Skip to main content

Justification of Local Expenditure Characteristics of Vibrotransporting Devices in Design Modeling of Continuous Vibroextractors

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing IV (DSMIE 2021)

Abstract

Extensive industrial implementation and practical provision of conditions for optimal vibroextraction process, which is based on a new method of countercurrent phase separation and creation of a regime of intensive alternating turbulence of the workflow by pulsating jets, is constrained by the complexity and insufficient study of expenditure characteristics of vibrotransporting devices required for modeling and design of this type apparatuses. For this purpose, the article describes the regularity of pulsating jets propagation generated by transport elements, the dependence of the vibroextractor productivity on the solid phase, and the level of longitudinal mixing by the longitudinal mixing coefficient from determining relative geometric parameters. The mathematical description can be taken as a basis for optimizing problems for the definition of rational operating modes of the vibroextractors having the combined structure of hydrodynamic flows and providing necessary productivity with the minimum effect of longitudinal mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Savenko, A.V., Sorokopud, A.F.: Influence of multiple extraction and temperature during processing of nettle and birch leaves in an apparatus with a vibrating plate. Sci. J. ITMO Univ. Ser. “Process. Apparatus Food Prod.” 1, 59–66 (2017)

    Google Scholar 

  2. Zavialov, V., Mysiura, T., Popova, N., Zaporozhets, Y., Chornyi, V.: Substantiation of Energy Parameters of a Continuous-Action Vibroextractor for a Solid-Liquid System. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 258–267. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_25

    Chapter  Google Scholar 

  3. Zavialov, V., Mysiura, T., Popova, N., Sukmanov, V., Chornyi, V.: Regularities of solid-phase continuous vibration extraction and prospects for its industrial use. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 920–930. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_92

    Chapter  Google Scholar 

  4. Vasin, A.A., Gorodetsky, I.Ya.: Current state of development and industrial implementation of vibration mass transfer apparatus. Chem. Ind. 7, 429–431 (1983)

    Google Scholar 

  5. Tseng, Y.-H., Mohanty, S.K., McLennan, J.D., Pease, L.F.: Algal lipid extraction using confined impinging jet mixers. Chem. Eng. Sci. X 1, 100002 (2019)

    Google Scholar 

  6. Ushakova, A.S.: Investigation of the efficiency of extraction in vibration mode. Priority areas for development of food industry, pp. 574–579 (2016)

    Google Scholar 

  7. Yadav, H., Agrawal, A., Srivastava A.: Mixing and entrainment characteristics of a pulse jet. Int. J. Heat Fluid Flow 61(B), 749–761 (2016). https://doi.org/10.1016/j.ijheatfluidflow.2016.08.006

  8. Kostyk, S., Kutovyi, M., Povodzinskiy, V., Shybetskyy, V.: Designing of the bioreactors with the introduction of energy by mechanical low-frequency oscillations. ScienceRise 5(2) (2017). https://doi.org/10.15587/2313-8416.2017.101741

  9. Dyachok, V., Dyachok, R., Gaiduchok, O.: Mathematical model of mass transfer from Lamina of the leaf into extractant. Chem. Chem. Technol 9(1), 107–110 (2015). https://doi.org/10.23939/chcht09.01.107

    Article  Google Scholar 

  10. Burdo, O., Bandura, V., Kolianovska, L., Dukulis, I.: Experimental research of oil extraction from canola by using microwave technology. Eng. Rural Dev. 296–302 (2017). https://doi.org/10.22616/erdev2017.16.n056

  11. Karpacheva, S.M., Raginsky, L.S., Khorkhorina, L.P.: The use of pulsation technology for the intensification of chemical production. J. Appl. Chem. 9, 1955–1962 (1986)

    Google Scholar 

  12. Landau, J., Dim, A., Houlihan, R.A.: Raeciprocating-plate extraction column for hydrometallurgical applications. Metall. Mater. Trans. B 4, 2827–2832 (1973). https://doi.org/10.1007/BF02644583

    Article  Google Scholar 

  13. Raizner, M., Rinsky, V., Grossman, G., van Hout, R.: The effect of jet pulsation on the flow field of a round impinging jet and the radially expanding wall jet. Int. J. Heat Mass Transf. 140, 606–619 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.024

    Article  Google Scholar 

  14. Riabchikov, B.E.: Pulsation mixing apparatus for preparation of chemicals. Water Supply Sanitation 2, 36 (2017). [in Russian]

    Google Scholar 

  15. Sincubaa, N.D., Rathilala, S., Carskyb, M.: Effect of sieve tray hole diameter on the efficiency of a vibrating plate extractor. S. Afr. J. Chem. Eng. 23, 38–41 (2017). https://doi.org/10.1016/j.sajce.2017.01.002

    Article  Google Scholar 

  16. Asadollahzadehab, M., Torab-Mostaedib, M., Shahhosseinia, S., Ghaemia, A.: Experimental investigation of dispersed phase holdup and flooding characteristics in a multistage column extractor. Chem. Eng. Res. Des. 105, 177–187 (2016). https://doi.org/10.1016/j.cherd.2015.11.019

    Article  Google Scholar 

  17. Hea, S., Jacksonb, J.D.: An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech. B. Fluids 28(2), 309–320 (2009). https://doi.org/10.1016/j.euromechflu.2008.05.004

    Article  Google Scholar 

  18. Abramovich, G.N., Girshovich, T.A., Krasheninnikov, S.Yu., et al.: The theory of turbulent jets. Science, Moscow (1984). [in Russian]

    Google Scholar 

  19. Kalaga, D.V., Reddy, R.K., Joshi, J.B., et al.: Liquid phase axial mixing in solid–liquid circulating multistage fluidized bed: CFD modeling and RTD measurements. Chem. Eng. J. 191, 475–490 (2012). https://doi.org/10.1016/j.cej.2012.02.091

    Article  Google Scholar 

  20. Duroudier, J.-P.: Liquid-Liquid and Solid-Liquid Extractors. ISTE Press Ltd., London (2016)

    Google Scholar 

  21. Greco, C.S., Cardone, G., Soria, J.: On the behaviour of impinging zero-net-mass-flux jets. J. Fluid Mech. 810, 25–59 (2017). https://doi.org/10.1017/jfm.2016.703

    Article  Google Scholar 

  22. Stratienko, O.V., Loboda, P.P., Lysyansky, V.M.: Influence of low-frequency mechanical vibrations on sugar extraction from beet strips. Food Technol. 5, 88–92 (1970)

    Google Scholar 

  23. Gorodetskiy, I.Ya., Vasin, A.A., Olevskiy, V.M., Lupanov, P.A.: Vibrating mass transfer apparatus: production edition. Chemistry, Moscow (1980). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Zavialov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zavialov, V., Mysiura, T., Popova, N., Zaporozhets, Y., Chornyi, V. (2021). Justification of Local Expenditure Characteristics of Vibrotransporting Devices in Design Modeling of Continuous Vibroextractors. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77823-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77823-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77822-4

  • Online ISBN: 978-3-030-77823-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics