Skip to main content

Overview of Medicinal Cannabis

  • Chapter
  • First Online:
Medicinal Cannabis and CBD in Mental Healthcare

Abstract

The plant Cannabis sativa has been in use by humans for thousands of years, medicinally, for food and for various industrial uses. There are hundreds of different strains or cultivars of cannabis, and each has its own chemical profile which helps determine the therapeutic action. The key active constituents of cannabis, the phytocannabinoids and terpenes, are produced within glandular structures called trichomes which grow predominantly on the buds or flowers of the female plant. Two of the main phytocannabinoids are tetrahydrocannabinol (THC) and cannabidiol (CBD); however, the plant has well over 500 chemical constituents. The ‘entourage effect’ describes the synergism between all active constituents which contributes to the overall therapeutic effect. When used medicinally, cannabis can take several forms including use as a raw or dried herb or in proprietary forms of medicines (e.g. oils or tinctures, oils in capsules and others). Proprietary forms of medicines include whole plant extracts as well as phytocannabinoid isolates, and there are also synthetic copies of THC which are clearly pharmaceuticals. This chapter presents an overview of medicinal cannabis, including its taxonomy, history of use, a little on regulations in the USA, different forms of medicinal cannabis, key active constituents and their therapeutic actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cannabis sativa L. subsp. sativa var. sativa; and Cannabis sativa L. subsp. sativa var. spontanea Vavilov

  2. 2.

    Cannabis sativa L. subsp. indica Small & Cronquist var. indica (Lam) Wehmer; and Cannabis sativa L. subsp. indica Small & Cronquist var. kafiristanica (Vavilov) Small & Cronquist

References

  1. Hyman SM, Sinha R. Stress-related factors in cannabis use and misuse: implications for prevention and treatment. J Subst Abus Treat. 2009;36(4):400–13.

    Article  Google Scholar 

  2. Korem N, Zer-Aviv TM, Ganon-Elazar E, et al. Targeting the endocannabinoid system to treat anxiety-related disorders. J Basic Clin Physiol Pharmacol. 2016;27(3):193–202.

    Article  CAS  PubMed  Google Scholar 

  3. Johnston LD, O’Malley PM. Why do the nations’s students use drugs and alcohol? Self-reported reasons from nine national surveys. J Drug Issues. 1986;16(1):29–66.

    Article  Google Scholar 

  4. Webb CW, Webb SM. Therapeutic benefits of cannabis: a patient survey. Hawaii J Med Public Health 2014;73(4):109–11.

    Google Scholar 

  5. Sexton M, Cuttler C, Finnell J, Mischley L. A cross-sectional survey of medical cannabis users: patterns of use and perceived efficacy. Cannabis Cannabinoid Res. 2016;1:131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arthritis Foundation. Patients tell us about CBD use. Available at: http://blog.arthritis.org/news/patients-tell-us-cbd-use/. Accessed 3 Dec 2019.

  7. Lintzeris N, Davis J, Elias N, et al. Medicinal cannabis in Australia 2016: the Cannabis as Medicine Survey (CAMS-16). Med J Aust. 2018;209(5):211–6.

    Article  PubMed  Google Scholar 

  8. Bonn-Miller MO, Vujanovic AA, Drescher KD. Cannabis use among military veterans after residential treatment for posttraumatic stress disorder. Psychol Addict Behav. 2011;25:485–91.

    Article  PubMed  Google Scholar 

  9. Cougle JR, Bonn-Miller MO, Vujanovic AA, et al. Posttraumatic stress disorder and cannabis use in a nationally representative sample. Psychol Addict Behav. 2011;25(3):554–8.

    Article  PubMed  Google Scholar 

  10. Kervorkian S, Bonn-Miller MO, Belendiuk K, et al. Associations among trauma, posttraumatic stress disorder, cannabis us, and cannabis use disorder in a nationally representative epidemiologic sample. Psychol Addict Behav. 2015;29:633–8.

    Article  Google Scholar 

  11. Pollio A. The name of cannabis: a short guide for nonbotanists. Cannabis Cannabinoid Res. 2016;1(1):234–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization (WHO). World Health Organization Expert Committee on drug dependence pre-review. Cannabis plant and cannabis resin. Geneva: World Health Organization; 2018a.

