Skip to main content
Log in

Systematical experiment for optimal design of vibrating flow pump with jelly-fish valve

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The fundamental characteristics and the flow mechanism of a Vibrating Flow Pump (VFP) with a jelly-fish valve, which can be applied to a novel artificial heart, were studied theoretically and experimentally. By using water as the working fluid, the measurement methodology for the typical unsteady flow for VFP was developed here. The effects of the frequency, amplitude and inner diameter of the vibrating pipe, and thickness of the silicone rubber sheet of the jelly-fish valve on the basic performance of VFP were systematically investigated. A high-speed observation technique and simple theoretical model analysis were also introduced for further detailed discussion. Quantitative contributions of the individual parameters to the pumping performance were shown through the experiment, which would give us essential knowledge for establishing design criteria of VFP. The theoretical model, which agreed with the experiment and the high-speed observation, elucidated the pumping mechanism with respect to the role of inertia of the inner fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto H, Hiyama H, Sato R. Development of prototype pump using a vibrating pipe with a valve. Journal of Fluids Engineering, 1994, 116, 741–745.

    Article  Google Scholar 

  2. Hashimoto H, Ihara A, Sato R, Watanabe H, Hiyama H. Pumping effect in an axially vibrating choke nozzle (pump performance). JSME International Journal Series B, 1995, 38, 419–425.

    Article  Google Scholar 

  3. Hiyama H, Hashimoto H, Sato R, Yamamoto K. The effect of pumping in a vertically vibrating pipe: Experimental study on flow mechanism in a pump. JSME International Journal. Series II, 1991, 34, 333–339.

    Google Scholar 

  4. Kawano S, Isoyama T, Kobayashi S, Arai H, Takiura K, Saito I, Chinzei T, Abe Y, Yambe T, Nitta S, Imachi K, Hashimoto H. Miniature vibrating flow blood pump using a cross-slider mechanism for external shunt catheter. Artificial Organs, 2003, 27, 73–77.

    Article  Google Scholar 

  5. Shintaku H, Imamura S, Kawano S. Microbubble formations in MEMS-fabricated rectangular channels: A high-speed observation. Experimental Thermal and Fluid Science, 2008, 32, 1132–1140.

    Article  Google Scholar 

  6. Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J. Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proceedings of the National Academy of Science of the United States of America, 2011, 108, 18390–18395.

    Article  Google Scholar 

  7. Osman O O, Shintaku H, Kawano S. Development of micro- vibrating flow pumps using MEMS technologies. Microfluidics and Nanofluidics, 2012, 13, 703–713.

    Article  Google Scholar 

  8. Osman O O, Shirai A, Kawano S. A numerical study on the performance of micro-vibrating flow pumps using the immersed boundary method. Microfluidics and Nanofluidics, 2015, 19, 595–608.

    Article  Google Scholar 

  9. Li J, Han M, Han X. A new pump application in heavy oil recovery. Journal of Fluids Engineering, 2012, 134, 065001.

  10. Yambe T, Kawano S, Nanka S, Kobayashi S, Tanaka A, Owada N, Yoshizawa M, Abe K, Tabayashi K, Takeda H, Hashimoto H, Nitta S. Peripheral vascular resistances during total left heart bypass with an oscillatory blood flow. Artificial Organs, 1999, 23, 747–750.

    Article  Google Scholar 

  11. Yambe T, Yoshizawa M, Tanaka A, Abe K, Kawano S, Matsuki H, Maruyama S, Amae S, Wada N, Kamiyama T, Takagi T, Luo R, Hayashi J, Kovalev Y A, Sha D X D, Nanka S, Saijo Y, Mibiki Y, Shibata M, Nitta S. Recent progress in artificial organ research at Tohoku University. Artificial Organs, 2003, 27, 2–7.

    Article  Google Scholar 

  12. Shintaku H, Yonemura T, Tsuru K, Isoyama T, Yambe T, Kawano S. Oxygenation to bovine blood in artificial heart and lung using vibrating flow pump: Experiment and numerical analysis based on non-Newtonian model. JSME Journal of Fluid Science and Technology, 2010, 5, 292–304.

