerman OC, Mala C, De Mulder PHM, Corstens FHM, Mulders PFA, Oyen WJG (2003) Targeting of metastatic renal cell carcinoma with the chimeric monoclonal antibody G250 labeled with 131I or 111In: an intrapatient comparison. Clin Cancer Res 9:3953S-S3960

    CAS  PubMed  Google Scholar 

  • Brouwers AH, van Eerd JEM, Frielink C, Oosterwijk E, Oyen WJG, Corstens FHM, Boerman OC (2004) Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J Nucl Med 45:327–337

    CAS  PubMed  Google Scholar 

  • Brouwers AH, Mulders PFA, De Mulder PHM, Van Den Broek WJM, Buijs WCAM, Mala C, Joosten FBM, Oosterwijk E, Boerman OC, Corstens FHM, Oyen WJG (2005) Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J Clin Oncol 23:6540–6548

    Article  CAS  PubMed  Google Scholar 

  • Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM (2010) Molecular targeting of carbonic anhydrase ix in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One 5:e10857

    Google Scholar 

  • Čepa A, Ráliš J, Král V, Paurová M, Kučka J, Humajová J, Lázníček M, Lebeda O (2018) In vitro evaluation of the monoclonal antibody 64Cu-IgG M75 against human carbonic anhydrase IX and its in vivo imaging. Appl Radiat Isot 133:9–13

    Article  PubMed  CAS  Google Scholar 

  • Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S, Gao D, Delaidelli A, Kyle AH, Baker JHE, Gillespie JA, Bashashati A, Minchinton AI, Zhou Y, Shah SP, Dedhar S (2019) Targeting hypoxia-induced carbonic anhydrase IX enhances immune checkpoint blockade locally and systemically. Cancer Immunol Res canimm.0657.2018

    Google Scholar 

  • Chamie K, Donin NM, Klöpfer P, Bevan P, Fall B, Wilhelm O, Störkel S, Said J, Gambla M, Hawkins RE, Jankilevich G, Kapoor A, Kopyltsov E, Staehler M, Taari K, Wainstein AJA, Pantuck AJ, Belldegrun AS (2017) Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma: the ARISER randomized clinical trial. JAMA Oncol 3:913–920

    Article  PubMed  Google Scholar 

  • Chiavenna SM, Jaworski JP, Vendrell A (2017) State of the art in anti-cancer mAbs. J Biomed Sci 24:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrastina A, Závada J, Parkkila S, Kaluz Š, Kaluzová M, Rajčáni J, Pastorek J, Pastoreková S (2003) Biodistribution and pharmacokinetics of 125I-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int J Cancer 105:873–881

    Article  CAS  PubMed  Google Scholar 

  • Clark PE (2009) The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int 76:939–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divgi CR, Bander NH, Scott AM, O’Donoghue JA, Sgouros G, Welt S, Finn RD, Morrissey F, Capitelli P, Williams JM, Deland D, Nakhre A, Oosterwijk E, Gulec S, Graham MC, Larson SM, Old LJ (1998) Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res 4:2729–2739

    CAS  PubMed  Google Scholar 

  • Divgi CR, O’Donoghue JA, Welt S, O’Neel J, Finn R, Motzer RJ, Jungbluth A, Hoffman E, Ritter G, Larson SM, Old LJ (2004) Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J Nucl Med 45:1412–1421

    CAS  PubMed  Google Scholar 

  • Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gönen M, Ruan S, Pierre C, Nagel A, Pryma DA, Humm J, Larson SM, Old LJ, Russo P (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8:304–310

    Article  CAS  PubMed  Google Scholar 

  • Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, Chen D, Carrasquillo JA, Larson S, Bevan P, Russo P (2013) Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol 31:187–194

    Article  PubMed  Google Scholar 

  • Doss M, Kolb HC, Walsh JC, Mocharla VP, Zhu Z, Haka M, Alpaugh RK, Chen DYT, Yu JQ (2014) Biodistribution and radiation dosimetry of the carbonic anhydrase IX imaging agent [18F]VM4-037 determined from PET/CT scans in healthy volunteers. Mol Imaging Biol 16:739–746

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudutiene V, Matuliene J, Smirnov A, Timm DD, Zubriene A, Baranauskiene L, Morkunaite V, Smirnoviene J, Michailoviene V, Juozapaitiene V, Mickevičiute A, Kazokaite J, Bakšyte S, Kasiliauskaite A, Jachno J, Revuckiene J, Kišonaite M, Pilipuityte V, Ivanauskaite E, Milinavičiute G, Smirnovas V, Petrikaite V, Kairys V, Petrauskas V, Norvaišas P, Linge D, Gibieža P, Čapkauskaite E, Zakšauskas A, Kazlauskas E, Manakova E, Gražulis S, Ladbury JE, Matulis D (2014) Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J Med Chem 57:9435–9446

    Article  CAS  PubMed  Google Scholar 

  • Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, Gruenvald V, Horwich A (2016) Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol 27:v58–v68

    Article  CAS  PubMed  Google Scholar 

  • Fani M, Maecke HR (2012) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39:11–30

    Article  CAS  Google Scholar 

  • Feldwisch J, Tolmachev V (2012) Engineering of affibody molecules for therapy and diagnostics. Methods Mol Biol 899:103–126

    Article  CAS  PubMed  Google Scholar 

  • Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, Domarkas J, Lord S, Baldry C, Gilbert FJ (2015) Imaging tumour hypoxia with positron emission tomography. Br J Cancer 112:238–250

    Article  CAS  PubMed  Google Scholar 

  • Freise AC, Wu AM (2015) In vivo imaging with antibodies and engineered fragments. Mol Immunol 67:142–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garousi J, Honarvar H, Andersson KG, Mitran B, Orlova A, Buijs J, Löfblom J, Frejd FY, Tolmachev V (2016) Comparative evaluation of affibody molecules for radionuclide imaging of in vivo expression of carbonic anhydrase IX. Mol Pharm 13:3676–3687

    Article  CAS  PubMed  Google Scholar 

  • Gorin MA, Rowe SP, Allaf ME (2015) Nuclear imaging of renal tumours: a step towards improved risk stratification. Nat Rev Urol 12:445–450

    Article  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  • Hekman MCH, Rijpkema M, Aarntzen EH, Mulder SF, Langenhuijsen JF, Oosterwijk E, Boerman OC, Oyen WJG, Mulders PFA (2018a) Positron emission tomography/computed tomography with 89zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur Urol 74:257–260

    Article  PubMed  Google Scholar 

  • Hekman MC, Rijpkema M, Muselaers CH, Oosterwijk E, Hulsbergen-Van de Kaa CA, Boerman OC, Oyen WJ, Langenhuijsen JF, Mulders PF (2018b) Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: a first in man study. Theranostics 8:2161–2170. https://doi.org/10.7150/thno.23335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone G, Lindfors M, Jänis J, Valjakka J, Pastoreková S, Pastorek J, Kulomaa MS, Nordlund HR, Supuran CT, Parkkila S (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283:27799–27809

    Article  CAS  PubMed  Google Scholar 

  • Hoeben BAW, Kaanders JHAM, Franssen GM, Troost EGC, Rijken PFJW, Oosterwijk E, Dongen GAMS, Oyen WJG, Boerman OC, Bussink J (2010) PET of hypoxia with 89Zr-labeled cG250-F(ab’)2 in head and neck tumors. J Nucl Med 51:1076–1083

    Google Scholar 

  • Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg Å, Gradin K, Poellinger L, Påhlman S (2006) Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell 10:413–423

    Article  CAS  PubMed  Google Scholar 

  • Honarvar H, Garousi J, Gunneriusson E, Höidén-Guthenberg I, Altai M, Widström C, Tolmachev V, Frejd FY (2015) Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX:1 Affibody molecule. Int J Oncol 46:513–520

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V (2017) Renal cell carcinoma. Nat Rev Dis Prim 3:17009

    Article  PubMed  Google Scholar 

  • Huizing FJ, Hoeben BAW, Franssen GM, Boerman OC, Heskamp S, Bussink J (2019) Quantitative imaging of the hypoxia-related marker CAIX in head and neck squamous cell carcinoma xenograft models. Mol Pharm 16:701–708

    Article  CAS  PubMed  Google Scholar 

  • Iikuni S, Ono M, Watanabe H, Shimizu Y, Sano K, Saji H (2018) Cancer radiotheranostics targeting carbonic anhydrase-IX with 111In- and 90Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics 8:2992–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadvar H, Chen X, Cai W, Mahmood U (2018) Radiotheranostics in cancer diagnosis and management. Radiology 286:388–400