    Google Scholar 

  13. Li H. An archaeological and historical account of cannabis in China. Econ Bot. 1974;28:437–48.

    Article  Google Scholar 

  14. Jarvis S, Rassmussen S, Winters B. Role of the endocannabinoid system and medical cannabis. JNP. 2017;13(8):525–31.

    Google Scholar 

  15. Okazaki H, Kobayashi M, Momohara A, et al. Early Holocene coastal environment change inferred from deposits at Okinoshima archeological site, Boso Peninsula, central Japan. Quat Int. 2011;230:87–94.

    Article  Google Scholar 

  16. Pisanti S, Bifulco M. Medical Cannabis: a plurimillennial history of an evergreen. J Cell Physiol. 2019;234(6):8342–51.

    Article  CAS  PubMed  Google Scholar 

  17. Abel EL. Marijuana, the first twelve thousand years. New York: Plenum Press; 1980.

    Google Scholar 

  18. Touwn M. The religious and medicinal uses of cannabis in China, India and Tibet. J Psychoactive Drugs. 1981;13:23–34.

    Article  Google Scholar 

  19. Russo EB. The pharmacological history of cannabis. 2014. Available at: https://www.researchgate.net/publication/312414874_The_pharmacological_history_of_cannabis#fullTextFileContent. Accessed 21 Jan 2021.

  20. Boninni SA, Premoli M, Tambaro S, et al. Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol. 2018;117:300–3015.

    Article  CAS  Google Scholar 

  21. Lee MA. Smoke signals: a social history of Marijuana - Medical, recreational and scientific. US: Scribner; 2012.

    Google Scholar 

  22. Pamploma FA, Takahashi RN. Psychopharmacology of the endocannabinoids: far beyond anandamide. J Psychopharmacol. 2012;26(1):7–22.

    Article  CAS  Google Scholar 

  23. Lava N. Medical Marijuana FAQ. WebMD Medical Reference Sources. 15 Dec 2018. Available at: https://www.webmd.com/a-to-z-guides/qa/what-us-states-have-legalized-medical-marijuana. Accessed 5 Sept 2019.

  24. Marijuana Break. How many states is recreational marijuana legal in? 30 July 2019. Available at: https://www.marijuanabreak.com/how-many-states-have-recreational-weed. Accessed 5 Sept 2019.

  25. Amin MR, Ali DW. Pharmacology of medical cannabis. Adv Exp Med Biol. 2019;1162:151–65.

    Article  CAS  PubMed  Google Scholar 

  26. Baron EP. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: an update on current evidence and cannabis science. Headache. 2018;58:1139–86.

    Article  PubMed  Google Scholar 

  27. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Brit J Pharmacol. 2011;163:1344–64.

    Article  CAS  Google Scholar 

  28. Russo EB. Cannabis therapeutics and the future of neurology. Front Integr Neurosci. 2018;12:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McPartland JM, Duncan M, Di Marzo V, Pertwee R. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172:737–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Backes M. Cannabis pharmacy. New York: Black Dog & Leventhal Publishers; 2017.

    Google Scholar 

  31. Rahn B. Cannabis genotypes and phenotypes: what makes a cannabis strain unique? 14 April, 2014. Available at: https://www.leafly.com/news/growing/cannabis-genotypes-and-phenotypes-what-makes-a-strain-unique. Accessed 9 Aug 2020.

  32. Magagnini G, Grassi G, Kotiranta S. The effect of light spectrum on the morphology and cannabinoid content of Cannabis sativa L. Med Cannabis Cannabinoids. 2018;1:19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pate DW. Chemical ecology of cannabis. J Int Hemp Assoc. 1994;2(29):32–7.

    Google Scholar 

  34. McPartland JM. Cannabis as repellent and pesticide. J Int Hemp Assoc. 1997;4:87–92.

    Google Scholar 

  35. Appendino G, Gibbons S, Giana A, et al. Antibacterial cannabinoids from Cannabis sativa: a structure activity study. J Nat Prod. 2008;71:1427–30.

    Article  CAS  PubMed  Google Scholar 

  36. Hanus LO, Meyer SM, Munoz E, et al. Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 2016;33(12):1357–92.

    Article  CAS  PubMed  Google Scholar 

  37. World Health Organization (WHO). World Health Organization Expert Committee on drug dependence pre-review. Delta-9-Tetrahydrocannabinol. Geneva: World Health Organization; 2018b.

    Google Scholar 

  38. Lafaye G, Karila LM, Blecha L, Amine B. Cannabis, cannabinoids, and health. Dialgoues Clini Neurosci. 2017;19:309–16.

