Skip to main content

Predisposing Factors for the Development of Chemotherapy-Induced Peripheral Neuropathy (CIPN)

  • Chapter
  • First Online:
Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy

Abstract

This chapter summarizes the current knowledge of predisposing factors of CIPN development. These predisposing factors can be classified as intrinsic (i.e., demographics, genetics) or extrinsic (i.e., lifestyle, neurotoxic treatment) to the patient. Intrinsic factors that increase a patient’s CIPN risk include older age, African American race, and diabetes. Other factors such as vitamin D deficiency and genetics may also increase risk but have not been validated. Objective and subjective indicators of CIPN prior to, or early in, treatment predict CIPN severity at the end of treatment but this information is not consistently used to inform patient management. Extrinsic factors including lifestyle and neurotoxic regimen affect CIPN risk. Healthy lifestyle choices including physical activity and better nutrition may protect against CIPN. The predominant predictor of CIPN is cumulative treatment with a neurotoxic chemotherapeutic agent. Different regimens have different CIPN risk, and in the case of paclitaxel there is strong evidence that systemic drug exposure is a major contributor to CIPN. Further research is needed to validate these predisposing factors and determine their effect on CIPN onset, severity, and duration. Prospective studies are also needed to test strategies to use these predictive factors to inform personalized treatment decisions to prevent severe, life altering CIPN and optimize long-term outcomes in patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandos H, Melnikow J, Rivera DR, Swain SM, Sturtz K, Fehrenbacher L, Wade JL 3rd, Brufsky AM, Julian TB, Margolese RG, McCarron EC, Ganz PA (2018) Long-term peripheral neuropathy in breast cancer patients treated with adjuvant chemotherapy: NRG oncology/NSABP B-30. J Natl Cancer Inst 110(2). https://doi.org/10.1093/jnci/djx162

  2. Kober K, Mastick J, Paul S, Topp K, Smoot B, Abrams G, Chen L, Conley Y, Chesney M, Bolla K, Mausisa G, Azor M, Wong M, Schumacher M, Levine J, Miaskowski C (2017) (431) Characteristics of chemotherapy induced neuropathy (CIN) in cancer survivors who received taxol. J Pain 18(4):S82. https://doi.org/10.1016/j.jpain.2017.02.281

    Article  Google Scholar 

  3. Wong ML, Cooper BA, Paul SM, Abrams G, Topp K, Kober KM, Chesney MA, Mazor M, Schumacher MA, Conley YP, Levine JD, Miaskowski C (2019) Age-related differences in patient-reported and objective measures of chemotherapy-induced peripheral neuropathy among cancer survivors. Support Care Cancer 27(10):3905–3912. https://doi.org/10.1007/s00520-019-04695-3. Epub 2019 Feb 15

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bulls HW, Hoogland AI, Kennedy B, James BW, Arboleda BL, Apte S, Chon HS, Small BJ, Gonzalez BD, Jim HSL (2019) A longitudinal examination of associations between age and chemotherapy-induced peripheral neuropathy in patients with gynecologic cancer. Gynecol Oncol 152(2):310–315. https://doi.org/10.1016/j.ygyno.2018.12.002. Epub 2018 Dec 14

    Article  PubMed  Google Scholar 

  5. Hershman DL, Till C, Wright JD, Awad D, Ramsey SD, Barlow WE, Minasian LM, Unger J (2016) Comorbidities and risk of chemotherapy-induced peripheral neuropathy among participants 65 years or older in southwest oncology group clinical trials. J Clin Oncol 34(25):3014–3022. https://doi.org/10.1200/jco.2015.66.2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raphael MJ, Fischer HD, Fung K, Austin PC, Anderson GM, Booth CM, Singh S (2017) Neurotoxicity outcomes in a population-based cohort of elderly patients treated with adjuvant oxaliplatin for colorectal cancer. Clin Colorectal Cancer 16(4):397–404.e1. https://doi.org/10.1016/j.clcc.2017.03.013. Epub 2017 Mar 24

    Article  PubMed  Google Scholar 

  7. Molassiotis A, Cheng HL, Leung KT, Li YC, Wong KH, Au JSK, Sundar R, Chan A, Ng TR, Suen LKP, Chan CW, Yorke J, Lopez V (2019) Risk factors for chemotherapy-induced peripheral neuropathy in patients receiving taxane- and platinum-based chemotherapy. Brain Behav 9(6):e01312. https://doi.org/10.1002/brb3.1312. Epub 2019 May 7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kalsi T, Babic-Illman G, Fields P, Hughes S, Maisey N, Ross P, Wang Y, Harari D (2014) The impact of low-grade toxicity in older people with cancer undergoing chemotherapy. Br J Cancer 111(12):2224–2228. https://doi.org/10.1038/bjc.2014.496. Epub 2014 Sep 30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hertz DL, Roy S, Motsinger-Reif AA, Drobish A, Clark LS, McLeod HL, Carey LA, Dees EC (2013) CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol 24(6):1472–1478. https://doi.org/10.1093/annonc/mdt018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis MA, Zhao F, Jones D, Loprinzi CL, Brell J, Weiss M, Fisch MJ (2015) Neuropathic symptoms and their risk factors in medical oncology outpatients with colorectal vs. breast, lung, or prostate cancer: results from a prospective multicenter study. J Pain Symptom Manage 49(6):1016–1024. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=25596011

    Article  Google Scholar 

  11. Schneider BP, Shen F, Jiang G, O’Neill A, Radovich M, Li L, Gardner L, Lai D, Foroud T, Sparano JA, Sledge GW Jr, Miller KD (2017) Impact of genetic ancestry on outcomes in ECOG-ACRIN-E5103. JCO Precis Oncol. https://doi.org/10.1200/PO.17.00059. Epub 2017 Aug 21

  12. Speck RM, Sammel MD, Farrar JT, Hennessy S, Mao JJ, Stineman MG, DeMichele A (2013) Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer. J Oncol Pract 9(5):e234–e240. https://doi.org/10.1200/jop.2012.000863

    Article  PubMed  Google Scholar 

  13. Cox-Martin E, Trahan LH, Cox MG, Dougherty PM, Lai EA, Novy DM (2017) Disease burden and pain in obese cancer patients with chemotherapy-induced peripheral neuropathy. Support Care Cancer 25(6):1873–1879. https://doi.org/10.1007/s00520-017-3571-5. Epub 2017 Jan 26

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greenlee H, Hershman DL, Shi Z, Kwan ML, Ergas IJ, Roh JM, Kushi LH (2017) BMI, lifestyle factors and taxane-induced neuropathy in breast cancer patients: the pathways study. J Natl Cancer Inst 109(2). https://doi.org/10.1093/jnci/djw206

  15. Moore DC, Ringley JT, Nix D, Muslimani A (2020) Impact of body mass index on the incidence of bortezomib-induced peripheral neuropathy in patients with newly diagnosed multiple myeloma. Clin Lymphoma Myeloma Leuk 20(3):168–173. https://doi.org/10.1016/j.clml.2019.08.012. Epub 2019 Sep 18

    Article  PubMed  Google Scholar 

  16. Petrovchich I, Kober KM, Wagner L, Paul SM, Abrams G, Chesney MA, Topp K, Smoot B, Schumacher M, Conley YP, Hammer M, Levine JD, Miaskowski C (2019) Deleterious effects of higher body mass index on subjective and objective measures of chemotherapy-induced peripheral neuropathy in cancer survivors. J Pain Symptom Manage 58(2):252–263. https://doi.org/10.1016/j.jpainsymman.2019.04.029. Epub 2019 Apr 30

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sajdyk TJ, Boyle FA, Foran KS, Tong Y, Pandya P, Smith EML, Ho RH, Wells E, Renbarger JL (2019) Obesity as a potential risk factor for vincristine-induced peripheral neuropathy. J Pediatr Hematol Oncol 18(10)

    Google Scholar 

  18. Winters-Stone KM, Horak F, Jacobs PG, Trubowitz P, Dieckmann NF, Stoyles S, Faithfull S (2017) Falls, functioning, and disability among women with persistent symptoms of chemotherapy-induced peripheral neuropathy. J Clin Oncol 35(23):2604–2612. https://doi.org/10.1200/jco.2016.71.3552

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bano N, Ikram R (2019) Effect of diabetes on neurological adverse effects and chemotherapy induced peripheral neuropathy in advanced colorectal cancer patients treated with different FOLFOX regimens. Pak J Pharm Sci 32(1):125–130

    CAS  PubMed  Google Scholar 

  20. Nyrop KA, Deal AM, Reeder-Hayes KE, Shachar SS, Reeve BB, Basch E, Choi SK, Lee JT, Wood WA, Anders CK, Carey LA, Dees EC, Jolly TA, Kimmick GG, Karuturi MS, Reinbolt RE, Speca JC, Muss HB (2019) Patient-reported and clinician-reported chemotherapy-induced peripheral neuropathy in patients with early breast cancer: current clinical practice. Cancer 125(17):2945–2954. https://doi.org/10.1002/cncr.32175. Epub 2019 May 15

    Article  CAS  PubMed  Google Scholar 

  21. Boyette-Davis JA, Eng C, Wang XS, Cleeland CS, Wendelschafer-Crabb G, Kennedy WR, Simone DA, Zhang H, Dougherty PM (2012) Subclinical peripheral neuropathy is a common finding in colorectal cancer patients prior to chemotherapy. Clin Cancer Res 18(11):3180–3187. https://doi.org/10.1158/1078-0432.CCR-12-0205. Epub 2012 Apr 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Carvalho Barbosa M, Kosturakis AK, Eng C, Wendelschafer-Crabb G, Kennedy WR, Simone DA, Wang XS, Cleeland CS, Dougherty PM (2014) A quantitative sensory analysis of peripheral neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy. Cancer Res 74(21):5955–5962. https://doi.org/10.1158/0008-5472.CAN-14-2060. Epub 2014 Sep 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Griffith KA, Zhu S, Johantgen M, Kessler MD, Renn C, Beutler AS, Kanwar R, Ambulos N, Cavaletti G, Bruna J, Briani C, Argyriou AA, Kalofonos HP, Yerges-Armstrong LM, Dorsey SG (2017) Oxaliplatin-induced peripheral neuropathy and identification of unique severity groups in colorectal cancer. J Pain Symptom Manage 54(5):701–706.e1. https://doi.org/10.1016/j.jpainsymman.2017.07.033. Epub 2017 Jul 23

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reddy SM, Vergo MT, Paice JA, Kwon N, Helenowski IB, Benson AB, Mulcahy MF, Nimeiri HS, Harden RN (2016) Quantitative sensory testing at baseline and during cycle 1 oxaliplatin infusion detects subclinical peripheral neuropathy and predicts clinically overt chronic neuropathy in gastrointestinal malignancies. Clin Colorectal Cancer 15(1):37–46. https://doi.org/10.1016/j.clcc.2015.07.001. Epub 2015 Jul 26

    Article  PubMed  Google Scholar 

  25. Vichaya EG, Wang XS, Boyette-Davis JA, Mendoza TR, He Z, Thomas SK, Shah N, Williams LA, Cleeland CS, Dougherty PM (2013) Subclinical pretreatment sensory deficits appear to predict the development of pain and numbness in patients with multiple myeloma undergoing chemotherapy. Cancer Chemother Pharmacol 71(6):1531–1540. https://doi.org/10.1007/s00280-013-2152-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang XS, Shi Q, Dougherty PM, Eng C, Mendoza TR, Williams LA, Fogelman DR, Cleeland CS (2016) Prechemotherapy touch sensation deficits predict oxaliplatin-induced neuropathy in patients with colorectal cancer. Oncology 90(3):127–135. https://doi.org/10.1159/000443377. Epub 2016 Feb 17

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy WR, Selim MM, Brink TS, Hodges JS, Wendelschafer-Crabb G, Foster SX, Nolano M, Provitera V, Simone DA (2011) A new device to quantify tactile sensation in neuropathy. Neurology 76(19):1642–1649. https://doi.org/10.1212/WNL.0b013e318219fadd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Udd KA, Vidisheva A, Swift RA, Spektor TM, Bravin E, Ibrahim E, Treisman J, Masri M, Berenson JR (2016) Low serum vitamin D occurs commonly among multiple myeloma patients treated with bortezomib and/or thalidomide and is associated with severe neuropathy. Support Care Cancer 24(7):3105–3110. https://doi.org/10.1007/s00520-016-3126-1

    Article  PubMed  Google Scholar 

  29. Grim J, Ticha A, Hyspler R, Valis M, Zadak Z (2017) Selected risk nutritional factors for chemotherapy-induced polyneuropathy. Nutrients 9(6). https://doi.org/10.3390/nu9060535

  30. Jennaro TS, Fang F, Kidwell KM, Smith EML, Vangipuram K, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Henry NL, Hertz DL (2020) Vitamin D deficiency increases severity of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 180(3):707–714. https://doi.org/10.1007/s10549-020-05584-8. Epub 2020 Mar 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vincenzi B, Frezza AM, Schiavon G, Spoto C, Silvestris N, Addeo R, Catalano V, Graziano F, Santini D, Tonini G (2013) Identification of clinical predictive factors of oxaliplatin-induced chronic peripheral neuropathy in colorectal cancer patients treated with adjuvant Folfox IV. Support Care Cancer 21(5):1313–1319. https://doi.org/10.1007/s00520-012-1667-5. Epub 2012 Nov 30

    Article  PubMed  Google Scholar 

  32. Shahriari-Ahmadi A, Fahimi A, Payandeh M, Sadeghi M (2015) Prevalence of oxaliplatin-induced chronic neuropathy and influencing factors in patients with colorectal cancer in Iran. Asian Pac J Cancer Prev 16(17):7603–7606. https://doi.org/10.7314/apjcp.2015.16.17.7603

    Article  PubMed  Google Scholar 

  33. Saito T, Okamura A, Inoue J, Makiura D, Doi H, Yakushijin K, Matsuoka H, Sakai Y, Ono R (2019) Anemia is a novel predictive factor for the onset of severe chemotherapy-induced peripheral neuropathy in lymphoma patients receiving rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone therapy. Oncol Res 27(4):469–474. https://doi.org/10.3727/096504018X15267574931782. Epub 2018 May 19

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gil Á, Plaza-Diaz J, Mesa MD (2018) Vitamin D: classic and novel actions. Ann Nutr Metab 72(2):87–95. https://doi.org/10.1159/000486536. Epub 2018 Jan 18

    Article  CAS  PubMed  Google Scholar 

  35. Lv WS, Zhao WJ, Gong SL, Fang DD, Wang B, Fu ZJ, Yan SL, Wang YG (2015) Serum 25-hydroxyvitamin D levels and peripheral neuropathy in patients with type 2 diabetes: a systematic review and meta-analysis. J Endocrinol Invest 38(5):513–518. https://doi.org/10.1007/s40618-014-0210-6

    Article  CAS  PubMed  Google Scholar 

  36. Kaiser MF, Heider U, Mieth M, Zang C, von Metzler I, Sezer O (2013) The proteasome inhibitor bortezomib stimulates osteoblastic differentiation of human osteoblast precursors via upregulation of vitamin D receptor signalling. Eur J Haematol 90(4):263–272. https://doi.org/10.1111/ejh.12069. Epub 2013 Feb 15

    Article  CAS  PubMed  Google Scholar 

  37. Solomon LR (2016) Functional vitamin B12 deficiency in advanced malignancy: implications for the management of neuropathy and neuropathic pain. Support Care Cancer 24(8):3489–3494. https://doi.org/10.1007/s00520-016-3175-5. Epub 2016 Mar 22

    Article  PubMed  Google Scholar 

  38. Dudeja S, Gupta S, Sharma S, Jain A, Jain P, Aneja S, Chandra J (2019) Incidence of vincristine induced neurotoxicity in children with acute lymphoblastic leukemia and its correlation with nutritional deficiencies. Pediatr Hematol Oncol 36(6):344–351. https://doi.org/10.1080/08880018.2019.1637981. Epub 2019 Sep 13

    Article  CAS  PubMed  Google Scholar 

  39. Emiroglu C, Görpelioglu S, Aypak C (2019) The relationship between nutritional status, anemia and other vitamin deficiencies in the elderly receiving home care. J Nutr Health Aging 23(7):677–682. https://doi.org/10.1007/s12603-019-1215-9

    Article  CAS  PubMed  Google Scholar 

  40. Kirkland AE, Sarlo GL, Holton KF (2018) The role of magnesium in neurological disorders. Nutrients 10(6):730. https://doi.org/10.3390/nu10060730

    Article  CAS  PubMed Central  Google Scholar 

  41. Wesselink E, Winkels RM, van Baar H, Geijsen A, van Zutphen M, van Halteren HK, Hansson BME, Radema SA, de Wilt JHW, Kampman E, Kok DEG (2018) Dietary intake of magnesium or calcium and chemotherapy-induced peripheral neuropathy in colorectal cancer patients. Nutrients 10(4):398. https://doi.org/10.3390/nu10040398

    Article  CAS  PubMed Central  Google Scholar 

  42. Bove L, Picardo M, Maresca V, Jandolo B, Pace A (2001) A pilot study on the relation between cisplatin neuropathy and vitamin E. J Exp Clin Cancer Res 20(2):277–280

    CAS  PubMed  Google Scholar 

  43. Gamelin L, Boisdron-Celle M, Delva R, Guérin-Meyer V, Ifrah N, Morel A, Gamelin E (2004) Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res 10(12 Pt 1):4055–4061. https://doi.org/10.1158/1078-0432.CCR-03-0666

    Article  CAS  PubMed  Google Scholar 

  44. Grothey A, Nikcevich DA, Sloan JA, Kugler JW, Silberstein PT, Dentchev T, Wender DB, Novotny PJ, Chitaley U, Alberts SR, Loprinzi CL (2011) Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 29(4):421–427. https://doi.org/10.1200/JCO.2010.31.5911. Epub 2010 Dec 28

    Article  CAS  PubMed  Google Scholar 

  45. Loprinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Flynn KA, Atherton P, Seisler D, Qamar R, Lewis GC, Grothey A (2014) Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol 32(10):997–1005. https://doi.org/10.1200/jco.2013.52.0536

    Article  CAS  PubMed  Google Scholar 

  46. Afonseca SO, Cruz FM, Cubero Dde I, Lera AT, Schindler F, Okawara M, Souza LF, Rodrigues NP, Giglio A (2013) Vitamin E for prevention of oxaliplatin-induced peripheral neuropathy: a pilot randomized clinical trial. Sao Paulo Med J 131(1):35–38. https://doi.org/10.1590/s1516-31802013000100006

    Article  PubMed  Google Scholar 

  47. Argyriou AA, Chroni E, Koutras A, Iconomou G, Papapetropoulos S, Polychronopoulos P, Kalofonos HP (2006) A randomized controlled trial evaluating the efficacy and safety of vitamin E supplementation for protection against cisplatin-induced peripheral neuropathy: final results. Support Care Cancer 14(11):1134–1140. https://doi.org/10.1007/s00520-006-0072-3. Epub 2006 Apr 19

    Article  PubMed  Google Scholar 

  48. Huang H, He M, Liu L, Huang L (2016) Vitamin E does not decrease the incidence of chemotherapy-induced peripheral neuropathy: a meta-analysis. Contemp Oncol (Pozn) 20(3):237–241. https://doi.org/10.5114/wo.2016.61567. Epub 2016 Aug 4

    Article  CAS  Google Scholar 

  49. Kottschade LA, Sloan JA, Mazurczak MA, Johnson DB, Murphy BP, Rowland KM, Smith DA, Berg AR, Stella PJ, Loprinzi CL (2011) The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: results of a randomized phase III clinical trial. Support Care Cancer 19(11):1769–1777. https://doi.org/10.1007/s00520-010-1018-3. Epub 2010 Oct 9

    Article  PubMed  Google Scholar 

  50. Pace A, Giannarelli D, Galiè E, Savarese A, Carpano S, Della Giulia M, Pozzi A, Silvani A, Gaviani P, Scaioli V, Jandolo B, Bove L, Cognetti F (2010) Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. Neurology 74(9):762–766. https://doi.org/10.1212/WNL.0b013e3181d5279e

    Article  CAS  PubMed  Google Scholar 

  51. Salehi Z, Roayaei M (2015) Effect of vitamin E on oxaliplatin-induced peripheral neuropathy prevention: a randomized controlled trial. Int J Prev Med 6:104. https://doi.org/10.4103/2008-7802.169021. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ghoreishi Z, Esfahani A, Djazayeri A, Djalali M, Golestan B, Ayromlou H, Hashemzade S, Asghari Jafarabadi M, Montazeri V, Keshavarz SA, Darabi M (2012) Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: a randomized double-blind placebo controlled trial. BMC Cancer 12:355. https://doi.org/10.1186/1471-2407-12-355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bianchi G, Vitali G, Caraceni A, Ravaglia S, Capri G, Cundari S, Zanna C, Gianni L (2005) Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 41(12):1746–1750. https://doi.org/10.1016/j.ejca.2005.04.028

    Article  CAS  PubMed  Google Scholar 

  54. Callander N, Markovina S, Eickhoff J, Hutson P, Campbell T, Hematti P, Go R, Hegeman R, Longo W, Williams E, Asimakopoulos F, Miyamoto S (2014) Acetyl-L-carnitine (ALCAR) for the prevention of chemotherapy-induced peripheral neuropathy in patients with relapsed or refractory multiple myeloma treated with bortezomib, doxorubicin and low-dose dexamethasone: a study from the Wisconsin Oncology Network. Cancer Chemother Pharmacol 74(4):875–882. https://doi.org/10.1007/s00280-014-2550-5. Epub 2014 Aug 29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Campone M, Berton-Rigaud D, Joly-Lobbedez F, Baurain JF, Rolland F, Stenzl A, Fabbro M, van Dijk M, Pinkert J, Schmelter T, de Bont N, Pautier P (2013) A double-blind, randomized phase II study to evaluate the safety and efficacy of acetyl-L-carnitine in the prevention of sagopilone-induced peripheral neuropathy. Oncologist 18(11):1190–1191. https://doi.org/10.1634/theoncologist.2013-0061. Epub 2013 Oct 8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hershman DL, Unger JM, Crew KD, Minasian LM, Awad D, Moinpour CM, Hansen L, Lew DL, Greenlee H, Fehrenbacher L, Wade JL 3rd, Wong SF, Hortobagyi GN, Meyskens FL, Albain KS (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol 31(20):2627–2633. https://doi.org/10.1200/jco.2012.44.8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hershman DL, Unger JM, Crew KD, Till C, Greenlee H, Minasian LM, Moinpour CM, Lew DL, Fehrenbacher L, Wade JL 3rd, Wong SF, Fisch MJ, Lynn Henry N, Albain KS (2018) Two-year trends of taxane-induced neuropathy in women enrolled in a randomized trial of acetyl-L-carnitine (SWOG S0715). J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx259

  58. Desideri I, Francolini G, Becherini C, Terziani F, Delli Paoli C, Olmetto E, Loi M, Perna M, Meattini I, Scotti V, Greto D, Bonomo P, Sulprizio S, Livi L (2017) Use of an alpha lipoic, methylsulfonylmethane and bromelain dietary supplement (Opera((R))) for chemotherapy-induced peripheral neuropathy management, a prospective study. Med Oncol 34(3):46. https://doi.org/10.1007/s12032-017-0907-4

    Article  CAS  PubMed  Google Scholar 

  59. Guo Y, Jones D, Palmer JL, Forman A, Dakhil SR, Velasco MR, Weiss M, Gilman P, Mills GM, Noga SJ, Eng C, Overman MJ, Fisch MJ (2014) Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support Care Cancer 22(5):1223–1231. https://doi.org/10.1007/s00520-013-2075-1. Epub 2013 Dec 22

    Article  PubMed  Google Scholar 

  60. Loven D, Levavi H, Sabach G, Zart R, Andras M, Fishman A, Karmon Y, Levi T, Dabby R, Gadoth N (2009) Long-term glutamate supplementation failed to protect against peripheral neurotoxicity of paclitaxel. Eur J Cancer Care 18(1):78–83. https://doi.org/10.1111/j.1365-2354.2008.00996.x

    Article  CAS  Google Scholar 

  61. Stubblefield MD, Vahdat LT, Balmaceda CM, Troxel AB, Hesdorffer CS, Gooch CL (2005) Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin Oncol (R Coll Radiol) 17(4):271–276

    Article  CAS  Google Scholar 

  62. Vahdat L, Papadopoulos K, Lange D, Leuin S, Kaufman E, Donovan D, Frederick D, Bagiella E, Tiersten A, Nichols G, Garrett T, Savage D, Antman K, Hesdorffer CS, Balmaceda C (2001) Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin Cancer Res 7(5):1192–1197. http://clincancerres.aacrjournals.org/content/7/5/1192.abstract

    CAS  PubMed  Google Scholar 

  63. Wang WS, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, Chiou TJ, Liu JH, Yen CC, Chen PM (2007) Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist 12(3):312–319. https://doi.org/10.1634/theoncologist.12-3-312

    Article  CAS  PubMed  Google Scholar 

  64. Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, Kelley MR, Lavino A, Lustberg MB, Paice JA, Schneider BP, Lavoie Smith EM, Smith ML, Smith TJ, Wagner-Johnston N, Hershman DL (2020) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol 14(10):01399

    Google Scholar 

  65. O’Gorman A, Brennan L (2017) The role of metabolomics in determination of new dietary biomarkers. Proc Nutr Soc 76(3):295–302. https://doi.org/10.1017/S0029665116002974. Epub 2017 Jan 16

    Article  CAS  PubMed  Google Scholar 

  66. Sun Y, Kim JH, Vangipuram K, Hayes DF, Smith EML, Yeomans L, Henry NL, Stringer KA, Hertz DL (2018) Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-018-4862-3

  67. Verma P, Devaraj J, Skiles JL, Sajdyk T, Ho RH, Hutchinson R, Wells E, Li L, Renbarger J, Cooper B, Ramkrishna D (2020) A metabolomics approach for early prediction of vincristine-induced peripheral neuropathy. Sci Rep 10(1):9659. https://doi.org/10.1038/s41598-020-66815-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen EI, Crew KD, Trivedi M, Awad D, Maurer M, Kalinsky K, Koller A, Patel P, Kim Kim J, Hershman DL (2015) Identifying predictors of taxane-induced peripheral neuropathy using mass spectrometry-based proteomics technology. PLoS One 10(12):e0145816. https://doi.org/10.1371/journal.pone.0145816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Green H, Soderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA, Peterson C (2009) Pharmacogenetic studies of Paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 104(2):130–137. https://doi.org/10.1111/j.1742-7843.2008.00351.x

    Article  CAS  PubMed  Google Scholar 

  70. Hertz DL, Motsinger-Reif AA, Drobish A, Winham SJ, McLeod HL, Carey LA, Dees EC (2012) CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 134(1):401–410. https://doi.org/10.1007/s10549-012-2054-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leskela S, Jara C, Leandro-Garcia L, Martinez A, Garcia-Donas J, Hernando S, Hurtado A, Vicario JCC, Montero-Conde C, Landa I, Lopez-Jimenez E, Cascon A, Milne RL, Robledo M, Rodriguez-Antona C (2011) Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 11(2):121–129. http://www.nature.com/tpj/journal/v11/n2/suppinfo/tpj201013s1.html. https://doi.org/10.1038/tpj.2010.13

    Article  CAS  PubMed  Google Scholar 

  72. Boora GK, Kanwar R, Kulkarni AA, Abyzov A, Sloan J, Ruddy KJ, Banck MS, Loprinzi CL, Beutler AS (2016) Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med 5(4):631–639. https://doi.org/10.1002/cam4.625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lam SW, Frederiks CN, van der Straaten T, Honkoop AH, Guchelaar HJ, Boven E (2016) Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients. Br J Cancer 115(11):1335–1342. https://doi.org/10.1038/bjc.2016.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. de Graan A-JM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B, de Raaf PJ, de Bruijn P, Engels FK, Eskens FALM, Wiemer EAC, Verweij J, Mathijssen RHJ, van Schaik RHN (2013) CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res 19(12):3316–3324. http://clincancerres.aacrjournals.org/content/19/12/3316.abstract. https://doi.org/10.1158/1078-0432.CCR-12-3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sissung TM, Mross K, Steinberg SM, Behringer D, Figg WD, Sparreboom A, Mielke S (2006) Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer 42(17):2893–2896. http://www.sciencedirect.com/science/article/B6T68-4KTVNX8-3/2/4073a0f32f3a1e153aa1ce4b00b3abbf

    Article  CAS  Google Scholar 

  76. Tanabe Y, Shimizu C, Hamada A, Hashimoto K, Ikeda K, Nishizawa D, Hasegawa J, Shimomura A, Ozaki Y, Tamura N, Yamamoto H, Yunokawa M, Yonemori K, Takano T, Kawabata H, Tamura K, Fujiwara Y (2017) Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. Cancer Chemother Pharmacol 79(6):1179–1186. https://doi.org/10.1007/s00280-017-3314-9

    Article  CAS  PubMed  Google Scholar 

  77. Abraham JE, Guo Q, Dorling L, Tyrer J, Ingle S, Hardy R, Vallier AL, Hiller L, Burns R, Jones L, Bowden S, Dunn J, Poole C, Caldas C, Pharoah PDP, Earl HM (2014) Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with paclitaxel. Clin Cancer Res 20(9):2466–2475

    Article  CAS  Google Scholar 

  78. Leandro-García LJ, Leskelä S, Inglada-Pérez L, Landa I, de Cubas AA, Maliszewska A, Comino-Méndez I, Letón R, Gómez-Graña Á, Torres R, Ramírez JC, Álvarez S, Rivera J, Martínez C, Lozano ML, Cascón A, Robledo M, Rodríguez-Antona C (2012) Hematologic β-tubulin VI isoform exhibits genetic variability that influences paclitaxel toxicity. Cancer Res 72(18):4744–4752. http://cancerres.aacrjournals.org/content/72/18/4744.abstract. https://doi.org/10.1158/0008-5472.CAN-11-2861

    Article  CAS  PubMed  Google Scholar 

  79. Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2(3):155–164. https://doi.org/10.1038/35058515

    Article  CAS  PubMed  Google Scholar 

  80. Leandro-Garcia LJ, Inglada-Perez L, Pita G, Hjerpe E, Leskela S, Jara C, Mielgo X, Gonzalez-Neira A, Robledo M, Avall-Lundqvist E, Green H, Rodriguez-Antona C (2013) Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J Med Genet 50(9):599–605. https://doi.org/10.1136/jmedgenet-2012-101466

    Article  CAS  PubMed  Google Scholar 

  81. Kroetz DL, Baldwin RM, Owzar K, Jiang C, Zembutsu H, Kubo M, Nakamura Y, Shulman LN, Ratain MJ, Cancer and Leukemia Group B (2010) Inherited genetic variation in EPHA5, FGD4, and NRDG1 and paclitaxel (P)-induced peripheral neuropathy (PN): results from a genome-wide association study (GWAS) in CALGB 40101. ASCO Meeting Abstr 28(15_suppl):3021. http://meeting.ascopubs.org/cgi/content/abstract/28/15_suppl/3021

    Google Scholar 

  82. Marcath LA, Kidwell KM, Vangipuram K, Gersch CL, Rae JM, Burness ML, Griggs JJ, Van Poznak C, Hayes DF, Smith EML, Henry NL, Beutler AS, Hertz DL (2020) Genetic variation in EPHA contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Br J Clin Pharmacol 86(5):880–890. https://doi.org/10.1111/bcp.14192. Epub 2020 Feb 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Apellaniz-Ruiz M, Tejero H, Inglada-Perez L, Sanchez-Barroso L, Gutierrez-Gutierrez G, Calvo I, Castelo B, Redondo A, Garcia-Donas J, Romero-Laorden N, Sereno M, Merino M, Curras-Freixes M, Montero-Conde C, Mancikova V, Avall-Lundqvist E, Green H, Al-Shahrour F, Cascon A, Robledo M, Rodriguez-Antona C (2017) Targeted sequencing reveals low-frequency variants in EPHA genes as markers of paclitaxel-induced peripheral neuropathy. Clin Cancer Res 23(5):1227–1235. https://doi.org/10.1158/1078-0432.ccr-16-0694

    Article  PubMed  Google Scholar 

  84. Mir O, Alexandre J, Tran A, Durand JP, Pons G, Treluyer JM, Goldwasser F (2009) Relationship between GSTP1 Ile105Val polymorphism and docetaxel-induced peripheral neuropathy: clinical evidence of a role of oxidative stress in taxane toxicity. Ann Oncol 20(4):736–740. http://annonc.oxfordjournals.org/cgi/content/abstract/20/4/736. https://doi.org/10.1093/annonc/mdn698

    Article  CAS  PubMed  Google Scholar 

  85. Eckhoff L, Feddersen S, Knoop AS, Ewertz M, Bergmann TK (2015) Docetaxel-induced neuropathy: a pharmacogenetic case-control study of 150 women with early-stage breast cancer. Acta Oncologica (Stockholm, Sweden) 54(4):530–537. https://doi.org/10.3109/0284186X.2014.969846

    Article  CAS  Google Scholar 

  86. van Rossum AGJ, Kok M, McCool D, Opdam M, Miltenburg NC, Mandjes IAM, van Leeuwen-Stok E, Imholz ALT, Portielje JEA, Bos M, van Bochove A, van Werkhoven E, Schmidt MK, Oosterkamp HM, Linn SC (2017) Independent replication of polymorphisms predicting toxicity in breast cancer patients randomized between dose-dense and docetaxel-containing adjuvant chemotherapy. Oncotarget 8(69):113531–113542. https://doi.org/10.18632/oncotarget.22697. eCollection 2017 Dec 26

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK, Patel J, Halabi S, Furukawa Y, Wheeler HE, Sibley AB, Lassiter C, Weisman L, Watson D, Krens SD, Mulkey F, Renn CL, Small EJ, Febbo PG, Shterev I, Kroetz DL, Friedman PN, Mahoney JF, Carducci MA, Kelley MJ, Nakamura Y, Kubo M, Dorsey SG, Dolan ME, Morris MJ, Ratain MJ, McLeod HL (2016) Pharmacogenetic discovery in CALGB (Alliance) 90401 and mechanistic validation of a VAC14 polymorphism that increases risk of docetaxel-induced neuropathy. Clin Cancer Res 22(19):4890–4900. https://doi.org/10.1158/1078-0432.ccr-15-2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li QF, Yao RY, Liu KW, Lv HY, Jiang T, Liang J (2010) Genetic polymorphism of GSTP1: prediction of clinical outcome to oxaliplatin/5-FU-based chemotherapy in advanced gastric cancer. J Korean Med Sci 25(6):846–852. https://doi.org/10.3346/jkms.2010.25.6.846. Epub 2010 May 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goekkurt E, Al-Batran SE, Hartmann JT, Mogck U, Schuch G, Kramer M, Jaeger E, Bokemeyer C, Ehninger G, Stoehlmacher J (2009) Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: a study of the arbeitsgemeinschaft internistische onkologie. J Clin Oncol 27(17):2863–2873. https://doi.org/10.1200/JCO.2008.19.1718. Epub 2009 Mar 30

