Skip to main content

Analytical Techniques to Study Carbohydrates

  • Chapter
  • First Online:
The Art of Carbohydrate Analysis
  • 1389 Accesses

Abstract

The description of a complex carbohydrate structure includes, in the first instance, monosaccharide composition, anomeric configurations, and the type of glycosidic linkages. To obtain these data, several techniques are available. This chapter describes chemical solvolytic cleavage methods to generate monosaccharides and/or oligosaccharide fragments and discusses, in detail, the chromatographic separation methods to isolate them for further study. Several detection techniques are discussed. Electrophoretic separation of carbohydrates is briefly discussed. A typical flow chart for the structural analysis of carbohydrates from biological samples is presented. Furthermore, protocols for fluorescent or chromophore labeling of glycans are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prescher JA, Bertozzi CR. Chemical technologies for profiling glycans. Cell. 2006;126:851–4.

    Article  CAS  PubMed  Google Scholar 

  2. Pabst M, Altmann F. Glycan analysis by modern instrumental methods. Proteomics. 2011;11:631–43.

    Article  CAS  PubMed  Google Scholar 

  3. Stöckmann H, Adamczyk B, Hayes J, Rudd PM. Automated, high-throughput IgG-antibody glycoprofiling platform. Anal Chem. 2013;85:8841–9.

    Article  PubMed  CAS  Google Scholar 

  4. Sanz ML, Martínez-Castro I. Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A. 2007;1153:74–89.

    Article  CAS  PubMed  Google Scholar 

  5. Kamerling JP, Gerwig GJ. Strategies for the structural analysis of carbohydrates. In: Kamerling JP, editor. Comprehensive glycoscience-from chemistry to systems biology. Amsterdam: Elsevier; 2007. p. 1–68.

    Google Scholar 

  6. Zhang Z, Xiao ZP, Linhardt RJ. Thin layer chromatography for the separation analysis of acidic carbohydrates. J Liq Chromatogr Relat Technol. 2009;32:1711–32.

    Article  CAS  Google Scholar 

  7. Islam MK, Sostaric T, Lim LY, Hammer K, Locher C. Sugar Profiling of honeys for authentication and detection of adulterants using high-performance thin layer chromatography. Molecules. 2020;25:5289.

    Article  CAS  PubMed Central  Google Scholar 

  8. Fuchs B, Süss R, Nimptsch A, Schiller J. MALDI-TOF-MS directly combined with TLC: a review of the current state. Chromatographia. 2009;69:S95–S105.

    Article  Google Scholar 

  9. Mernie EG, Tolesa LD, Lee M-J, Tseng M-C, Chen Y-J. Direct oligosaccharide profiling using thin-layer chromatography coupled with ionic liquid-stabilized nanomatrix-assisted laser desorption-ionization mass spectrometry. Anal Chem. 2019;91:11544–52.

    Article  CAS  PubMed  Google Scholar 

  10. Rowe L, Burkhart G. Analyzing protein glycosylation using UHPLC: a review. Bioanalysis. 2018;10:1691–703.

    Article  CAS  PubMed  Google Scholar 

  11. Melmer M, Stangler T, Premstaller A, Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A. 2011;1218:118–23.

    Article  CAS  PubMed  Google Scholar 

  12. Nagy G, Peng T, Pohl NL. Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates. Anal Methods. 2017;9:3579–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowenthal MS, Kilpatrick EL, Phinney KW. Separation of monosaccharides hydrolyzed from glycoproteins without the need for derivatization. Anal Bioanal Chem. 2015;407:5453–62.

    Article  CAS  PubMed  Google Scholar 

  14. Yan H, Yalagala RS, Yan F. Fluorescently labelled glycans and their applications. Glycoconj J. 2015;32:559–74.

    Article  CAS  PubMed  Google Scholar 

  15. Vreeker GCM, Wuhrer M. Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem. 2017;409:359–78.

    Article  CAS  PubMed  Google Scholar 

  16. Raessler M. Sample preparation and current applications of liquid chromatography for the determination of non-structural carbohydrates in plants. Trends Anal Chem. 2011;30:1833–43.

    Article  CAS  Google Scholar 

  17. Lin Z, Lubman DM. Permethylated N-glycan analysis with mass spectrometry. Methods Mol Biol. 2013;1007:289–300.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou S, Dong X, Veillon L, Huang Y, Mechref Y. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem. 2017;409:453–66.