    Article  Google Scholar 

  39. Blaskovich MAT, Kavanagh AM, Elliott AG, et al. The antimicrobial potential of cannabidiol. Commun Biol. 2021;4:7. https://doi.org/10.1038/s42003-020-01530-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kosgodage US, Mould R, Henley AB, et al. Cannabidiol (CBD) is a novel inhibitor for exosome and microvesicle (emv) release in cancer. Cancer Front Pharmacol. 2018;9:889.

    Article  PubMed  CAS  Google Scholar 

  41. Kosgodage US, Matewele P, Awamaria B, et al. Cannabidiol is a novel modulator of bacterial membrane vesicles. Front Cell Infect Microbiol. 2019;9:324. https://doi.org/10.3389/fcimb.2019.00324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maroon J, Bost J. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int. 2018;9:91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. World Health Organization (WHO). World Health Organization Expert Committee on Drug Dependence. Cannabidiol (CBD) Critical Review Report. Expert Committee on Drug Dependence Fortieth Meeting Geneva, 4–7 June 2018. World Health Organization (WHO), 2018c. Available at: https://www.who.int/medicines/access/controlled-substances/CannabidiolCriticalReview.pdf.

  44. Olah A, Toth BI, Borbiro I, et al. Cannabidiol exerts sebostatic and anti-inflammatory effects on human sebocytes. J Clin Invest. 2014;124(9):3713–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spelman L, Sinclair R, Freeman M, et al. The safety of topical cannabidiol (CBD) for the treatment of acne. J Investig Dermaol. 2018;138(5):S180.

    Article  Google Scholar 

  46. Aran A, Cassuto H, Lubotzky A. Cannabidiol based medical cannabis in children with autism- a retrospective feasibility study. Neurology. 2018;90(15 Suppl):P3.318.

    Google Scholar 

  47. Barchel D, Stolar O, De-Haan T, et al. Oral cannabidiol use in children with autism spectrum disorder to treat related symptoms and co-morbidities. Front Pharmacol. 2018;9:1521.

    Article  CAS  PubMed  Google Scholar 

  48. Bar-Lev Schleiber L, Mechoulam R, Saban N, et al. Real life experience of medical cannabis treatment in autism: analysis of safety and efficacy. Sci Rep. 2019;9(1):1–7.

    Google Scholar 

  49. Bergamaschi MM, Queiroz RH, Chagas MH, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients. Neuropsychopharmacology. 2011;36(6):1219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shannon S, Lewis N, Lee H, Hughes S. Cannabidiol in anxiety and sleep: a large case series. Perm J. 2019;23:18–041.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carroon J, Philips JA. A cross-sectional study of cannabidiol users. Cannabis Cannabinoid Res. 2018;3(1):152–61.

    Article  CAS  Google Scholar 

  52. Sales AJ, Carlos CC, Guimares FS, Joca RL. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:255–61.

    Article  CAS  PubMed  Google Scholar 

  53. Das RK, Kamboj SK, Ramadas M, et al. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology. 2013;226(4):781–92.

    Article  CAS  PubMed  Google Scholar 

  54. Zlebnik N, Cheer JF. Beyond the CB1 receptor: is cannabidiol the answer for disorders of motivation? Annu Rev Neurosci. 2016;39:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leweke FM, Mueller JK, Lange B, Rohleder C. Therapeutic potential of cannabinoids in psychosis. Biol Psychiatry. 2016;79(7):604–12.

    Article  CAS  PubMed  Google Scholar 

  56. Kusminski CM, Mcternan PG, Kumar S. Role of resistin in obesity, insulin resistance and Type II diabetes. Clin Sci. 2005;109(3):243–56.

    Article  CAS  Google Scholar 

  57. Stanley CP, Wheal AJ, Randall MD, Sullican SE. Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes. Eur J Pharmacol. 2013;720:376–82.

    Article  CAS  PubMed  Google Scholar 

  58. Devinsky O, Cilio MR, Cross H, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15(3):270–8.

    Article  CAS  PubMed  Google Scholar 

  60. Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20.

    Article  CAS  PubMed  Google Scholar 

  61. Devinsky O, Nabbout R, Miller I, et al. Long-term cannabidiol treatment in patients with Dravet syndrome: an open-label extension trial. Epilepsia. 2019;60(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  62. Hofmann ME, Frazier CJ. Marijuana, endocannabinoids and epilepsy: potential and challenges for improved therapeutic intervention. Exp Neurol. 2013;244:43–50.

    Article  CAS  PubMed  Google Scholar 

  63. Jones NA, Hill AJ, Smith SA, et al. Cannabidiol displays antiepileptiform and antiseizure properties in vitor and in vivo. J Pharmacol Exp Ther. 2010;332(2):569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Irving PM, Iqbal T, Nwokolo C, et al. A randomised double-blind, placebo-controlled, parallel group, pilot study of cannabidiol-rich botanical extract in the symptomatic treatment of ulcerative colitis. Inflamm Bowel Dis. 2018;24:714–24.

    Article  PubMed  Google Scholar 

  65. de Lago E, Fernandez-Ruiz J. Cannabinoids and neuroprotection in motor-related disorders. CNS Neurol Disord Drug Targets. 2007;6(6):377–87.

    Article  PubMed  Google Scholar 

  66. Iuvone T, Esposito G, De Filippis D, et al. Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci Ther. 2009;15(1):65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lakhan SE, Rowland M. Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol. 2009;9:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Bolognini D, Rock EM, Cluny NL, et al. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br J Pharmacol. 2013;168(6):1456–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parker LA. Cannabinoids & emotional regulation. In: Cannabinoids and the brain. MIT Press; 2017.

    Chapter  Google Scholar 

  70. Dash R, Ali C, Jahan I, et al. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev. 2021;65:101209.

    Article  CAS  PubMed  Google Scholar 

  71. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci. 2006;103:7895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pucci M, Rapino C, Di Francesco A, et al. Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol. 2013;170:581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wilkinson JD, Williamson EM. Cannabinlids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatol Sci. 2007;45(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  74. Bih CI, Chen T, Nunn AVW, et al. Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics. 2015;12(4):699–730.

    Article  CAS  Google Scholar 

  75. Pisanti S, Malfitano AM, Ciaglia E, et al. Cannabidiol: state of the art and new challenges for therapeutic applications. Pharmacol Ther. 2017;175:133–50.

    Article  CAS  PubMed  Google Scholar 

  76. Campos AC, Moreira FA, Gomes FV, et al. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1607):3364–78.

    Article  CAS  Google Scholar 

  77. Ney LJ, Matthews A, Bruno R, Felmingham KL. Cannabinoid interventions for PTSD: where to next? Prog Neuropsychopharmacol Biol Psychiatry. 2019;93:124–40.

    Article  PubMed  Google Scholar 

  78. Nichols JM, Kaplan BLF. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res. 2019;5(1):12–31. https://doi.org/10.1089/can.2018.0073.

    Article  CAS  Google Scholar 

  79. Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016;96(4):1593–659.

    Article  CAS  PubMed  Google Scholar 

  80. Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus L. Cannabidiol-recent advances. Chem Biodivers. 2007;4(8):1678–92.

    Article  CAS  PubMed  Google Scholar 

  81. Stanley CP, Hind WH, O’Sullivan SE. Is the cardiovascular system a therapeutic target for cannabidiol? Br J Clin Pharmacol. 2012;75(2):313–22.

    Article  PubMed Central  CAS  Google Scholar 

  82. Long LE, Chesworth R, Huang X-F, et al. A behavioural comparison of acute and chronic Δ9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropscychopharmacol. 2010;13(7):861–76.

    Article  CAS  Google Scholar 

  83. Elmes MW, Kaczocha M, Berger WT, et al. Fatty acid-binding proteins (FABPS) are intracellular carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD). J Biol Chem. 2015;290(14):8711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bisogno T, Hanus L, de Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues: effects in vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anadamide. Br J Pharmacol. 2001;134:845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Iannotti FA, Hill CL, Leo A, et al. Nonpsychotropc plant cannabinoids, cannabidivarin (CBDV) and cannabdiol (CBD) activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci. 2014;5(11):1131–41.

    Article  CAS  PubMed  Google Scholar 

  86. Esposito G, Scuderi C, Valenza M, et al. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One. 2011;6(12):e28668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Maleki V. The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: A systematic review. Obes Rev. 2019;20(7):1057–69.

    Article  CAS  PubMed  Google Scholar 

  88. Brown JD, Winterstein AG. Potential adverse drug events and drug-drug interactions with medical and Consumer Cannabidiol (CBD) use. J Clin Med. 2019;8(7):989.

    Article  CAS  PubMed Central  Google Scholar 

  89. Kaplan J. What is the GPR55 receptor and why is it important in CBD’s benefits? April 4, 2018. Leafly. Available at: https://www.leafly.com/news/science-tech/health-benefits-cbd-on-g-protein-coupled-receptor-55. Accessed 3 Dec 2019.