    Article  PubMed  Google Scholar 

  • Jia L, Li X, Cheng D, Zhang L (2019) Fluorine-18 click radiosynthesis and microPET/CT evaluation of a small peptide-a potential PET probe for carbonic anhydrase IX. Bioorg Med Chem 27:785–789

    Article  CAS  PubMed  Google Scholar 

  • Kaluz S, Kaluzová M, Liao SY, Lerman M, Stanbridge EJ (2009) Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta Rev Cancer 1795:162–172

    Article  CAS  Google Scholar 

  • Kozempel J, Mokhodoeva O, Vlk M (2018) Progress in targeted alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules 23

    Google Scholar 

  • Krall N, Pretto F, Mattarella M, Muller C, Neri D (2016) A 99mTc-labeled ligand of carbonic anhydrase IX selectively targets renal cell carcinoma in vivo. J Nucl Med 57:943–949

    Article  CAS  PubMed  Google Scholar 

  • Lau J, Pan J, Zhang Z, Hundal-Jabal N, Liu Z, Bénard F, Lin KS (2014) Synthesis and evaluation of 18 F-labeled tertiary benzenesulfonamides for imaging carbonic anhydrase IX expression in tumours with positron emission tomography. Bioorganic Med Chem Lett 24:3064–3068

    Article  CAS  Google Scholar 

  • Lau J, Liu Z, Lin K-S, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM, Bénard F (2015) Trimeric radiofluorinated sulfonamide derivatives to achieve in vivo selectivity for carbonic anhydrase IX-targeted PET imaging. J Nucl Med 56:1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Lau J, Zhang Z, Jenni S, Kuo HT, Liu Z, Vullo D, Supuran CT, Lin KS, Bénard F (2016) PET imaging of carbonic anhydrase IX expression of HT-29 tumor xenograft mice with 68Ga-labeled benzenesulfonamides. Mol Pharm 13:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Lau J, Lin KS, Bénard F (2017) Past, present, and future: development of theranostic agents targeting carbonic anhydrase IX. Theranostics 7:4322–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang G, Wang X, Li X-F (2015) Is carbonic anhydrase IX a validated target for molecular imaging of cancer and hypoxia? Futur Oncol 11:1531–1541

    Article  CAS  Google Scholar 

  • Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, Fonti C, Lodi F, Mattioli S, Fanti S (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging 4:365–384

    PubMed  PubMed Central  Google Scholar 

  • Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, Auf Dem Keller U, Leung S, Huntsman D, Clarke B, Sutherland BW, Waterhouse D, Bally M, Roskelley C, Overall CM, Minchinton A, Pacchiano F, Carta F, Scozzafava A, Touisni N, Winum JY, Supuran CT, Dedhar S (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376

    Article  CAS  PubMed  Google Scholar 

  • McDonald PC, Winum J-Y, Supuran CT, Dedhar S, McDonald PC, Winum J-Y, Supuran CT, Dedhar S (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3:84–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Merkx R, Heskamp S, Mulders P, Rijpkema M, Oosterwijk E, Wheatcroft M, Kip A, Morgenstern A, Bruchertseifer F (2019) 225Ac-labeled girentuximab for targeted alpha therapy of CAIX-expressing renal cell cancer xenografts. J Med Imaging Radiat Sci 50:S25

    Article  Google Scholar 

  • Minn I, Koo SM, Lee HS, Brummet M, Rowe SP, Gorin MA, Sysa-Shah P, Lewis WD, Ahn H-H, Wang Y, Banerjee SR, Mease RC, Nimmagadda S, Allaf ME, Pomper MG, Yang X (2016) [64Cu]XYIMSR-06: A dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma. Oncotarget 7:56471–56479

    Article  PubMed  PubMed Central  Google Scholar 

  • Moroz E, Carlin S, Dyomina K, Burke S, Thaler HT, Blasberg R, Serganova I (2009) Real-time imaging of HIF-1α stabilization and degredation. PLoS One 4:e5077

    Google Scholar 

  • Morris MR, Hughes DJ, Tian YM, Ricketts CJ, Lau KW, Gentle D, Shuib S, Serrano-Fernandez P, Lubinski J, Wiesener MS, Pugh CW, Latif F, Ratcliffe PJ, Maher ER (2009) Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Res 29:4337–4343