    Article  CAS  PubMed  Google Scholar 

  19. Gao X, Zhang L, Zhang W, Zhao I. Design and application of an open tubular capillary reactor for solid-phase permethylation of glycans in glycoproteins. Analyst. 2015;140:1566–71.

    Article  CAS  PubMed  Google Scholar 

  20. Hu Y, Borges CR. A spin column-free approach to sodium hydroxide-based glycan permethylation. Analyst. 2017;142:2748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shajahan A, Supekar NT, Heiss C, Azadi PJ. High-throughput automated micro-permethylation for glycan structure analysis. Anal Chem. 2019;91:1237–40.

    Article  CAS  PubMed  Google Scholar 

  22. Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev. 2009;28:254–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Du JY, Chen LR, Liu S, Lin JH, Liang QT, Lyon M, Wei Z. Ion-pairing liquid chromatography with on-line electro-spray ion trap mass spectrometry for the structural analysis of N-unsubstituted heparin/heparan sulfate. J Chromatogr B. 2016;1028:71–6.

    Article  CAS  Google Scholar 

  24. Melmer M, Stangler T, Schiefermeier M, Brunner W, Toll H, Rupprechter A, Lindner W, Premstaller A. HILIC analysis of fluorescence-labeled N-glycans from recombinant biopharmaceuticals. Anal Bioanal Chem. 2010;398:905–14.

    Article  CAS  PubMed  Google Scholar 

  25. Zauner G, Deelder AM, Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis. 2011;32:3456–66.

    Article  CAS  PubMed  Google Scholar 

  26. Cao L, Zhang Y, Chen L, Shen A, Zhang X, Ren S, et al. Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst. 2014;139:4538–46.

    Article  CAS  PubMed  Google Scholar 

  27. Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A. 2014;1335:81–103.

    Article  CAS  PubMed  Google Scholar 

  28. Saldova R, Kilcoyne M, Stöckman H, Martin SM, Lewis AM, Tuite CME, Gerlach JQ, Le Berre M, Borys MC, Li ZJ, Abu-Absi NR, Leister K, Joshi L, Rudd PM. Advances in analytical methodologies to guide bioprocess engineering for bio-therapeutics. Methods. 2017;116:63–83.

    Article  CAS  PubMed  Google Scholar 

  29. Kozlic P, Goldman R, Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal Bioanal Chem. 2018;410:5001–8.

    Article  CAS  Google Scholar 

  30. Kim W, Kim J, You S, Do J, Jang Y, Kim D, Lee J, Ha J, Kim HH. Qualitative and quantitative characterization of sialylated N-glycans using three fluorophores, two columns, and two instrumentations. Anal. Biochem. 2019;571:40–8.

    Article  CAS  PubMed  Google Scholar 

  31. Van Schaick G, Pirok BWJ, Haselberg R, Somsen GW, Gargano AFG. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms. J Chromatogr A. 2019;1598:67–76.

    Article  PubMed  CAS  Google Scholar 

  32. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics. 2008;24:1214–6.

    Article  CAS  PubMed  Google Scholar 

  33. Royle L, Campbell MP, Radcliffe CM, White DW, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem. 2008;376:1–12.

    Article  CAS  PubMed  Google Scholar 

  34. Staples GO, Bowman MJ, Costello CE, Hitchcock AM, et al. A chip-based amide-HILIC LC/MS platform for glycosaminoglycan glycomics profiling. Proteomics. 2009;9:686–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jandera P. Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta. 2011;692:1–25.

    Article  CAS  PubMed  Google Scholar 

  36. Bennett R, Olesik SV. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography. Anal Chim Acta. 2017;960:151–9.

    Article  CAS  PubMed  Google Scholar 

  37. Ruhaak LR, Deelder AM, Wuhrer M. Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2009;394:163–74.

    Article  CAS  PubMed  Google Scholar 

  38. Kolarich D, Windwarder M, Alagesan K, Altmann F. Isomer-specific analysis of released N-glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol Biol. 2015;1321:427–35.

    Article  PubMed  Google Scholar 

  39. Stavenhagen K, Kolarich D, Wuhrer M. Clinical glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia. 2015;78:307–20.