  90. Hasenoehrl C, Feuersinger D, Sturm EM, et al. G protein-coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. Int J Cancer. 2018;142(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  91. Lanuti M, Talamonti E, Baccarrone M, Chiurchiu V. Activation of GPR55 receptors exacerbates oxldl-induced lipid accumulation and inflammatory responses, while reducing cholesterol efflux from human macrophages. PLoS One. 2015;10(5):e0126839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wlodarczyk M, Sobolewska-Wlodarczyk A, Cygankiewicz AI, et al. G protein-coupled receptor 55 (GPR55) expresses differently in patients with Crohn’s disease and ulcerative colitis. Scand J Gastroenterol. 2017;52(6–7):711–5.

    Article  CAS  PubMed  Google Scholar 

  93. Zhou XL, Guo X, Song YP, et al. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol Sin. 2018;39(3):459–71.

    Article  CAS  PubMed  Google Scholar 

  94. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. PNAS. 2017;114(42):11229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stancic A, Jandl K, Hasenohrl E, et al. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil. 2015;27(10):1432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reyes-Resina I, Navarro G, Aguinaga D et al. Molecular and functional interaction between GPR18 and cannabinoid CB 2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochem Pharmacol. 2018;157:169–79.

    Google Scholar 

  97. Xiong W, Cheng K, Cui T, et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol. 2011;7:296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rodríguez-Muñoz M, Onetti Y, Cortés-Montero E, Garzón J, Sánchez-Blázquez P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol Brain. 2018;11(1):51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxicischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiol Dis. 2010;37:434–40.

    Article  CAS  PubMed  Google Scholar 

  100. McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M. Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol. 2006;70(3):897–908.

    Article  CAS  PubMed  Google Scholar 

  101. Franco R, Villa M, Morales P, et al. Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology. 2019;152:58–66.

    Article  CAS  PubMed  Google Scholar 

  102. Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (−)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A. 1998;95(14):8268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ligresti A, Moriello AS, Starowicz K, et al. Antitumour activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther. 2006;318:1375–87.

    Article  CAS  PubMed  Google Scholar 

  104. Huestis M, Solimini R, Pichini S, et al. Cannabidiol adverse effects and toxicity. Curr Neuropharmacol. 2019;17(10):974–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Scuderi C, Filippis DD, Iuvone T, et al. Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders. Phytother Res. 2009;23(5):597–602.

    Article  CAS  PubMed  Google Scholar 

  106. Camposa AC, Fogac MV, Sonegoa AB, Guimarãesa FS. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res. 2016;112:119–27.

    Article  CAS  Google Scholar 

  107. Robertson-Gray O, Walsh SK, Ryberg E, et al. l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway. Pharmacol Res Perspect. 2019;7(3):e00487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Marcu JP, Christian RT, Lau D et al. Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol Cancer Ther. 2010;9(1):180–9.

    Google Scholar 

  109. Klein C, Karanges E, Spiro A, et al. Cannabidiol potentiates Δ9-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology. 2011;218:443–57.

    Article  CAS  PubMed  Google Scholar 

  110. Nahtigal I, Blake A, Hand A, et al. The pharmacological properties of Cannabis. J Pain Manag. 2016;9(4):481–91.

    Google Scholar 

  111. Nadal X, Del-Rio C, Casano S, et al. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol. 2017;174(23):4263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011;163(7):1479–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. De Petrocellis L, Vellani V, Aniello Schiano-Moriello A, et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther. 2008;325(3):1007–15.

    Google Scholar 

  114. Rock EM, Limebeer CL, Navaratnam R, et al. A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping. Psychopharmacology. 2014;231:3207–15.

    Article  CAS  PubMed  Google Scholar 

  115. Pertwee RG, Rock EM, Guenther K, et al. Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5-HT1A receptor-mediated suppression of nausea and anxiety in rats. Br J Pharmacol. 2018;175(1):100–12.

    Article  CAS  PubMed  Google Scholar 

  116. Rock EM, Limebeer CL, Petrie GN, et al. Effect of prior foot shock stress and Δ9-tetrahydrocannabinol, cannabidiolic acid, and cannabidiol on anxiety-like responding in the light-dark emergence test in rats. Psychopharmacology. 2017;234(14):2207–17.

    Article  CAS  PubMed  Google Scholar 

  117. Hen-Shoval D, Amra S, Shbiro L et al. Acute oral Cannabidiolic Acid Methyl Ester reduces depression-like behaviour in two genetic animal models of depression. Behav Brain Res 2018;351;1–3.

    Google Scholar 

  118. Rock EM, Limebeer CL, Parker LA. Effect of cannabidiolic acid and ∆9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain. Psychopharmacology. 2018;235(11):3259–71.

    Article  CAS  PubMed  Google Scholar 

  119. Smeriglio A, Giofre SV, Galati EM, et al. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia. 2018;127:101–8.

    Article  CAS  PubMed  Google Scholar 

  120. Takeda S, Okajima S, Miyoshi H, et al. Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration. Toxicol Lett. 2012;214(3):314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bilkei-Gorzo A, Albayran O, Draffehn A, et al. A chronic low dose of Δ 9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med. 2017;23(6):782–7.

    Article  CAS  PubMed  Google Scholar 

  122. Evans FJ. Cannabinoids: the separation of central from peripheral effects on a structural basis. Planta Med. 1991;57:S60–7.

    Article  CAS  PubMed  Google Scholar 

  123. Lutz B, Marscicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci. 2015;16:705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Internal Med. 2018;49:12–9.

    Article  CAS  Google Scholar 

  125. National Academies of Sciences, Engineering and Medicine. Report. The health effects of cannabis and cannabinoids. Washington DC: The National Academies Press; 2017.

    Google Scholar 

  126. Rock EM, et al. Cannabinoid regulation of acute and anticipatory nausea. Cannabis Cannabinoid Res. 2016;1(1):113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Russo EB. Cannabinoids in the management of difficult to treat pain. Ther Clin Risk Manag. 2008;4(1):245–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Torres S, Lorente M, Rodriguez-Formes F, et al. A combined preclinical therapy of cannabinoids and Temozolamide against glioma. Mol Cancer Ther. 2011;10(1):90–103.

    Article  CAS  PubMed  Google Scholar 

  129. Mechoulam R, Fride E, Di Marzo V. Endocannabinoids. Eur J Pharmacol. 1998;359:1–18.

    Article  CAS  PubMed  Google Scholar 

  130. Gardner EL. Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacol Biochem Behav. 2005;81:263–84.

    Article  CAS  PubMed  Google Scholar 

  131. Pertwee RG, Ross RA. Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fatty Acids. 2002;66:101–21.

    Article  CAS  PubMed  Google Scholar 

  132. Pisanu A, Acquas E, Feno S, et al. Modulation of A9-THC-induced increase of cortical and hippocampal acetylcholine release by ir opioid and D1 dopamine receptors. Neuropharmacology. 2006;50:661–70.

    Article  CAS  PubMed  Google Scholar 

  133. Pistis M, Ferraro L, Pira L, et al. A9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res. 2002;6:155–8.

    Article  Google Scholar 

  134. Patel S, Hillard CJ. Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther. 2006;318:304–11.

    Article  CAS  PubMed  Google Scholar 

  135. Jenny M, et al. The potential role of cannabinoids in modulating serotonergic signaling by their influence on tryptophan metabolism. Pharmaceuticals. 2010;3:2647–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yuan M, Kiertscher SM, Cheng Q, et al. Delta 9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol. 2002;133:124–31.

    Article  CAS  PubMed  Google Scholar 

  137. Sarne Y, Toledano R, Rachmany L, et al. Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiol Aging. 2018;61:177–86.

    Article  CAS  PubMed  Google Scholar 

  138. Rosenthaler S, Pöhn B, Caroline Kolmanz C et al. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol Teratol 2014;46:49–56.

    Google Scholar 

  139. Rock EM, Kopstick RL, Limebeer CL, Parker LA. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus. Br J Pharmacol. 2013;170(3):641–8.

    Google Scholar 

  140. Moreno-Sanz G. Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of Δ 9-Tetrahydrocannabinolic Acid. Cannabis Cannabinoid Res. 2016;1(1):124–30.

    Google Scholar 

  141. Verhoeckx KC, Korthout HA, van Meeteren-Kreikamp AP et al. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways. Int Immunopharmacol. International Immunopharmacology 2006; 6(4): 656–65.

    Google Scholar 

  142. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPAR gamma. Annu Rev Biochem. 2008;77:289–312.

    Article  CAS  PubMed  Google Scholar 

  143. Quintanilla RA, Utreras E, Cabezas-Opazo FA. Role of PPAR gamma in the differentiation and function of neurons. PPAR Res. 2014;2014:768594.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Palomares B, Ruiz-Pino F, Garrido-Rodriguez M, et al. Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity. Biochem Pharmacol. 2020;171:113693.