    CAS  PubMed  Google Scholar 

  • Muselaers CHJ, Boerman OC, Oosterwijk E, Langenhuijsen JF, Oyen WJG, Mulders PFA (2013) Indium-111-labeled girentuximab immunoSPECT as a diagnostic tool in clear cell renal cell carcinoma. Eur Urol 63:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Muselaers CHJ, Rijpkema M, Bos DL, Langenhuijsen JF, Oyen WJG, Mulders PFA, Oosterwijk E, Boerman OC (2015) Radionuclide and fluorescence imaging of clear cell renal cell carcinoma using dual labeled anti-carbonic anhydrase IX antibody G250. J Urol 194:532–538

    Article  CAS  PubMed  Google Scholar 

  • Muselaers CHJ, Boers-Sonderen MJ, Van Oostenbrugge TJ, Boerman OC, Desar IME, Stillebroer AB, Mulder SF, Van Herpen CML, Langenhuijsen JF, Oosterwijk E, Oyen WJG, Mulders PFA (2016) Phase 2 study of lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol 69:767–770

    Article  CAS  PubMed  Google Scholar 

  • Oosterwdk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EKJ, Jonas U, Zwartendijk I, Warnaar SO (1986) Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38:489–494

    Article  Google Scholar 

  • Oosterwijk-Wakka JC, Kats-Ugurlu G, Leenders WPJ, Kiemeney LALM, Old LJ, Mulders PFA, Oosterwijk E (2011) Effect of tyrosine kinase inhibitor treatment of renal cell carcinoma on the accumulation of carbonic anhydrase IX-specific chimeric monoclonal antibody cG250. BJU Int 107:118–125

    Article  CAS  PubMed  Google Scholar 

  • Oosterwijk-Wakka JC, Boerman OC, Mulders PFAM, Oosterwijk E (2013) Application of monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma. Int J Mol Sci 14:11402–11423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oosterwijk E, Bander NH, Divgi CR, Welt S, Wakka JC, Finn RD, Carswell EA, Larson SM, Warnaar SO, Fleuren GJ, Oettgen HF, Old LJ (1993) Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol 11:738–750

    Article  CAS  PubMed  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    Article  CAS  PubMed  Google Scholar 

  • Pastorekova S, Ratcliffe PJ, Pastorek J (2008) Molecular mechanisms of carbonic anhydrase IX-mediated pH regulation under hypoxia. BJU Int 101:8–15

    Article  CAS  PubMed  Google Scholar 

  • Peeters SGJA, Dubois L, Lieuwes NG, Laan D, Mooijer M, Schuit RC, Vullo D, Supuran CT, Eriksson J, Windhorst AD, Lambin P (2015) [18F]VM4-037 MicroPET imaging and biodistribution of two in vivo CAIX-expressing tumor models. Mol Imaging Biol 17:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafajová M, Zatovicová M, Kettmann R, Pastorek J, Pastoreková S (2004) Induction by hypoxia combined with low glucose or low bicarbonate and high posttranslational stability upon reoxygenation contribute to carbonic anhydrase IX expression in cancer cells. Int J Oncol 24:995–1004

    PubMed  Google Scholar 

  • Rajendran JG, Krohn KA (2015) F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 45:151–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA (2003) [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: Correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704

    Article  CAS  PubMed  Google Scholar 

  • Rami M, Cecchi A, Montero JL, Innocenti A, Vullo D, Scozzafava A, Winum JY, Supuran CT (2008) Carbonic anhydrase inhibitors: design of membrane-impermeant copper(II) complexes of DTPA-, DOTA-, and TETA-tailed sulfonamides targeting the tumor-associated transmembrane isoform IX. ChemMedChem 3:1780–1788

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Nissen F, Marr A, Markert A, Altmann A, Mier W, Debus J, Haberkorn U, Askoxylakis V (2012) Optimization of a novel peptide ligand targeting human carbonic anhydrase IX. PLoS One 7:e38279

    Google Scholar 

  • Rana S, Nissen F, Lindner T, Altmann A, Mier W, Debus J, Haberkorn U (2013) Askoxylakis V (2013) Screening of a novel peptide targeting the proteoglycan-Like region of human carbonic anhydrase 9. Mol Imaging 12(7290):00066

    Google Scholar 

  • Rault E, Vandenberghe S, Van Holen R, De Beenhouwer J, Staelens S, Lemahieu I (2007) Comparison of image quality of different iodine isotopes (I-123, I-124, and I-131). Cancer Biother Radiopharm 22:423–430