    Article  CAS  PubMed  Google Scholar 

  40. Stavenhagen K, Plomp R, Wuhrer M. Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal Chem. 2015;87:11691–9.

    Article  CAS  PubMed  Google Scholar 

  41. Miller RL, Guimond SE, Prescott M, Turnbull JE, Karlsson N. Versatile separation and analysis of heparan sulfate oligosaccharides using graphitized carbon liquid chromatography and electrospray mass spectrometry. Anal Chem. 2017;89:8942–50.

    Article  CAS  PubMed  Google Scholar 

  42. Ashwood C, Pratt B, MacLean BX, Gundry RL, Packer NH. Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. Analyst. 2019;144:3601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abrahams JL, Campbell MP, Packer NH. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J. 2018;35:15–29.

    Article  CAS  PubMed  Google Scholar 

  44. Bapiro TE, Richards FM, Jodrell DI. Understanding the complexity of porous graphitic carbon (PGC) chromatography: modulation of mobile-stationary phase interactions overcomes loss of retention and reduces variability. Anal Chem. 2016;88:6190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pereira L. Porous graphitic carbon as a stationary phase in HPLC: theory and applications. J Liq Chromatogr Relat Technol. 2008;31:1687–731.

    Article  CAS  Google Scholar 

  46. West C, Elfakir C, Lafosse M. Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A. 2010;1217:3201–16.

    Article  CAS  PubMed  Google Scholar 

  47. Van Leeuwen SS. Challenges and pitfalls in human milk oligosaccharide analysis. Nutrients 11 (2019) 2684

    Google Scholar 

  48. Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011;10:856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oedit A, Vulto P, Ramautar R, Lindenberg PW, Hankemeier T. Lab-on-a-chip hyphenation with mass spectrometry: strategies for bioanalytical applications. Curr Opin Biotechnol. 2015;31:79–85.

    Article  CAS  PubMed  Google Scholar 

  50. Aldredge D, An HJ, Tang N, Waddell K, Lebrilla CB. Annotation of a serum N-glycan library for rapid identification of structures. J Proteome Res. 2012;11:1958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tonon KM, Miranda A, Abrao ACFV, de Morais MB, Morais TB. Validation and application of a method for the simultaneous absolute quantification of 16 neutral and acidic human milk oligosaccharides by graphitized carbon liquid chromatography—electrospray ionization—mass spectrometry. Food Chem. 2019;274:691–7.

    Article  CAS  PubMed  Google Scholar 

  52. Porfirio S, Archer-Hartmann S, Moreau GB, Ramakrishnan G, Haque R, Kirkpatrick BD, Petri WA, Azadi P. New strategies for profiling and characterization of human milk oligosaccharides. Glycobiology. 2020;30:774–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cho BG, Peng W, Mechref Y. Separation of permethylated O-glycans, free oligosaccharides, and glycosphingolipid-glycans using porous graphitized carbon (PGC) column. Metabolites. 2020;10:433–44.

    Article  CAS  PubMed Central  Google Scholar 

  54. Song K, Moon DB, Kim NY, Shin YK. Glycosylation heterogeneity of hyperglycosylated recombinant human interferon-β (rhIFN-β). ACS Omega. 2020;5:6619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neville DCA, Dwek RA, Butters TD. Development of a single column method for the separation of lipid- and protein-derived oligosaccharides. J Proteome Res. 2009;8:681–7.

    Article  CAS  PubMed  Google Scholar 

  56. Hardy MR, Rohrer JS. High-pH anion-exchange chromatography (HPAEC) and pulsed amperometric detection (PAD) for carbohydrate analysis. In: Kamerling JP, editor. Comprehensive glycoscience. Amsterdam: Elsevier; 2007. p. 303–27.

    Chapter  Google Scholar 

  57. Behan JL, Smith KD. The analysis of glycosylation: a continued need for high pH anion exchange chromatography. Biomed Chromatogr. 2011;25:39–46.

    Article  CAS  PubMed  Google Scholar 

  58. Rohrer JS, Basumallick L, Hurum D. High-performance anion-exchange chromatography with pulsed amperometric detection for carbohydrate analysis of glycoproteins. Biochemistry. 2013;78:697–709.

    CAS  PubMed  Google Scholar 

  59. Carabetta S, Di Sanzo R, Campone L, Fuds S, Rastrelli L, Russo M. High-Performance anion exchange chromatography with pulsed amperometric detection (HPAEC–PAD) and chemometrics for geographical and floral authentication of honeys from southern Italy (Calabria region). Foods. 2020;9:1625.