    Article  Google Scholar 

  13. Kawano S, Yamakami J, Kamijo K, Hashimoto, H, Yambe T, Nitta S. Computational design of vibration pumping device for artificial heart. Journal of Pressure Vessel Technology, 2001, 123, 525–529.

    Article  Google Scholar 

  14. Kato T, Kawano S, Nakahashi K, Yabme T, Nitta S, Hashimoto H. Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid. Artificial Organs, 2003, 27, 41–48.

    Article  Google Scholar 

  15. Iwasaki K, Umezu M, Abe Y, Chinzei T, Isoyama T, Saito I, Ishimaru M, Imachi K. The improved jellyfish valve: Durability enhancement with sufficient blood compatibility. ASAIO Journal, 2002, 48, 532–537.

    Article  Google Scholar 

  16. Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H. Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsystem Technologies, 2007, 13, 951–958.

    Article  Google Scholar 

  17. Kawano S, Shirai A, Nagasaka S. Deformations of thin liquid spherical shells in liquid-liquid-gas systems. Physics of Fluids, 2007, 19, 012105.

  18. Shintaku H, Okitsu T, Kawano S, Matsumoto S, Suzuki T, Kanno I, Kotera H. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation. Journal of Physics D: Applied Physics, 2008, 41, 115507.

  19. Kirklin J K, Naftel D C, Pagani F D, Kormos R L, Stevenson L, Miller M, Young J B. Long-term mechanical circulatory support (destination therapy): On track to compete with heart transplantation?. The Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 584–603.

    Article  Google Scholar 

  20. Slaughter M S, Singh R. The role of ventricular assist devices in advanced heart failure. Revista Española de Cardiologia, 2012, 65, 982–985.

    Article  Google Scholar 

  21. Morris R J. Total artificial heart–Concepts and clinical use. Thoracic and Cardiovascular Surgery, 2008, 20, 247–254.

    Article  Google Scholar 

  22. Slepian M J, Alemu Y, Soares J S, Smith R G, Einav S, Bluestein D. The SyncardiaTM total artificial heart: in vivo, and computational modeling studies. Journal of Biomechanics, 2013, 46, 266–275.

    Article  Google Scholar 

  23. Reul H M, Akdis M. Blood pumps for circulatory support. Perfusion-UK, 2000, 15, 295–311.

    Article  Google Scholar 

  24. John R. Current axial-flow devices–the HeartMate II and Jarvik 2000 left ventricular assist devices. Thoracic and Cardiovascular Surgery, 2008, 20, 264–272.

    Article  Google Scholar 

  25. Fukamachi K, Horvath D J, Massiello A L, Fumoto H, Horai T, Rao S, Golding L A R. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: Device design and initial in vitro study. The Journal of Heart and Lung Transplantation, 2010, 29, 13–20.

    Article  Google Scholar 

  26. Schulman A R, Martens T P, Christos P J, Russo M J, Comas G M, Cheema F H, Naseem T M, Wang R, Idrissi K A, Bailey S H, Naka Y. Comparisons of infection complications between continuous flow and pulsatile flow left ventricular assist devices. The Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 841–842.

    Article  Google Scholar 

  27. Baba A, Dobsak P, Mochizuki S, Saito I, Isoyama T, Takiura K, Shibata M, Abe Y, Chinzei T, Vasku J, Imachi K. Evaluation of pulsatile and nopulsatile flow in microvessels of bulbar conjunctiva in the goat with an undulation pump artificial heart. Artificial Organs, 2003, 27, 875–881.

    Article  Google Scholar 

  28. Amaral F, Egger C, Steinseifer U, Schmitz-Rode T. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps. Artificial Organs, 2013, 37, 786–792.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoyuki Kawano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawano, S., Miyagawa, S. & Shirai, A. Systematical experiment for optimal design of vibrating flow pump with jelly-fish valve. J Bionic Eng 13, 166–179 (2016). https://doi.org/10.1016/S1672-6529(14)60171-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60171-2

Keywords

Navigation