    Article  PubMed  Google Scholar 

  • Ridge CA, Pua BB, Madoff DC (2014) Epidemiology and staging of renal cell carcinoma. Semin Intervent Radiol 31:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  CAS  PubMed  Google Scholar 

  • Sharkey RM, Goldenberg DM (2009) Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin 56:226–243

    Article  Google Scholar 

  • Sneddon D, Niemans R, Bauwens M, Yaromina A, Van Kuijk SJA, Lieuwes NG, Biemans R, Pooters I, Pellegrini PA, Lengkeek NA, Greguric I, Tonissen KF, Supuran CT, Lambin P, Dubois L, Poulsen SA (2016) Synthesis and in vivo biological evaluation of 68Ga-labeled carbonic anhydrase IX targeting small molecules for positron emission tomography. J Med Chem 59:6431–6443

    Article  CAS  PubMed  Google Scholar 

  • Steffens MG, Boerman OC, de Mulder PH, Oyen WJ, Buijs WC, Witjes JA, van den Broek WJ, Oosterwijk-Wakka JC, Debruyne FM, Corstens FH, Oosterwijk E (1999) Phase I radioimmunotherapy of metastatic renal cell carcinoma with 131I-labeled chimeric monoclonal antibody G250. Clin Cancer Res 5:3268s–3274s

    CAS  PubMed  Google Scholar 

  • Stillebroer AB, Boerman OC, Desar IME, Boers-Sonderen MJ, Van Herpen CML, Langenhuijsen JF, Smith-Jones PM, Oosterwijk E, Oyen WJG, Mulders PFA (2013) Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase ix monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol 64:478–485

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2017) Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 7:48

    Article  PubMed Central  CAS  Google Scholar 

  • Supuran CT, Briganti F, Tilli S, Chegwidden WR, Scozzafava A (2001) Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorganic Med Chem 9:703–714

    Article  CAS  Google Scholar 

  • Turkbey B, Lindenberg ML, Adler S, Kurdziel KA, McKinney YL, Weaver J, Vocke CD, Anver M, Bratslavsky G, Eclarinal P, Kwarteng G, Lin FI, Yaqub-Ogun N, Merino MJ, Marston Linehan W, Choyke PL, Metwalli AR (2016) PET/CT imaging of renal cell carcinoma with 18F-VM4-037: a phase II pilot study. Abdom Radiol 41:109–118

    Article  Google Scholar 

  • Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC (2014) The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 21:1516–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  CAS  PubMed  Google Scholar 

  • Wichert M, Krall N, Decurtins W, Franzini RM, Pretto F, Schneider P, Neri D, Scheuermann J (2015) Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat Chem 7:241–249

    Article  CAS  PubMed  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    Article  CAS  PubMed  Google Scholar 

  • Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    CAS  PubMed  Google Scholar 

  • Yang X, Minn I, Rowe SP, Banerjee SR, Gorin MA, Brummet M, Lee HS, Koo SM, Sysa-Shah P, Mease RC, Nimmagadda S, Allaf ME, Pomper MG (2015) Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor. Oncotarget 6:33733–33742

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhu H, Yang X, Li N, Huang H, Liu T, Guo X, Xu X, Xia L, Deng C, Tian X, Yang Z (2019) Targeting CAIX with [64Cu]XYIMSR-06 small molecular radiotracer enables noninvasive PET imaging of malignant glioma in U87 MG tumor cell xenograft mice. Mol Pharm 16:1532–1540

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang Q (2018) VHL and hypoxia signaling: beyond HIF in cancer. Biomedicines 6:35

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Lau J, Zhang C, Colpo N, Nocentini A, Supuran CT, Bénard F, Lin KS (2017) Design, synthesis and evaluation of 18 F-labeled cationic carbonic anhydrase IX inhibitors for PET imaging. J Enzyme Inhib Med Chem 32:722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bénard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lau, J., Lin, KS., Bénard, F. (2021). Targeting Carbonic Anhydrase IX in Tumor Imaging and Theranostic Cancer Therapy. In: Chegwidden, W.R., Carter, N.D. (eds) The Carbonic Anhydrases: Current and Emerging Therapeutic Targets. Progress in Drug Research, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-79511-5_12

Download citation

Publish with us

Policies and ethics