    Article  CAS  PubMed Central  Google Scholar 

  60. Zhang ZQ, Khan NM, Nunez KM, Chess EK, Szabo CM. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Chem. 2012;84:4104–10.

    Article  CAS  PubMed  Google Scholar 

  61. Corradini C, Cavazza A, Bignardi C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carb Chem. (1012):1–13

    Google Scholar 

  62. André S, Kaltner H, Manning J, Murphy P, Gabius H-J. Lectins: getting familiar with translators of the sugar code. Molecules. 2015;20:1788–823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. O’Connor BF, Monaghan D, Cawley J. Lectin affinity chromatography (LAC). Methods Mol Biol. 2017;1485:411–20.

    Article  PubMed  CAS  Google Scholar 

  64. Kulloli M, Hancock WS, Hincapie M. Automated platform for fractionation of human plasma glycoproteome in clinical proteomics. Anal Chem. 2010;82:115–20.

    Article  CAS  Google Scholar 

  65. Lee A, Nakano M, Hincapie M, Kolarich D, Baker MS, Hancock WS, Packer NH. The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles. OMICS. 2010;14:487–99.

    Article  PubMed  CAS  Google Scholar 

  66. Sharon N. Lectins: past, present and future. Biochem Soc Trans. 2008;36:1457–60.

    Article  CAS  PubMed  Google Scholar 

  67. Simpson RJ, editor. Purifying proteins for proteomics: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2004.

    Google Scholar 

  68. Ayyar BV, Arora S, Murphy C, O’Kennedy R. Affinity chromatography as a tool for antibody purification. Methods. 2012;56:116–29.

    Article  CAS  PubMed  Google Scholar 

  69. Domann PJ, Pardos-Pardos AC, Fernandes DL, Spencer DI, Radcliffe CM, et al. Separation-based glycoprofiling approaches using fluorescent labels. Proteomics. 2007;7(suppl. 1):70–6.

    Article  PubMed  CAS  Google Scholar 

  70. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397:3457–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ruhaak LR, Steenvoorden E, Koeleman CAM, Deelder AM, Wuhrer M. 2-Picoline-borane: a non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics. 2010;10:2330–6.

    Article  CAS  PubMed  Google Scholar 

  72. Song X, Johns BA, Ju H, Lasanajak Y, Zhao C, Smith DF, et al. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans. ACS Chem Biol. 2013;8:2478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang CJ, Fan WC, Zhang P, Wang ZF, Huang LJ. One pot nonreductive O-glycan release and labeling with 1-phenyl-3-methyl-5-pyrazolone followed by ESI-MS analysis. Proteomics. 2011;11:4229–42.

    Article  PubMed  CAS  Google Scholar 

  74. Zauner G, Koeleman CA, Deelder AM, Wuhrer M. Mass spectrometric O-glycan analysis after combined O-glycan release by β-elimination and 1-phenyl-3-methyl-5-pyrazolone labeling. Biochim Biophys Acta. 2012;1820:1420–8.

    Article  CAS  PubMed  Google Scholar 

  75. Wan D, Yang H, Song F, Liu Z, Liu S. Identification of isomeric disaccharides in mixture by the 1-phenyl-3-methyl-5-pyrazolone labeling technique in conjunction with the electrospray ionization tandem mass spectrometry. Anal Chim Acta. 2013;780:36–45.

    Article  CAS  PubMed  Google Scholar 

  76. Hu Y, Wang T, Yang X, Zhao Y. Analysis of compositional monosaccharides in fungus polysaccharide by capillary zone electrophoresis. Carbohydr Polym. 2014;102:481–8.

    Article  CAS  PubMed  Google Scholar 

  77. Song E, Pyreddy S, Mechref Y. Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:1941–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hong Q, Lebrilla CB, Miyamoto S, Ruhaak LR. Absolute quantitation of immunoglobulin G and its glycoforms using multiple reaction monitoring. Anal Chem. 2013;85:8585–93.