    Article  CAS  PubMed  Google Scholar 

  90. McLeod HL, Sargent DJ, Marsh S, Green EM, King CR, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Thibodeau SN, Grothey A, Morton RF, Goldberg RM (2010) Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol 28(20):3227–3233. https://doi.org/10.1200/JCO.2009.21.7943. Epub 2010 Jun 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Inada M, Sato M, Morita S, Kitagawa K, Kawada K, Mitsuma A, Sawaki M, Fujita K, Ando Y (2010) Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int J Clin Pharmacol Ther 48(11):729–734. https://doi.org/10.5414/cpp48729

    Article  CAS  PubMed  Google Scholar 

  92. Chen YC, Tzeng CH, Chen PM, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, Wang WS (2010) Influence of GSTP1 I105V polymorphism on cumulative neuropathy and outcome of FOLFOX-4 treatment in Asian patients with colorectal carcinoma. Cancer Sci 101(2):530–535. https://doi.org/10.1111/j.1349-7006.2009.01418.x. Epub 2009 Oct 28

    Article  CAS  PubMed  Google Scholar 

  93. Kumamoto K, Ishibashi K, Okada N, Tajima Y, Kuwabara K, Kumagai Y, Baba H, Haga N, Ishida H (2013) Polymorphisms of GSTP1, ERCC2 and TS-3′UTR are associated with the clinical outcome of mFOLFOX6 in colorectal cancer patients. Oncol Lett 6(3):648–654. https://doi.org/10.3892/ol.2013.1467. Epub 2013 July 15

  94. Joerger M, Burgers SA, Baas P, Smit EF, Haitjema TJ, Bard MP, Doodeman VD, Smits PH, Vincent A, Huitema AD, Beijnen JH, Schellens JH (2012) Germline polymorphisms in patients with advanced nonsmall cell lung cancer receiving first-line platinum-gemcitabine chemotherapy: a prospective clinical study. Cancer 118(9):2466–2475. https://doi.org/10.1002/cncr.26562. Epub 2011 Sep 28

    Article  CAS  PubMed  Google Scholar 

  95. Oldenburg J, Kraggerud SM, Brydøy M, Cvancarova M, Lothe RA, Fossa SD (2007) Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study. J Transl Med 5:70. https://doi.org/10.1186/1479-5876-5-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peng Z, Wang Q, Gao J, Ji Z, Yuan J, Tian Y, Shen L (2013) Association between GSTP1 Ile105Val polymorphism and oxaliplatin-induced neuropathy: a systematic review and meta-analysis. Cancer Chemother Pharmacol 72(2):305–314. https://doi.org/10.1007/s00280-013-2194-x. Epub 2013 May 22

    Article  CAS  PubMed  Google Scholar 

  97. Cecchin E, D’Andrea M, Lonardi S, Zanusso C, Pella N, Errante D, De Mattia E, Polesel J, Innocenti F, Toffoli G (2013) A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharmacogenomics J 13(5):403–409. https://doi.org/10.1038/tpj.2012.31. Epub 2012 Aug 7

    Article  CAS  PubMed  Google Scholar 

  98. Custodio A, Moreno-Rubio J, Aparicio J, Gallego-Plazas J, Yaya R, Maurel J, Higuera O, Burgos E, Ramos D, Calatrava A, Andrada E, López R, Moreno V, Madero R, Cejas P, Feliu J (2014) Pharmacogenetic predictors of severe peripheral neuropathy in colon cancer patients treated with oxaliplatin-based adjuvant chemotherapy: a GEMCAD group study. Ann Oncol 25(2):398–403. https://doi.org/10.1093/annonc/mdt546. Epub 2013 Dec 18

    Article  CAS  PubMed  Google Scholar 

  99. Johnson C, Pankratz VS, Velazquez AI, Aakre JA, Loprinzi CL, Staff NP, Windebank AJ, Yang P (2015) Candidate pathway-based genetic association study of platinum and platinum-taxane related toxicity in a cohort of primary lung cancer patients. J Neurol Sci 349(1–2):124–128. https://doi.org/10.1016/j.jns.2014.12.041. Epub 2015 Jan 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paré L, Marcuello E, Altés A, del Río E, Sedano L, Salazar J, Cortés A, Barnadas A, Baiget M (2008) Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy. Br J Cancer 99(7):1050–1055. https://doi.org/10.1038/sj.bjc.6604671. Epub 2008 Sep 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chua W, Goldstein D, Lee CK, Dhillon H, Michael M, Mitchell P, Clarke SJ, Iacopetta B (2009) Molecular markers of response and toxicity to FOLFOX chemotherapy in metastatic colorectal cancer. Br J Cancer 101(6):998–1004. https://doi.org/10.1038/sj.bjc.6605239. Epub 2009 Aug 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chang PM, Tzeng CH, Chen PM, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, Wang WS (2009) ERCC1 codon 118 C→T polymorphism associated with ERCC1 expression and outcome of FOLFOX-4 treatment in Asian patients with metastatic colorectal carcinoma. Cancer Sci 100(2):278–283. https://doi.org/10.1111/j.1349-7006.2008.01031.x

    Article  CAS  PubMed  Google Scholar 

  103. Kjersem JB, Thomsen M, Guren T, Hamfjord J, Carlsson G, Gustavsson B, Ikdahl T, Indrebø G, Pfeiffer P, Lingjærde O, Tveit KM, Wettergren Y, Kure EH (2016) AGXT and ERCC2 polymorphisms are associated with clinical outcome in metastatic colorectal cancer patients treated with 5-FU/oxaliplatin. Pharmacogenomics J 16(3):272–279. https://doi.org/10.1038/tpj.2015.54. Epub 2015 Aug 11

    Article  CAS  PubMed  Google Scholar 

  104. Lee KH, Chang HJ, Han SW, Oh DY, Im SA, Bang YJ, Kim SY, Lee KW, Kim JH, Hong YS, Kim TW, Park YS, Kang WK, Shin SJ, Ahn JB, Kang GH, Jeong SY, Park KJ, Park JG, Kim TY (2013) Pharmacogenetic analysis of adjuvant FOLFOX for Korean patients with colon cancer. Cancer Chemother Pharmacol 71(4):843–851. https://doi.org/10.1007/s00280-013-2075-3. Epub 2013 Jan 13

    Article  CAS  PubMed  Google Scholar 

  105. Qian YY, Liu XY, Wu Q, Song X, Chen XF, Liu YQ, Pei D, Shen LZ, Shu YQ (2014) The ERCC1 C118T polymorphism predicts clinical outcomes of colorectal cancer patients receiving oxaliplatin-based chemotherapy: a meta-analysis based on 22 studies. Asian Pac J Cancer Prev 15(19):8383–8390. https://doi.org/10.7314/apjcp.2014.15.19.8383

    Article  PubMed  Google Scholar 

  106. Madi A, Fisher D, Maughan TS, Colley JP, Meade AM, Maynard J, Humphreys V, Wasan H, Adams RA, Idziaszczyk S, Harris R, Kaplan RS, Cheadle JP (2018) Pharmacogenetic analyses of 2183 patients with advanced colorectal cancer; potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy. Eur J Cancer 102:31–39. https://doi.org/10.1016/j.ejca.2018.07.009. Epub 2018 Aug 13

    Article  CAS  PubMed  Google Scholar 

  107. Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, Quinney SK, Li L, McCammack KC, Hall SD, Renbarger JL (2011) Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 56(3):361–367. https://doi.org/10.1002/pbc.22845

    Article  PubMed  Google Scholar 

  108. Guilhaumou R, Solas C, Bourgarel-Rey V, Quaranta S, Rome A, Simon N, Lacarelle B, Andre N (2011) Impact of plasma and intracellular exposure and CYP3A4, CYP3A5, and ABCB1 genetic polymorphisms on vincristine-induced neurotoxicity. Cancer Chemother Pharmacol 68(6):1633–1638. https://doi.org/10.1007/s00280-011-1745-2

    Article  CAS  PubMed  Google Scholar 

  109. Ceppi F, Langlois-Pelletier C, Gagne V, Rousseau J, Ciolino C, De Lorenzo S, Kevin KM, Cijov D, Sallan SE, Silverman LB, Neuberg D, Kutok JL, Sinnett D, Laverdiere C, Krajinovic M (2014) Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics 15(8):1105–1116. https://doi.org/10.2217/pgs.14.68

    Article  CAS  PubMed  Google Scholar 

  110. Hartman A, van Schaik RH, van der Heiden IP, Broekhuis MJ, Meier M, den Boer ML, Pieters R (2010) Polymorphisms in genes involved in vincristine pharmacokinetics or pharmacodynamics are not related to impaired motor performance in children with leukemia. Leuk Res 34(2):154–159. https://doi.org/10.1016/j.leukres.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  111. Guilhaumou R, Simon N, Quaranta S, Verschuur A, Lacarelle B, Andre N, Solas C (2011) Population pharmacokinetics and pharmacogenetics of vincristine in paediatric patients treated for solid tumour diseases. Cancer Chemother Pharmacol 68(5):1191–1198. https://doi.org/10.1007/s00280-010-1541-4

    Article  CAS  PubMed  Google Scholar 

  112. Diouf B, Crews KR, Lew G, Pei D, Cheng C, Bao J, Zheng JJ, Yang W, Fan Y, Wheeler HE, Wing C, Delaney SM, Komatsu M, Paugh SW, McCorkle JR, Lu X, Winick NJ, Carroll WL, Loh ML, Hunger SP, Devidas M, Pui CH, Dolan ME, Relling MV, Evans WE (2015) Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313(8):815–823. https://doi.org/10.1001/jama.2015.0894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stock W, Diouf B, Crews KR, Pei D, Cheng C, Laumann K, Mandrekar SJ, Luger S, Advani A, Stone RM, Larson RA, Evans WE (2017) An inherited genetic variant in CEP72 promoter predisposes to vincristine-induced peripheral neuropathy in adults with acute lymphoblastic leukemia. Clin Pharmacol Ther 101(3):391–395. https://doi.org/10.1002/cpt.506

    Article  CAS  PubMed  Google Scholar 

  114. Wright GEB, Amstutz U, Drogemoller BI, Shih J, Rassekh SR, Hayden MR, Carleton BC, Ross CJD (2018) Pharmacogenomics of vincristine-induced peripheral neuropathy implicates pharmacokinetic and inherited neuropathy genes. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.1179

  115. Gutierrez-Camino A, Martin-Guerrero I, Lopez-Lopez E, Echebarria-Barona A, Zabalza I, Ruiz I, Guerra-Merino I, Garcia-Orad A (2015) Lack of association of the CEP72 rs924607 TT genotype with vincristine-related peripheral neuropathy during the early phase of pediatric acute lymphoblastic leukemia treatment in a Spanish population. Pharmacogenet Genomics. https://doi.org/10.1097/FPC.0000000000000191

  116. Zgheib NK, Ghanem KM, Tamim H, Aridi C, Shahine R, Tarek N, Saab R, Abboud MR, El-Solh H, Muwakkit SA (2018) Genetic polymorphisms in candidate genes are not associated with increased vincristine-related peripheral neuropathy in Arab children treated for acute childhood leukemia: a single institution study. Pharmacogenet Genomics 28(8):189–195. https://doi.org/10.1097/fpc.0000000000000345

    Article  CAS  PubMed  Google Scholar 

  117. Li L, Sajdyk T, Smith EML, Chang CW, Li C, Ho RH, Hutchinson R, Wells E, Skiles JL, Winick N, Martin PL, Renbarger JL (2019) Genetic variants associated with vincristine-induced peripheral neuropathy in two populations of children with acute lymphoblastic leukemia. Clin Pharmacol Ther 105(6):1421–1428. https://doi.org/10.1002/cpt.1324

    Article  CAS  PubMed  Google Scholar 

  118. Ando Y, Price DK, Dahut WL, Cox MC, Reed E, Figg WD (2002) Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide. Cancer Biol Ther 1(6):669–673. https://doi.org/10.4161/cbt.318

    Article  CAS  PubMed  Google Scholar 

  119. Matsuzawa N, Nakamura K, Matsuda M, Ishida F, Ohmori S (2012) Influence of cytochrome P450 2C19 gene variations on pharmacokinetic parameters of thalidomide in Japanese patients. Biol Pharm Bull 35(3):317–320. https://doi.org/10.1248/bpb.35.317

    Article  CAS  PubMed  Google Scholar 

  120. Feng R, Xu PP, Chen BL, Mao R, Zhang SH, Qiu Y, Zeng ZR, Chen MH, He Y (2020) CYP2C19 polymorphism has no correlation with the efficacy and safety of thalidomide in the treatment of immune-related bowel disease. J Dig Dis 21(2):98–103. https://doi.org/10.1111/1751-2980.12842

    Article  CAS  PubMed  Google Scholar 

  121. Cliff J, Jorgensen AL, Lord R, Azam F, Cossar L, Carr DF, Pirmohamed M (2017) The molecular genetics of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Crit Rev Oncol Hematol 120:127–140. https://doi.org/10.1016/j.critrevonc.2017.09.009. Epub 2017 Sep 25

    Article  CAS  Google Scholar 

  122. Frederiks CN, Lam SW, Guchelaar HJ, Boven E (2015) Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: a systematic review. Cancer Treat Rev 41(10):935–950. https://doi.org/10.1016/j.ctrv.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  123. Hertz DL (2013) Germline pharmacogenetics of paclitaxel for cancer treatment. Pharmacogenomics 14(9):1065–1084. https://doi.org/10.2217/pgs.13.90

    Article  CAS  PubMed  Google Scholar 

  124. Bergmann TK, Brasch-Andersen C, Green H, Mirza M, Pedersen RS, Nielsen F, Skougaard K, Wihl J, Keldsen N, Damkier P, Friberg LE, Peterson C, Vach W, Karlsson MO, Brosen K (2011) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 11(2):113–120. https://doi.org/10.1038/tpj.2010.19

    Article  CAS  PubMed  Google Scholar 

  125. Marcath LA, Kidwell KM, Robinson AC, Vangipuram K, Burness ML, Griggs JJ, Poznak CV, Schott AF, Hayes DF, Henry NL, Hertz DL (2019) Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 20(2):95–104. https://doi.org/10.2217/pgs-2018-0162

    Article  CAS  PubMed  Google Scholar 

  126. Marcath LA, Pasternak AL, Hertz DL (2019) Challenges to assess substrate-dependent allelic effects in CYP450 enzymes and the potential clinical implications. Pharmacogenomics J 19(6):501–515. https://doi.org/10.1038/s41397-019-0105-1. Epub 2019 Oct 15

    Article  CAS  PubMed  Google Scholar 

  127. Schneider BP, Li L, Miller K, Flockhart D, Radovich M, Hancock BA, Kassem N, Foroud T, Koller DL, Badve SS, Li Z, Partridge AH, O’Neill AM, Sparano JA, Dang CT, Northfelt DW, Smith ML, Railey E, Sledge GW (2011) Genetic associations with taxane-induced neuropathy by a genome-wide association study (GWAS) in E5103. ASCO Meeting Abstr 29(15_suppl):1000. http://meeting.ascopubs.org/cgi/content/abstract/29/15_suppl/1000

    Google Scholar 

  128. Bergmann TK, Vach W, Feddersen S, Eckhoff L, Gréen H, Herrstedt J, Brosen K (2012) GWAS-based association between RWDD3 and TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian cancer patients. Acta Oncol 52(4):871–874. https://doi.org/10.3109/0284186X.2012.707787

    Article  CAS  PubMed  Google Scholar 

  129. Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, Schneider BP, Rashkin SR, Witte JS, Friedman PN, Ratain MJ, McLeod HL, Rugo HS, Shulman LN, Kubo M, Owzar K, Kroetz DL (2020) Genome-wide meta-analysis validates a role for S1PR1 in microtubule targeting agent-induced sensory peripheral neuropathy. Clin Pharmacol Ther 20(10)

    Google Scholar 

  130. Kulkarni AA, Boora G, Kanwar R, Ruddy KJ, Banck MS, Le-Lindqwister N, Therneau TM, Loprinzi CL, Beutler AS (2015) RWDD3 and TECTA variants not linked to paclitaxel induced peripheral neuropathy in North American trial Alliance N08C1. Acta Oncol 54(8):1227–1229. https://doi.org/10.3109/0284186x.2014.985388

    Article  PubMed  Google Scholar 

  131. Schneider BP, Li L, Radovich M, Shen F, Miller KD, Flockhart DA, Jiang G, Vance G, Gardner L, Vatta M, Bai S, Lai D, Koller D, Zhao F, O’Neill A, Smith ML, Railey E, White C, Partridge A, Sparano J, Davidson NE, Foroud T, Sledge GW Jr (2015) Genome-wide association studies for taxane-induced peripheral neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res 21(22):5082–5091. https://doi.org/10.1158/1078-0432.CCR-15-0586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sucheston-Campbell LE, Clay-Gilmour AI, Barlow WE, Budd GT, Stram DO, Haiman CA, Sheng X, Yan L, Zirpoli G, Yao S, Jiang C, Owzar K, Hershman D, Albain KS, Hayes DF, Moore HC, Hobday TJ, Stewart JA, Rizvi A, Isaacs C, Salim M, Gralow JR, Hortobagyi GN, Livingston RB, Kroetz DL, Ambrosone CB (2018) Genome-wide meta-analyses identifies novel taxane-induced peripheral neuropathy-associated loci. Pharmacogenet Genomics 28(2):49–55. https://doi.org/10.1097/fpc.0000000000000318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, Watson D, Eclov RJ, Mefford J, McLeod HL, Friedman PN, Hudis CA, Winer EP, Jorgenson EM, Witte JS, Shulman LN, Nakamura Y, Ratain MJ, Kroetz DL (2012) A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 18(18):5099–5109. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22843789. https://doi.org/10.1158/1078-0432.CCR-12-1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen Y, Fang F, Kidwell KM, Vangipuram K, Marcath LA, Gersch CL, Rae JM, Hayes DF, Lavoie Smith EM, Henry NL, Beutler AS, Hertz DL (2020) Genetic variation in Charcot-Marie-Tooth genes contributes to sensitivity to paclitaxel-induced peripheral neuropathy. Pharmacogenomics 23(10):gs-2020

    Google Scholar 

  135. Chua KC, Kroetz DL (2017) Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy. Clin Pharmacol Ther 101(4):450–452. https://doi.org/10.1002/cpt.590

    Article  CAS  PubMed  Google Scholar 

  136. Bosch TM, Huitema ADR, Doodeman VD, Jansen R, Witteveen E, Smit WM, Jansen RL, van Herpen CM, Soesan M, Beijnen JH, Schellens JHM (2006) Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 12(19):5786–5793. http://clincancerres.aacrjournals.org/content/12/19/5786.abstract. https://doi.org/10.1158/1078-0432.CCR-05-2649

    Article  CAS  PubMed  Google Scholar 

  137. Chew SC, Singh O, Chen X, Ramasamy RD, Kulkarni T, Lee EJ, Tan EH, Lim WT, Chowbay B (2011) The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother Pharmacol 67(6):1471–1478. https://doi.org/10.1007/s00280-011-1625-9

    Article  CAS  PubMed  Google Scholar 

  138. Kus T, Aktas G, Kalender ME, Demiryurek AT, Ulasli M, Oztuzcu S, Sevinc A, Kul S, Camci C (2016) Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. Onco Targets Ther 9:5073–5080. https://doi.org/10.2147/OTT.S106574. eCollection 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, Dahut W, Sparreboom A, Figg WD (2008) ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 14(14):4543–4549. http://clincancerres.aacrjournals.org/content/14/14/4543.abstract. https://doi.org/10.1158/1078-0432.CCR-07-4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Won HH, Lee J, Park JO, Park YS, Lim HY, Kang WK, Kim JW, Lee SY, Park SH (2012) Polymorphic markers associated with severe oxaliplatin-induced, chronic peripheral neuropathy in colon cancer patients. Cancer 118(11):2828–2836. https://doi.org/10.1002/cncr.26614. Epub 2011 Oct 21

    Article  CAS  PubMed  Google Scholar 

  141. Kanai M, Kawaguchi T, Kotaka M, Shinozaki K, Touyama T, Manaka D, Ishigure K, Hasegawa J, Munemoto Y, Matsui T, Takagane A, Ishikawa H, Matsumoto S, Sakamoto J, Saji S, Yoshino T, Ohtsu A, Watanabe T, Matsuda F (2016) Large-scale prospective pharmacogenomics study of oxaliplatin-induced neuropathy in colon cancer patients enrolled in the JFMC41-1001-C2 (JOIN Trial). Ann Oncol 27(6):1143–1148. https://doi.org/10.1093/annonc/mdw074. Epub 2016 Feb 18

    Article  CAS  PubMed  Google Scholar 

  142. Oguri T, Mitsuma A, Inada-Inoue M, Morita S, Shibata T, Shimokata T, Sugishita M, Nakayama G, Uehara K, Hasegawa Y, Ando Y (2013) Genetic polymorphisms associated with oxaliplatin-induced peripheral neurotoxicity in Japanese patients with colorectal cancer. Int J Clin Pharmacol Ther 51(6):475–481. https://doi.org/10.5414/CP201851

    Article  CAS  PubMed  Google Scholar 

  143. Terrazzino S, Argyriou AA, Cargnin S, Antonacopoulou AG, Briani C, Bruna J, Velasco R, Alberti P, Campagnolo M, Lonardi S, Cortinovis D, Cazzaniga M, Santos C, Kalofonos HP, Canonico PL, Genazzani AA, Cavaletti G (2015) Genetic determinants of chronic oxaliplatin-induced peripheral neurotoxicity: a genome-wide study replication and meta-analysis. J Peripher Nerv Syst 20(1):15–23. https://doi.org/10.1111/jns.12110

    Article  CAS  PubMed  Google Scholar 

  144. Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kim J, Fossa SD, Hertz DL, Mushiroda T, Kubo M, Einhorn LH, Cox NJ, Travis LB (2017) Clinical and genome-wide analysis of cisplatin-induced peripheral neuropathy in survivors of adult-onset cancer. Clin Cancer Res 23(19):5757–5768. https://doi.org/10.1158/1078-0432.ccr-16-3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Plasschaert SL, Groninger E, Boezen M, Kema I, de Vries EG, Uges D, Veerman AJ, Kamps WA, Vellenga E, de Graaf SS, de Bont ES (2004) Influence of functional polymorphisms of the MDR1 gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther 76(3):220–229. https://doi.org/10.1016/j.clpt.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  146. Broyl A, Corthals SL, Jongen JL, van der Holt B, Kuiper R, de Knegt Y, van Duin M, el Jarari L, Bertsch U, Lokhorst HM, Durie BG, Goldschmidt H, Sonneveld P (2010) Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol 11(11):1057–1065. https://doi.org/10.1016/S1470-2045(10)70206-0. Epub 2010 Sep 21

    Article  CAS  PubMed  Google Scholar 

  147. Campo C, Da Silva Filho MI, Weinhold N, Goldschmidt H, Hemminki K, Merz M, Försti A (2017) Genetic susceptibility to bortezomib-induced peripheral neuroropathy: replication of the reported candidate susceptibility loci. Neurochem Res 42(3):925–931. https://doi.org/10.1007/s11064-016-2007-9. Epub 2016 July 16

    Article  CAS  PubMed  Google Scholar 

  148. Corthals SL, Kuiper R, Johnson DC, Sonneveld P, Hajek R, van der Holt B, Magrangeas F, Goldschmidt H, Morgan GJ, Avet-Loiseau H (2011) Genetic factors underlying the risk of bortezomib induced peripheral neuropathy in multiple myeloma patients. Haematologica 96(11):1728–1732. https://doi.org/10.3324/haematol.2011.041434. Epub 2011 Jul 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Favis R, Sun Y, van de Velde H, Broderick E, Levey L, Meyers M, Mulligan G, Harousseau JL, Richardson PG, Ricci DS (2011) Genetic variation associated with bortezomib-induced peripheral neuropathy. Pharmacogenet Genomics 21(3):121–129. https://doi.org/10.1097/FPC.0b013e3283436b45

    Article  CAS  PubMed  Google Scholar 

  150. Campo C, da Silva Filho MI, Weinhold N, Mahmoudpour SH, Goldschmidt H, Hemminki K, Merz M, Försti A (2018) Bortezomib-induced peripheral neuropathy: a genome-wide association study on multiple myeloma patients. Hematol Oncol 36(1):232–237. https://doi.org/10.1002/hon.2391. Epub 2017 Mar 20

    Article  CAS  PubMed  Google Scholar 

  151. García-Sanz R, Corchete LA, Alcoceba M, Chillon MC, Jiménez C, Prieto I, García-Álvarez M, Puig N, Rapado I, Barrio S, Oriol A, Blanchard MJ, de la Rubia J, Martínez R, Lahuerta JJ, González Díaz M, Mateos MV, San Miguel JF, Martínez-López J, Sarasquete ME (2017) Prediction of peripheral neuropathy in multiple myeloma patients receiving bortezomib and thalidomide: a genetic study based on a single nucleotide polymorphism array. Hematol Oncol 35(4):746–751. https://doi.org/10.1002/hon.2337. Epub 2016 Sep 8

    Article  CAS  PubMed  Google Scholar 

  152. Magrangeas F, Kuiper R, Avet-Loiseau H, Gouraud W, Guérin-Charbonnel C, Ferrer L, Aussem A, Elghazel H, Suhard J, Sakissian H, Attal M, Munshi NC, Sonneveld P, Dumontet C, Moreau P, van Duin M, Campion L, Minvielle S (2016) A genome-wide association study identifies a novel locus for bortezomib-induced peripheral neuropathy in European patients with multiple myeloma. Clin Cancer Res 22(17):4350–4355. https://doi.org/10.1158/1078-0432.CCR-15-3163. Epub 2016 Apr 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cibeira MT, de Larrea CF, Navarro A, Díaz T, Fuster D, Tovar N, Rosiñol L, Monzó M, Bladé J (2011) Impact on response and survival of DNA repair single nucleotide polymorphisms in relapsed or refractory multiple myeloma patients treated with thalidomide. Leuk Res 35(9):1178–1183. https://doi.org/10.1016/j.leukres.2011.02.009. Epub 2011 Mar 23

    Article  CAS  PubMed  Google Scholar 

  154. Han M, Murugesan A, Bahlis NJ, Song K, White D, Chen C, Seftel MD, Howsen-Jan K, Reece D, Stewart K, Xie Y, Hay AE, Shepherd L, Djurfeldt M, Zhu L, Meyer RM, Chen BE, Reiman T (2016) A pharmacogenetic analysis of the Canadian Cancer Trials Group MY.10 clinical trial of maintenance therapy for multiple myeloma. Blood 128(5):732–735. https://doi.org/10.1182/blood-2016-06-716902. Epub 2016 Jun 23

    Article  CAS  PubMed  Google Scholar 

  155. Johnson DC, Corthals SL, Walker BA, Ross FM, Gregory WM, Dickens NJ, Lokhorst HM, Goldschmidt H, Davies FE, Durie BG, Van Ness B, Child JA, Sonneveld P, Morgan GJ (2011) Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J Clin Oncol 29(7):797–804. https://doi.org/10.1200/JCO.2010.28.0792. Epub 2011 Jan 18

    Article  CAS  PubMed  Google Scholar 

  156. Pachman DR, Qin R, Seisler DK, Smith EM, Beutler AS, Ta LE, Lafky JM, Wagner-Johnston ND, Ruddy KJ, Dakhil S, Staff NP, Grothey A, Loprinzi CL (2015) Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III trial N08CB (Alliance). J Clin Oncol 33(30):3416–3422. https://doi.org/10.1200/jco.2014.58.8533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Attal N, Bouhassira D, Gautron M, Vaillant JN, Mitry E, Lepère C, Rougier P, Guirimand F (2009) Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain 144(3):245–252. https://doi.org/10.1016/j.pain.2009.03.024. Epub 2009 May 19

    Article  CAS  PubMed  Google Scholar 

  158. Loprinzi CL, Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, Kamal A, Le-Lindqwister NA, Soori GS, Jaslowski AJ, Novotny PJ, Lachance DH (2011) Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol 29(11):1472–1478. https://doi.org/10.1200/JCO.2010.33.0308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pachman DR, Qin R, Seisler D, Smith EM, Kaggal S, Novotny P, Ruddy KJ, Lafky JM, Ta LE, Beutler AS, Wagner-Johnston ND, Staff NP, Grothey A, Dougherty PM, Cavaletti G, Loprinzi CL (2016) Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer 24(12):5059–5068. https://doi.org/10.1007/s00520-016-3373-1. Epub 2016 Aug 18

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kim SH, Kim W, Kim JH, Woo MK, Baek JY, Kim SY, Chung SH, Kim HJ (2018) A prospective study of chronic oxaliplatin-induced neuropathy in patients with colon cancer: long-term outcomes and predictors of severe oxaliplatin-induced neuropathy. J Clin Neurol 14(1):81–89. https://doi.org/10.3988/jcn.2018.14.1.81

    Article  PubMed  Google Scholar 

  161. Velasco R, Bruna J, Briani C, Argyriou AA, Cavaletti G, Alberti P, Frigeni B, Cacciavillani M, Lonardi S, Cortinovis D, Cazzaniga M, Santos C, Kalofonos HP (2014) Early predictors of oxaliplatin-induced cumulative neuropathy in colorectal cancer patients. J Neurol Neurosurg Psychiatry 85(4):392–398. https://doi.org/10.1136/jnnp-2013-305334. Epub 2013 Jun 29

    Article  PubMed  Google Scholar 

  162. El Chediak A, Haydar AA, Hakim A, Massih SA, Hilal L, Mukherji D, Temraz S, Shamseddine A (2018) Increase in spleen volume as a predictor of oxaliplatin toxicity. Ther Clin Risk Manag 14:653–657. https://doi.org/10.2147/TCRM.S150968. eCollection 2018

    Article  PubMed  PubMed Central  Google Scholar 

  163. Cavaletti G, Bogliun G, Marzorati L, Zincone A, Piatti M, Colombo N, Franchi D, La Presa MT, Lissoni A, Buda A, Fei F, Cundari S, Zanna C (2004) Early predictors of peripheral neurotoxicity in cisplatin and paclitaxel combination chemotherapy. Ann Oncol 15(9):1439–1442. https://doi.org/10.1093/annonc/mdh348

    Article  CAS  PubMed  Google Scholar 

  164. Youk J, Kim YS, Lim JA, Shin DY, Koh Y, Lee ST, Kim I (2017) Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS One 12(8):e0183491. https://doi.org/10.1371/journal.pone.0183491. eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H (2019) Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 90(8):870–881. https://doi.org/10.1136/jnnp-2018-320106. Epub 2019 Apr 9

    Article  PubMed  Google Scholar 

  166. Meregalli C, Fumagalli G, Alberti P, Canta A, Carozzi VA, Chiorazzi A, Monza L, Pozzi E, Sandelius Å, Blennow K, Zetterberg H, Marmiroli P, Cavaletti G (2018) Neurofilament light chain as disease biomarker in a rodent model of chemotherapy induced peripheral neuropathy. Exp Neurol 307:129–132. https://doi.org/10.1016/j.expneurol.2018.06.005. Epub 2018 Jun 13

    Article  CAS  PubMed  Google Scholar 

  167. Meregalli C, Fumagalli G, Alberti P, Canta A, Chiorazzi A, Monza L, Pozzi E, Carozzi VA, Blennow K, Zetterberg H, Cavaletti G, Marmiroli P (2020) Neurofilament light chain: a specific serum biomarker of axonal damage severity in rat models of chemotherapy-induced peripheral neurotoxicity. Arch Toxicol 94(7):2517–2522. https://doi.org/10.1007/s00204-020-02755-w. Epub 2020 Apr 24

    Article  CAS  PubMed  Google Scholar 

  168. Sharma MR, Mehrotra S, Gray E, Wu K, Barry WT, Hudis C, Winer EP, Lyss AP, Toppmeyer DL, Moreno-Aspitia A, Lad TE, Velasco M, Overmoyer B, Rugo HS, Ratain MJ, Gobburu JV (2020) Personalized management of chemotherapy-induced peripheral neuropathy based on a patient reported outcome: CALGB 40502 (Alliance). J Clin Pharmacol 60(4):444–452. https://doi.org/10.1002/jcph.1559. Epub 2019 Dec 4

    Article  CAS  PubMed  Google Scholar 

  169. Delmotte JB, Beaussier H, Auzeil N, Massicot F, Laprévote O, Raymond E, Coudoré F (2018) Is quantitative sensory testing helpful in the management of oxaliplatin neuropathy? a two-year clinical study. Cancer Treat Res Commun 17:31–36. https://doi.org/10.1016/j.ctarc.2018.10.002. Epub 2018 Oct 10

    Article  CAS  PubMed  Google Scholar 

  170. Kleckner IR, Kamen C, Gewandter JS, Mohile NA, Heckler CE, Culakova E, Fung C, Janelsins MC, Asare M, Lin PJ, Reddy PS, Giguere J, Berenberg J, Kesler SR, Mustian KM (2018) Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial. Support Care Cancer 26(4):1019–1028. https://doi.org/10.1007/s00520-017-4013-0

    Article  PubMed  Google Scholar 

  171. Zimmer P, Trebing S, Timmers-Trebing U, Schenk A, Paust R, Bloch W, Rudolph R, Streckmann F, Baumann FT (2018) Eight-week, multimodal exercise counteracts a progress of chemotherapy-induced peripheral neuropathy and improves balance and strength in metastasized colorectal cancer patients: a randomized controlled trial. Support Care Cancer 26(2):615–624. https://doi.org/10.1007/s00520-017-3875-5

    Article  PubMed  Google Scholar 

  172. Hertz DL, Kidwell KM, Vangipuram K, Li F, Pai MP, Burness M, Griggs JJ, Schott AF, Van Poznak C, Hayes DF, Lavoie Smith EM, Henry NL (2018) Paclitaxel plasma concentration after the first infusion predicts treatment-limiting peripheral neuropathy. Clin Cancer Res 24(15):3602–3610. https://doi.org/10.1158/1078-0432.Ccr-18-0656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vatandoust S, Joshi R, Pittman KB, Esterman A, Broadbridge V, Adams J, Singhal N, Yeend S, Price TJ (2014) A descriptive study of persistent oxaliplatin-induced peripheral neuropathy in patients with colorectal cancer. Support Care Cancer 22(2):513–518. https://doi.org/10.1007/s00520-013-2004-3

    Article  PubMed  Google Scholar 

  174. Zirpoli GR, McCann SE, Sucheston-Campbell LE, Hershman DL, Ciupak G, Davis W, Unger JM, Moore HCF, Stewart JA, Isaacs C, Hobday TJ, Salim M, Hortobagyi GN, Gralow JR, Budd GT, Albain KS, Ambrosone CB (2017) Supplement use and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221): the DELCaP study. J Natl Cancer Inst 109(12). https://doi.org/10.1093/jnci/djx098

  175. Brami C, Bao T, Deng G (2016) Natural products and complementary therapies for chemotherapy-induced peripheral neuropathy: a systematic review. Crit Rev Oncol Hematol 98:325–334. https://doi.org/10.1016/j.critrevonc.2015.11.014. Epub 2015 Nov 23

    Article  PubMed  Google Scholar 

  176. Walker AF (2007) Potential micronutrient deficiency lacks recognition in diabetes. Br J Gen Pract 57(534):3–4

    PubMed  PubMed Central  Google Scholar 

  177. Ambrosone CB, Zirpoli GR, Hutson AD, McCann WE, McCann SE, Barlow WE, Kelly KM, Cannioto R, Sucheston-Campbell LE, Hershman DL, Unger JM, Moore HCF, Stewart JA, Isaacs C, Hobday TJ, Salim M, Hortobagyi GN, Gralow JR, Budd GT, Albain KS (2020) Dietary supplement use during chemotherapy and survival outcomes of patients with breast cancer enrolled in a Cooperative Group Clinical Trial (SWOG S0221). J Clin Oncol 38(8):804–814. https://doi.org/10.1200/JCO.19.01203. Epub 2019 Dec 19

    Article  CAS  PubMed  Google Scholar 

  178. Mongiovi JM, Zirpoli GR, Cannioto R, Sucheston-Campbell LE, Hershman DL, Unger JM, Moore HCF, Stewart JA, Isaacs C, Hobday TJ, Salim M, Hortobagyi GN, Gralow JR, Thomas Budd G, Albain KS, Ambrosone CB, McCann SE (2018) Associations between self-reported diet during treatment and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221). Breast Cancer Res 20(1):146. https://doi.org/10.1186/s13058-018-1077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kosmidis P, Mylonakis N, Fountzilas G, Samantas E, Athanassiadis A, Pavlidis N, Skarlos D (1997) Paclitaxel (175 mg/m2) plus carboplatin versus paclitaxel (225 mg/m2) plus carboplatin in non-small cell lung cancer: a randomized study. Semin Oncol 24(4 Suppl 12):S12-30–S12-33

    Google Scholar 

  180. Winer EP, Berry DA, Woolf S, Duggan D, Kornblith A, Harris LN, Michaelson RA, Kirshner JA, Fleming GF, Perry MC, Graham ML, Sharp SA, Roger K, Henderson IC, Hudis C, Muss H, Norton L (2004) Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: Cancer and Leukemia Group B Trial 9342. J Clin Oncol 22(11):2061–2068. http://jco.ascopubs.org/content/22/11/2061.abstract. https://doi.org/10.1200/JCO.2004.08.048

    Article  CAS  PubMed  Google Scholar 

  181. Shulman LN, Cirrincione CT, Berry DA, Becker HP, Perez EA, O’Regan R, Martino S, Atkins JN, Mayer E, Schneider CJ, Kimmick G, Norton L, Muss H, Winer EP, Hudis C (2012) Six cycles of doxorubicin and cyclophosphamide or Paclitaxel are not superior to four cycles as adjuvant chemotherapy for breast cancer in women with zero to three positive axillary nodes: Cancer and Leukemia Group B 40101. J Clin Oncol 30(33):4071–4076. https://doi.org/10.1200/JCO.2011.40.6405. Epub 2012 Jul 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Selvy M, Pereira B, Kerckhove N, Gonneau C, Feydel G, Pétorin C, Vimal-Baguet A, Melnikov S, Kullab S, Hebbar M, Bouché O, Slimano F, Bourgeois V, Lebrun-Ly V, Thuillier F, Mazard T, Tavan D, Benmammar KE, Monange B, Ramdani M, Péré-Vergé D, Huet-Penz F, Bedjaoui A, Genty F, Leyronnas C, Busserolles J, Trevis S, Pinon V, Pezet D, Balayssac D (2020) Long-term prevalence of sensory chemotherapy-induced peripheral neuropathy for 5 years after adjuvant FOLFOX chemotherapy to treat colorectal cancer: a multicenter cross-sectional study. J Clin Med 9(8):E2400. https://doi.org/10.3390/jcm9082400

    Article  CAS  PubMed  Google Scholar 

  183. Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, Koltzenburg M, Kiernan MC (2013) Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63(6):419–437. https://doi.org/10.3322/caac.21204

    Article  PubMed  Google Scholar 

  184. Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10:174. https://doi.org/10.3389/fnmol.2017.00174. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J (2019) Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci 20(6):1451. https://doi.org/10.3390/ijms20061451

    Article  CAS  PubMed Central  Google Scholar 

  186. Beijers AJ, Mols F, Tjan-Heijnen VC, Faber CG, van de Poll-Franse LV, Vreugdenhil G (2015) Peripheral neuropathy in colorectal cancer survivors: the influence of oxaliplatin administration. Results from the population-based PROFILES registry. Acta Oncol 54(4):463–469. https://doi.org/10.3109/0284186X.2014.980912. Epub 2014 Nov 24

    Article  CAS  PubMed  Google Scholar 

  187. Bhatnagar B, Gilmore S, Goloubeva O, Pelser C, Medeiros M, Chumsri S, Tkaczuk K, Edelman M, Bao T (2014) Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings: a single-center experience. Springerplus 3:366. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=25089251

    Article  Google Scholar 

  188. Simon NB, Danso MA, Alberico TA, Basch E, Bennett AV (2017) The prevalence and pattern of chemotherapy-induced peripheral neuropathy among women with breast cancer receiving care in a large community oncology practice. Qual Life Res 26(10):2763–2772. https://doi.org/10.1007/s11136-017-1635-0. Epub 2017 Jun 29

    Article  PubMed  Google Scholar 

  189. Eckhoff L, Knoop AS, Jensen MB, Ejlertsen B, Ewertz M (2013) Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res Treat 142(1):109–118. https://doi.org/10.1007/s10549-013-2728-2. Epub 2013 Oct 17

    Article  CAS  PubMed  Google Scholar 

  190. Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, Leung KT, Li YC, Wong KH, Suen LKP, Chan CW, Yorke J, Farrell C, Sundar R (2019) Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 19(1):132. https://doi.org/10.1186/s12885-019-5302-4

    Article  PubMed  PubMed Central  Google Scholar 

  191. Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, Salim M, Cho JK, Rinn KJ, Albain KS, Chew HK, Burton GV, Moore TD, Srkalovic G, McGregor BA, Flaherty LE, Livingston RB, Lew DL, Gralow JR, Hortobagyi GN (2015) SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol 33(1):58–64. https://doi.org/10.1200/jco.2014.56.3296

    Article  PubMed  Google Scholar 

  192. Chan JK, Brady MF, Penson RT, Huang H, Birrer MJ, Walker JL, DiSilvestro PA, Rubin SC, Martin LP, Davidson SA, Huh WK, O’Malley DM, Boente MP, Michael H, Monk BJ (2016) Weekly vs. every-3-week paclitaxel and carboplatin for ovarian cancer. N Engl J Med 374(8):738–748. https://doi.org/10.1056/NEJMoa1505067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pignata S, Scambia G, Katsaros D, Gallo C, Pujade-Lauraine E, De Placido S, Bologna A, Weber B, Raspagliesi F, Panici PB, Cormio G, Sorio R, Cavazzini MG, Ferrandina G, Breda E, Murgia V, Sacco C, Cinieri S, Salutari V, Ricci C, Pisano C, Greggi S, Lauria R, Lorusso D, Marchetti C, Selvaggi L, Signoriello S, Piccirillo MC, Di Maio M, Perrone F (2014) Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 15(4):396–405. https://doi.org/10.1016/S1470-2045(14)70049-X. Epub 2014 Feb 28

    Article  CAS  PubMed  Google Scholar 

  194. Schuette W, Blankenburg T, Guschall W, Dittrich I, Schroeder M, Schweisfurth H, Chemaissani A, Schumann C, Dickgreber N, Appel T, Ukena D (2006) Multicenter randomized trial for stage IIIB/IV non-small-cell lung cancer using every-3-week versus weekly paclitaxel/carboplatin. Clin Lung Cancer 7(5):338–343. https://doi.org/10.3816/clc.2006.n.016

    Article  CAS  PubMed  Google Scholar 

  195. van der Burg ME, Onstenk W, Boere IA, Look M, Ottevanger PB, de Gooyer D, Kerkhofs LG, Valster FA, Ruit JB, van Reisen AG, Goey SH, van der Torren AM, ten Bokkel Huinink D, Kok TC, Verweij J, van Doorn HC (2014) Long-term results of a randomised phase III trial of weekly versus three-weekly paclitaxel/platinum induction therapy followed by standard or extended three-weekly paclitaxel/platinum in European patients with advanced epithelial ovarian cancer. Eur J Cancer 50(15):2592–2601. https://doi.org/10.1016/j.ejca.2014.07.015. Epub 2014 Aug 2

    Article  CAS  PubMed  Google Scholar 

  196. Gridelli C, Gallo C, Di Maio M, Barletta E, Illiano A, Maione P, Salvagni S, Piantedosi FV, Palazzolo G, Caffo O, Ceribelli A, Falcone A, Mazzanti P, Brancaccio L, Capuano MA, Isa L, Barbera S, Perrone F (2004) A randomised clinical trial of two docetaxel regimens (weekly vs 3 week) in the second-line treatment of non-small-cell lung cancer. The DISTAL 01 study. Br J Cancer 91(12):1996–2004. https://doi.org/10.1038/sj.bjc.6602241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Stemmler HJ, Harbeck N, Gröll de Rivera I, Vehling Kaiser U, Rauthe G, Abenhardt W, Artmann A, Sommer H, Meerpohl HG, Kiechle M, Heinemann V (2010) Prospective multicenter randomized phase III study of weekly versus standard docetaxel (D2) for first-line treatment of metastatic breast cancer. Oncology 79(3–4):197–203. https://doi.org/10.1159/000320640. Epub 2011 Mar 1

    Article  CAS  PubMed  Google Scholar 

  198. Stemmler HJ, Harbeck N, Gröll de Rivera I, Vehling Kaiser U, Rauthe G, Abenhardt W, Artmann A, Sommer H, Meerpohl HG, Kiechle M, Heinemann V (2010) Prospective multicenter randomized phase III study of weekly versus standard docetaxel plus doxorubicin (D4) for first-line treatment of metastatic breast cancer. Oncology 79(3–4):204–210. https://doi.org/10.1159/000320625. Epub 2011 Mar 1

    Article  CAS  PubMed  Google Scholar 

  199. Beijers AJ, Mols F, Vreugdenhil G (2014) A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer 22(7):1999–2007. https://doi.org/10.1007/s00520-014-2242-z. Epub 2014 Apr 13

    Article  CAS  PubMed  Google Scholar 

  200. Ewertz M, Qvortrup C, Eckhoff L (2015) Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives. Acta Oncol 54(5):587–591. https://doi.org/10.3109/0284186X.2014.995775. Epub 2015 Mar 9

    Article  CAS  PubMed  Google Scholar 

  201. Gregg RW, Molepo JM, Monpetit VJ, Mikael NZ, Redmond D, Gadia M, Stewart DJ (1992) Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10(5):795–803. https://doi.org/10.1200/jco.1992.10.5.795

    Article  CAS  PubMed  Google Scholar 

  202. Gebremedhn EG, Shortland PJ, Mahns DA (2018) The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC Cancer 18(1):410. https://doi.org/10.1186/s12885-018-4185-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 14 (Suppl 4):iv45–54. https://doi.org/10.1093/neuonc/nos203

  204. Weis TM, Marini BL, Nachar VR, Brown AM, Phillips TJ, Brown J, Wilcox RA, Kaminski MS, Devata S, Perissinotti AJ (2020) Impact of a vincristine dose cap on the incidence of neuropathies with DA-EPOCH-R for the treatment of aggressive lymphomas. Leuk Lymphoma 61(5):1126–1132. https://doi.org/10.1080/10428194.2019.1703969. Epub 2019 Dec 26

    Article  CAS  PubMed  Google Scholar 

  205. Verstappen CC, Koeppen S, Heimans JJ, Huijgens PC, Scheulen ME, Strumberg D, Kiburg B, Postma TJ (2005) Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 64(6):1076–1077. https://doi.org/10.1212/01.WNL.0000154642.45474.28

    Article  CAS  PubMed  Google Scholar 

  206. Morawska M, Grzasko N, Kostyra M, Wojciechowicz J, Hus M (2015) Therapy-related peripheral neuropathy in multiple myeloma patients. Hematol Oncol 33(4):113–119. https://doi.org/10.1002/hon.2149. Epub 2014 Nov 14

    Article  CAS  PubMed  Google Scholar 

  207. Rowinsky EK, Chaudhry V, Forastiere AA, Sartorius SE, Ettinger DS, Grochow LB, Lubejko BG, Cornblath DR, Donehower RC (1993) Phase I and pharmacologic study of paclitaxel and cisplatin with granulocyte colony-stimulating factor: neuromuscular toxicity is dose-limiting. J Clin Oncol 11(10):2010–2020

    Article  CAS  Google Scholar 

  208. Zhang S, Sun M, Yuan Y, Wang M, She Y, Zhou L, Li C, Chen C, Zhang S (2016) Correlation between paclitaxel Tc > 0.05 and its therapeutic efficacy and severe toxicities in ovarian cancer patients. Cancer Transl Med 2(5):131–136. http://www.cancertm.com/article.asp?issn=2395-3977. https://doi.org/10.4103/2395-3977.192930

    Article  Google Scholar 

  209. Xin DS, Zhou L, Li CZ, Zhang SQ, Huang HQ, Qiu GD, Lin LF, She YQ, Zheng JT, Chen C, Fang L, Chen ZS, Zhang SY (2018) TC > 0.05 as a pharmacokinetic parameter of paclitaxel for therapeutic efficacy and toxicity in cancer patients. Recent Pat Anticancer Drug Discov 13(3):341–347. https://doi.org/10.2174/1574892813666180305170439

    Article  CAS  PubMed  Google Scholar 

  210. Huizing MT, Vermorken JB, Rosing H, ten Bokkel Huinink WW, Mandjes I, Pinedo HM, Beijnen JH (1995) Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: a European Cancer Centre (ECC) trial. Ann Oncol 6(7):699–704. http://annonc.oxfordjournals.org/content/6/7/699.abstract

    Article  CAS  Google Scholar 

  211. Mielke S, Sparreboom A, Steinberg SM, Gelderblom H, Unger C, Behringer D, Mross K (2005) Association of paclitaxel pharmacokinetics with the development of peripheral neuropathy in patients with advanced cancer. Clin Cancer Res 11(13):4843–4850. http://clincancerres.aacrjournals.org/content/11/13/4843.abstract. https://doi.org/10.1158/1078-0432.CCR-05-0298

    Article  CAS  PubMed  Google Scholar 

  212. Gréen H, Söderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EÅ, Peterson C (2009) Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Blackwell, Malden, MA

    Book  Google Scholar 

  213. Brown T, Havlin K, Weiss G, Cagnola J, Koeller J, Kuhn J, Rizzo J, Craig J, Phillips J, Von Hoff D (1991) A phase I trial of taxol given by a 6-hour intravenous infusion. J Clin Oncol 9(7):1261–1267

    Article  CAS  Google Scholar 

  214. Joerger M, Kraff S, Jaehde U, Hilger RA, Courtney JB, Cline DJ, Jog S, Baburina I, Miller MC, Salamone SJ (2017) Validation of a commercial assay and decision support tool for routine paclitaxel therapeutic drug monitoring (TDM). Ther Drug Monit 39(6):617–624. https://doi.org/10.1097/ftd.0000000000000446

    Article  CAS  PubMed  Google Scholar 

  215. Joerger M, von Pawel J, Kraff S, Fischer JR, Eberhardt W, Gauler TC, Mueller L, Reinmuth N, Reck M, Kimmich M, Mayer F, Kopp HG, Behringer DM, Ko YD, Hilger RA, Roessler M, Kloft C, Henrich A, Moritz B, Miller MC, Salamone SJ, Jaehde U (2016) Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 27(10):1895–1902. https://doi.org/10.1093/annonc/mdw290

    Article  CAS  PubMed  Google Scholar 

  216. Zhang J, Zhou F, Qi H, Ni H, Hu Q, Zhou C, Li Y, Baburina I, Courtney J, Salamone SJ (2019) Randomized study of individualized pharmacokinetically-guided dosing of paclitaxel compared with body-surface area dosing in Chinese patients with advanced non-small cell lung cancer. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.13982

  217. Engels FK, Loos WJ, van der Bol JM, de Bruijn P, Mathijssen RH, Verweij J, Mathot RA (2011) Therapeutic drug monitoring for the individualization of docetaxel dosing: a randomized pharmacokinetic study. Clin Cancer Res 17(2):353–362. https://doi.org/10.1158/1078-0432.ccr-10-1636

    Article  CAS  PubMed  Google Scholar 

  218. Fukae M, Shiraishi Y, Hirota T, Sasaki Y, Yamahashi M, Takayama K, Nakanishi Y, Ieiri I (2016) Population pharmacokinetic-pharmacodynamic modeling and model-based prediction of docetaxel-induced neutropenia in Japanese patients with non-small cell lung cancer. Cancer Chemother Pharmacol 78(5):1013–1023. https://doi.org/10.1007/s00280-016-3157-9

    Article  CAS  PubMed  Google Scholar 

  219. Bruno R, Olivares R, Berille J, Chaikin P, Vivier N, Hammershaimb L, Rhodes GR, Rigas JR (2003) Alpha-1-acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin Cancer Res 9(3):1077–1082

    CAS  PubMed  Google Scholar 

  220. Boer H, Proost JH, Nuver J, Bunskoek S, Gietema JQ, Geubels BM, Altena R, Zwart N, Oosting SF, Vonk JM, Lefrandt JD, Uges DR, Meijer C, de Vries EG, Gietema JA (2015) Long-term exposure to circulating platinum is associated with late effects of treatment in testicular cancer survivors. Ann Oncol 26(11):2305–2310. https://doi.org/10.1093/annonc/mdv369. Epub 2015 Sep 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sprauten M, Darrah TH, Peterson DR, Campbell ME, Hannigan RE, Cvancarova M, Beard C, Haugnes HS, Fosså SD, Oldenburg J, Travis LB (2012) Impact of long-term serum platinum concentrations on neuro- and ototoxicity in Cisplatin-treated survivors of testicular cancer. J Clin Oncol 30(3):300–307. https://doi.org/10.1200/JCO.2011.37.4025. Epub 2011 Dec 19

    Article  CAS  PubMed  Google Scholar 

  222. Trendowski MR, El-Charif O, Ratain MJ, Monahan P, Mu Z, Wheeler HE, Dinh PC Jr, Feldman DR, Ardeshir-Rouhani-Fard S, Hamilton RJ, Vaughn DJ, Fung C, Kollmannsberger C, Mushiroda T, Kubo M, Hannigan R, Strathmann F, Einhorn LH, Fossa SD, Travis LB, Dolan ME (2019) Clinical and genome-wide analysis of serum platinum levels after cisplatin-based chemotherapy. Clin Cancer Res 25(19):5913–5924. https://doi.org/10.1158/1078-0432.CCR-19-0113. Epub 2019 Jul 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chalret du Rieu Q, White-Koning M, Picaud L, Lochon I, Marsili S, Gladieff L, Chatelut E, Ferron G (2014) Population pharmacokinetics of peritoneal, plasma ultrafiltrated and protein-bound oxaliplatin concentrations in patients with disseminated peritoneal cancer after intraperitoneal hyperthermic chemoperfusion of oxaliplatin following cytoreductive surgery: correlation between oxaliplatin exposure and thrombocytopenia. Cancer Chemother Pharmacol 74(3):571–582. https://doi.org/10.1007/s00280-014-2525-6

    Article  CAS  PubMed  Google Scholar 

  224. Ishibashi K, Okada N, Miyazaki T, Sano M, Ishida H (2010) Effect of calcium and magnesium on neurotoxicity and blood platinum concentrations in patients receiving mFOLFOX6 therapy: a prospective randomized study. Int J Clin Oncol 15(1):82–87. https://doi.org/10.1007/s10147-009-0015-3

    Article  CAS  PubMed  Google Scholar 

  225. Shord SS, Bernard SA, Lindley C, Blodgett A, Mehta V, Churchel MA, Poole M, Pescatore SL, Luo FR, Chaney SG (2002) Oxaliplatin biotransformation and pharmacokinetics: a pilot study to determine the possible relationship to neurotoxicity. Anticancer Res 22(4):2301–2309

    CAS  PubMed  Google Scholar 

  226. Lavoie Smith EM, Li L, Hutchinson RJ, Ho R, Burnette WB, Wells E, Bridges C, Renbarger J (2013) Measuring vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. Cancer Nurs 36(5):E49–E60. https://doi.org/10.1097/NCC.0b013e318299ad23

    Article  PubMed  PubMed Central  Google Scholar 

  227. Van den Berg HW, Desai ZR, Wilson R, Kennedy G, Bridges JM, Shanks RG (1982) The pharmacokinetics of vincristine in man: reduced drug clearance associated with raised serum alkaline phosphatase and dose-limited elimination. Cancer Chemother Pharmacol 8(2):215–219

    Article  Google Scholar 

  228. Crom WR, de Graaf SS, Synold T, Uges DR, Bloemhof H, Rivera G, Christensen ML, Mahmoud H, Evans WE (1994) Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J Pediatr 125(4):642–649. https://doi.org/10.1016/s0022-3476(94)70027-3

    Article  CAS  PubMed  Google Scholar 

  229. Moore AS, Norris R, Price G, Nguyen T, Ni M, George R, van Breda K, Duley J, Charles B, Pinkerton R (2011) Vincristine pharmacodynamics and pharmacogenetics in children with cancer: a limited-sampling, population modelling approach. J Paediatr Child Health 47(12):875–882. https://doi.org/10.1111/j.1440-1754.2011.02103.x

    Article  PubMed  Google Scholar 

  230. Chong CD, Logothetis CJ, Savaraj N, Fritsche HA, Gietner AM, Samuels ML (1988) The correlation of vinblastine pharmacokinetics to toxicity in testicular cancer patients. J Clin Pharmacol 28(8):714–718

    Article  CAS  Google Scholar 

  231. Li J, Sausville EA, Klein PJ, Morgenstern D, Leamon CP, Messmann RA, LoRusso P (2009) Clinical pharmacokinetics and exposure-toxicity relationship of a folate-Vinca alkaloid conjugate EC145 in cancer patients. J Clin Pharmacol 49(12):1467–1476. https://doi.org/10.1177/0091270009339740

    Article  CAS  PubMed  Google Scholar 

  232. Lee SE, Choi K, Han S, Lee J, Hong T, Park GJ, Yim DS, Min CK (2017) Bortezomib pharmacokinetics in tumor response and peripheral neuropathy in multiple myeloma patients receiving bortezomib-containing therapy. Anticancer Drugs 28(6):660–668. https://doi.org/10.1097/CAD.0000000000000506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Hertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hertz, D.L., Tofthagen, C., Faithfull, S. (2021). Predisposing Factors for the Development of Chemotherapy-Induced Peripheral Neuropathy (CIPN). In: Lustberg, M., Loprinzi, C. (eds) Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy. Springer, Cham. https://doi.org/10.1007/978-3-030-78663-2_2

Download citation

Publish with us

Policies and ethics