    Article  CAS  PubMed  Google Scholar 

  145. Moldzio R, Pacher T, Krewenka C, et al. Effects of cannabinolids Delta(9)-tetrahydrocannabinol, Delta(9)-tetrahydrocannabinolic acid and cannabidiol in MMP+ affected murine mesencephalic cultures. Phytomedicine. 2012;19:819–24.

    Article  CAS  PubMed  Google Scholar 

  146. Ruhaak LR, Feith J, Karlsson PC, et al. Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biol Pharm Bull. 2011;34:774–8.

    Article  CAS  PubMed  Google Scholar 

  147. De Petrocellis L, Ligresti A, Schiano Moriello A, et al. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br J Pharmacol. 2013;168:79–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Izzo AA, Capasso R, Aviello G, et al. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. Br J Pharmacol. 2012;166:1444–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maione S, Piscitelli F, Gatta L, et al. Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br J Pharmacol. 2011;162(3):584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abioye A, Ayodele O, Marinkovic A, et al. Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes. J Cannabis Res. 2020;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Riedel G, Fadda P, McKillop-Smith S, et al. Synthetic plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br J Pharmacol. 2009;156:1154–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wargent ET, Zaibi MS, Silvestri C, et al. The cannabinoid D(9) tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr Diabetes. 2013;3(5):e68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem. 2018;157:198–228.

    Article  CAS  PubMed  Google Scholar 

  154. LaVigne JE, Hecksel R, Keresztes A, Streicher JM. Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Nature Scientific Reports. 2021;11:8232.

    Google Scholar 

  155. McPartland JM, Russo EB. Cannabis and cannabis extracts: greater than the sum of their parts? J Cannabis Ther. 2001;14:103–32.

    Article  Google Scholar 

  156. Bahi A, Al Mansouri S, Al Memari E, et al. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav. 2014;135:119–24.

    Article  CAS  PubMed  Google Scholar 

  157. Baldissera MD, Souza CF, Grando TH, et al. B-caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: the involvement of cardiac oxidative damage. Chem Biol Interact. 2017;270:9–14.

    Article  CAS  PubMed  Google Scholar 

  158. de Oliveira CC, de Oliveira CV, Grigoletto J, et al. Anticonvulsant activity of beta-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav. 2016;56:26–31.

    Article  PubMed  Google Scholar 

  159. Fidyt K, Fiedorowicz A, Strzadala L, Szumny A. B-carophyllene and β-carophyllene oxide- natural compounds of anticancer and analgesic properties. Cancer Med. 2016;5:3007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sharma C, Al Kaabi JM, Nurulain SM, et al. Polypharmacological properties and therapeutic potential of β-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr Pharm Des. 2016;22:3237–64.

    Article  CAS  PubMed  Google Scholar 

  161. Cyr C, Arboleda MF, Aggarwal SK, et al. Cannabis in palliative care: current challenges and practical recommendations. Ann Palliat Med. 2018;7(4):463–77. https://doi.org/10.21037/apm.2018.06.04.

    Article  PubMed  Google Scholar 

  162. Di Giacomo S, Di Sotto A, Mazzanti G, Wink M. Chemosensitizing properties of beta-caryophyllene and beta-caryophyllene oxide in combination with doxorubicin in human cancer cells. Anticancer Rec. 2017;37:1191–6.

    Article  CAS  Google Scholar 

  163. Youssef DA, El-Fayoumi M, Mahmoud MF. Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors. Chemico-Biological Interactions 2019;297:16–24.

    Google Scholar 

  164. Binet L, Binet P, Miocque M, Roux M, Bernier A. Recherches sur les proprietes pharmcodynamiques (action sedative et action spasmolytique) de quelques alcools terpeniques aliphatiques. Ann Pharm Fr. 1972;30:611–6.

    CAS  PubMed  Google Scholar 

  165. Cornwell PA, Barry BW. Sesquiterpene components of volatile oils as skin penetration enhancers for the hydrophilic permeant 5-fluorouracil. J Pharm Pharmacol. 1994;46:261–9.

    Article  CAS  PubMed  Google Scholar 

  166. Arruda DC, D’Alexandri FL, Katzin AM, Uliana SRB. Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother. 2005;49(5):1679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Abou Laila M, Sivakumar T, Yokoyama N, Igarashi I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol Int. 2010;59(2):278–82.

    Article  CAS  Google Scholar 

  168. Lee SJ, Han JI, Lee GS, et al. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol Pharm Bull. 2007;30(1):184–8.

    Article  CAS  PubMed  Google Scholar 

  169. Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone. Antimicrob Agents Chemother. 2003;47(10):3357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kubo I, Morimitsu Y. Cytotoxicity of green tea flavor compounds against two solid tumor cells. J Agric Food Chem. 1995;43:1626–8.