    Article  CAS  PubMed  Google Scholar 

  79. Xu G, Amicucci MJ, Cheng Z, Galermo AG, Lebrilla CB. Revisiting monosaccharide analysis—Quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst. 2017;143:200–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kang P, Mechref Y, Novotny MV. High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:721–34.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou S, Wooding K, Mechref Y. Analysis of permethylated glycan by liquid chromatography (LC) and mass spectrometry (MS). Methods Mol Biol. 2017;1503:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lu G, Crihfield CI, Gattu S, Veltri LM, Holland LA. Capillary electrophoresis separations of glycans. Chem Rev. 2018;118:7867–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary electrophoresis: trends and recent advances. Anal Chem. 2018;90:1464–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rovio S, Yli-Kauhaluoma J, Siren H. Determination of neutral carbohydrates by CZE with direct UV detection. Electrophoresis. 2007;28:3129–35.

    Article  CAS  PubMed  Google Scholar 

  85. Campa C, Rossi M. Capillary electrophoresis of neutral carbohydrates: mono-, oligosaccharides, glycosides. Methods Mol Biol. 2008;384:247–305.

    CAS  PubMed  Google Scholar 

  86. Suzuki S. Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal Sci. 2013;29:1117–28.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao L, Chanon AM, Chattopadhyay N, Dami IE, Blakeslee JJ. Quantification of carbohydrates in grape tissues using capillary zone electrophoresis. Front Plant Sci. 2016;7:818.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kamoda S, Kakehi K. Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis. 2006;27:2495–504.

    Article  CAS  PubMed  Google Scholar 

  89. Mantovani V, Galeotti F, Maccari F, Volpi N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis. 2018;39:179–89.

    Article  CAS  PubMed  Google Scholar 

  90. Zamfir AD. Applications of capillary electrophoresis electrospray ionization mass spectrometry in glycosaminoglycan analysis. Electrophoresis. 2016;37:973–86.

    Article  CAS  PubMed  Google Scholar 

  91. Amon S, Zamfir AD, Rizzi A. Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis. 2008;29:2485–507.

    Article  CAS  PubMed  Google Scholar 

  92. Pioch M, Bunz SC, Neususs C. Capillary electrophoresis/mass spectrometry relevant to pharmaceutical and biotechnological applications. Electrophoresis. 2012;33:1517–30.

    Article  CAS  PubMed  Google Scholar 

  93. Mechref Y, Novotny MV. Glycomic analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom Rev. 2009;28:207–22.

    Article  CAS  PubMed  Google Scholar 

  94. Qu Y, Sun L, Zhang Z, Dovichi NJ. Site-specific glycan heterogeneity characterization by HILIC solid-phase extraction, RPLC fractionation, and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry. Anal Chem. 2018;90:1223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Olajos M, Hayos P, Bonn GK, Guttman A. Sample preparation for the analysis of complex carbohydrates by multicapillary gel electrophoresis with light-emitting diode induced fluorescence detection. Anal Chem. 2008;80:4241–6.

    Article  CAS  PubMed  Google Scholar 

  96. Sarazin C, Delaunay N, Costanza C, Eudes V, Gareil P. Application of a new capillary electrophoretic method for the determination of carbohydrates in forensic, pharmaceutical, and beverage samples. Talanta. 2012;99:202–6.

    Article  CAS  PubMed  Google Scholar 

  97. Kinoshita M, Kakehi K. Capillary-based lectin affinity electrophoresis for interaction analysis between lectins and glycans. Methods Mol Biol. 2014;1200:131–46.

    Article  CAS  PubMed  Google Scholar 

  98. Volpi N, editor. Capillary electrophoresis of carbohydrates. Totowa: Humana Press; 2011.

    Google Scholar 

  99. Toraño JS, Ramautar R, De Jong G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr B. 2019;1118–1119:116–36.

    Article  CAS  Google Scholar 

  100. Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S, Sanz ML, Martínez-Castro I. Derivatization of carbohydrates for GC and GC-MS analyses. J Chromatogr B. 2011;879:1226–40.

    Article  CAS  Google Scholar 

  101. Harvey DJ. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B. 2011;879:1196–225.

    Article  CAS  Google Scholar 

  102. Xia Y-G, Sun H-M, Wang T-L, Liang J, Yang B-Y, Kuang H-X. A modified GC-MS analytical procedure for separation and detection of multiple classes of carbohydrates. Molecules. 2018;23:1284.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit J. Gerwig .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerwig, G.J. (2021). Analytical Techniques to Study Carbohydrates. In: The Art of Carbohydrate Analysis. Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-77791-3_5

Download citation

Publish with us

Policies and ethics