    Article  CAS  Google Scholar 

  171. Nibret E, Wink M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine. 2010;17:911–20.

    Article  CAS  PubMed  Google Scholar 

  172. Wattenberg LW. Inhibition of azoxymethane-induced neoplasia of the large bowel by 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene (nerolidol). Carcinogenesis. 1991;12:151–2.

    Article  CAS  PubMed  Google Scholar 

  173. O’Brien KA, Xue CC. The theoretical framework of Chinese medicine. In: Leung P-C, Xue CC, Cheng Y-C, editors. A comprehensive guide to Chinese medicine. 2nd ed. New Jersey: World Scientific Press; 2016.

    Google Scholar 

  174. Black N, Stockings E, Campbell G, et al. Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: a systematic review and meta-analysis. Lancet Psychiatry. 2019; https://doi.org/10.1016/S2215-0366(19)30401-8.

  175. Grinspoon L, Bakalar JB. Marihuana, the forbidden medicine. New Haven: Yale University Press; 1997.

    Google Scholar 

  176. Gallily R, Yekhtin Z, Hanuš LO. Overcoming the bell-shaped dose-response of can- nabidiol by using cannabis extract enriched in cannabidiol. Pharmacol Pharmacy. 2015;6:75–85.

    Article  Google Scholar 

  177. Coulter I. Evidence based complementary and alternative medicine. What role for sociology? Annual Conference Australian Sociological Association, University of New England, Armidale, NSW, Australia, 6 Dec 2003.

    Google Scholar 

  178. Lewin DI. Meta-analysis: a new standard or clinical fool’s gold? J NIH Res. 1996;8:310–31.

    Google Scholar 

  179. Sterne JAC, Gavagha D, Egger. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. Ann Intern Med. 2000;133:420–9.

    Google Scholar 

  180. Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Anesthesiology. 1997;86:24–33.

    Article  Google Scholar 

  181. Nadulski T, Pragst F, Weinberg G, et al. Randomized, double-blind, placebo controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit. 2005;27:799–810.

    Article  CAS  PubMed  Google Scholar 

  182. Mechoulam R, Gallily R. Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol. 2002;42:11–9.

    Article  Google Scholar 

  183. Paudel KS, Hammell DC, Agu R et al. Cannabidiol bioavailability after nasal and transdermal application: effect of permeation enhancers. Drug Dev Ind Pharm. 2010;36(9):1088–97.

    Google Scholar 

  184. Goulle JP, Saussereau E, Lacroix C. Delta-9- tetrahydrocannabinol pharmacokinetics. Ann Pharm Fr. 2008;66:232–44.

    Article  CAS  PubMed  Google Scholar 

  185. McGilveray IJ. Pharmacokinetics of cannabinoids. Pain Res Manag. 2005;10(Suppl A):15A–22A.

    Article  PubMed  Google Scholar 

  186. Ohlsson A, Lindgren JE, Wahlen A, et al. Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther. 1980;28(3):409–16.

    Article  CAS  PubMed  Google Scholar 

  187. Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers. 2007;4:1770–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Abramovici H. Information for health care professionals: cannabis (marihuana, marijuana) and the cannabinoids. Health Canada 2013. Available at: http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/marihuana/med/infoprof-eng.pdf.

  189. United Nations. The International Drug Control Conventions Schedules of the Single Convention on Narcotic Drugs of 1961 as amended by the 1972 Protocol, as at 24 May 2019. United Nations, New York, 2019. Available at: https://undocs.org/ST/CND/1/Add.1/Rev.5. Accessed 12 Sept 2019.

  190. Encyclopedia.com. Single convention on narcotic drugs. Encyclopedia of drugs, alcohol, and addictive behavior. Available at: Encyclopedia.com: https://www.encyclopedia.com/education/encyclopedias-almanacs-transcripts-and-maps/single-convention-narcotic-drugs. Accessed 14 Sept 2019.

  191. World Health Organization (WHO). Cannabis Review Questions and Answers. World Health Organization (WHO), 2018d. Available at: http://www.who.int/medicines/access/controlledsubstances/Cannabis_Review_QA_26July2018.pdf. Accessed 9 Oct 2018.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Brien, K., Blair, P. (2021). Overview of Medicinal Cannabis. In: Medicinal Cannabis and CBD in Mental Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-030-78559-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78559-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78558-1

  • Online ISBN: 978-3-030-78559-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics