Skip to main content

Advertisement

Log in

Building a PGC-LC-MS N-glycan retention library and elution mapping resource

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Porous graphitised carbon-liquid chromatography (PGC-LC) has been proven to be a powerful technique for the analysis and characterisation of complex mixtures of isomeric and isobaric glycan structures. Here we evaluate the elution behaviour of N-glycans on PGC-LC and thereby provide the potential of using chromatographic separation properties, together with mass spectrometry (MS) fragmentation, to determine glycan structure assignments more easily. We used previously reported N-glycan structures released from the purified glycoproteins Immunoglobulin G (IgG), Immunoglobulin A (IgA), lactoferrin, α1-acid glycoprotein, Ribonuclease B (RNase B), fetuin and ovalbumin to profile their behaviour on capillary PGC-LC-MS. Over 100 glycan structures were determined by MS/MS, and together with targeted exoglycosidase digestions, created a N-glycan PGC retention library covering a full spectrum of biologically significant N-glycans from pauci mannose to sialylated tetra-antennary classes. The resultant PGC retention library (http://www.glycostore.org/showPgc) incorporates retention times and supporting fragmentation spectra including exoglycosidase digestion products, and provides detailed knowledge on the elution properties of N-glycans by PGC-LC. Consequently, this platform should serve as a valuable resource for facilitating the detailed analysis of the glycosylation of both purified recombinant, and complex mixtures of, glycoproteins using established workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96(2), 683–720 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. Sperandio, M., Gleissner, C.A., Ley, K.: Glycosylation in immune cell trafficking. Immunol. Rev. 230(1), 97–113 (2009). https://doi.org/10.1111/j.1600-065X.2009.00795.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wormald, M.R., Dwek, R.A.: Glycoproteins: glycan presentation and protein-fold stability. Structure. 7(7), R155–R160 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Christiansen, M.N., Chik, J., Lee, L., Anugraham, M., Abrahams, J.L., Packer, N.H.: Cell surface protein glycosylation in cancer. Proteomics. 14(4–5), 525–546 (2014). https://doi.org/10.1002/pmic.201300387

    Article  CAS  PubMed  Google Scholar 

  5. Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N., Dwek, R.A.: Emerging principles for the therapeutic exploitation of glycosylation. Science. 343(6166), 1235681 (2014). https://doi.org/10.1126/science.1235681

    Article  PubMed  Google Scholar 

  6. Freeze, H.H., Chong, J.X., Bamshad, M.J., Ng, B.G.: Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94(2), 161–175 (2014). https://doi.org/10.1016/j.ajhg.2013.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mkhikian, H., Grigorian, A., Li, C.F., Chen, H.L., Newton, B., Zhou, R.W., Beeton, C., Torossian, S., Tatarian, G.G., Lee, S.U., Lau, K., Walker, E., Siminovitch, K.A., Chandy, K.G., Yu, Z., Dennis, J.W., Demetriou, M.: Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat. Commun. 2, 334 (2011). https://doi.org/10.1038/ncomms1333

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ohtsubo, K., Marth, J.: Glycosylation in cellular mechanisms of health and disease. Cell. 126(5), 855–867 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Stowell, S.R., Ju, T., Cummings, R.D.: Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015). https://doi.org/10.1146/annurev-pathol-012414-040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alley Jr., W.R., Novotny, M.V.: Structural glycomic analyses at high sensitivity: a decade of progress. Annu. Rev. Anal. Chem. 6, 237–265 (2013). https://doi.org/10.1146/annurev-anchem-062012-092609

    Article  CAS  Google Scholar 

  11. Kailemia, M.J., Ruhaak, L.R., Lebrilla, C.B., Amster, I.J.: Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86(1), 196–212 (2014). https://doi.org/10.1021/ac403969n

    Article  CAS  PubMed  Google Scholar 

  12. Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Marino, K., Correale, J., Rabinovich, G.A.: Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev. 25(3), 247–255 (2014). https://doi.org/10.1016/j.cytogfr.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Miura, Y., Endo, T.: Glycomics and glycoproteomics focused on aging and age-related diseases - Glycans as a potential biomarker for physiological alterations. Biochim. Biophys. Acta. 1860(8), 1608–1614 (2016). https://doi.org/10.1016/j.bbagen.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  14. Mechref, Y., Hu, Y., Desantos-Garcia, J.L., Hussein, A., Tang, H.: Quantitative glycomics strategies. Mol Cell Proteomics. 12(4), 874–884 (2013). https://doi.org/10.1074/mcp.R112.026310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moh, E.S., Thaysen-Andersen, M., Packer, N.H.: Relative versus absolute quantitation in disease glycomics. Proteomics Clin Appl. (2015). https://doi.org/10.1002/prca.201400184

  16. Reinhold, V., Zhang, H., Hanneman, A., Ashline, D.: Toward a platform for comprehensive glycan sequencing. Mol. Cell. Proteomics. 12(4), 866–873 (2013). https://doi.org/10.1074/mcp.R112.026823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reusch, D., Haberger, M., Selman, M.H., Bulau, P., Deelder, A.M., Wuhrer, M., Engler, N.: High-throughput work flow for IgG fc-glycosylation analysis of biotechnological samples. Anal. Biochem. 432(2), 82–89 (2013). https://doi.org/10.1016/j.ab.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  18. Sahoo, S., Thomas, C., Sheth, A., Henson, C., York, W.: GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydr. Res. 340(18), 2802–2807 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Turiak, L., Shao, C., Meng, L., Khatri, K., Leymarie, N., Wang, Q., Pantazopoulos, H., Leon, D.R., Zaia, J.: Workflow for combined proteomics and glycomics profiling from histological tissues. Anal. Chem. 86(19), 9670–9678 (2014). https://doi.org/10.1021/ac5022216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19(5), 498–506 (2009). https://doi.org/10.1016/j.sbi.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thaysen-Andersen, M., Packer, N.H., Schulz, B.L.: Maturing Glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol. Cell. Proteomics. 15(6), 1773–1790 (2016). https://doi.org/10.1074/mcp.O115.057638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wuhrer, M.: Glycomics using mass spectrometry. Glycoconj. J. 30(1), 11–22 (2013). https://doi.org/10.1007/s10719-012-9376-3

    Article  CAS  PubMed  Google Scholar 

  23. Zaia, J.: Mass spectrometry and glycomics. OMICS. 14(4), 401–418 (2010). https://doi.org/10.1089/omi.2009.0146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mauko, L., Lacher, N.A., Pelzing, M., Nordborg, A., Haddad, P.R., Hilder, E.F.: Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 911, 93–104 (2012). https://doi.org/10.1016/j.jchromb.2012.10.043

    Article  CAS  Google Scholar 

  25. Michael, C., Rizzi, A.M.: Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase. J. Chromatogr. A. 1383, 88–95 (2015). https://doi.org/10.1016/j.chroma.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  26. Ruhaak, L.R., Deelder, A.M., Wuhrer, M.: Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 394(1), 163–174 (2009). https://doi.org/10.1007/s00216-009-2664-5

    Article  CAS  PubMed  Google Scholar 

  27. Saldova, R., Asadi Shehni, A., Haakensen, V.D., Steinfeld, I., Hilliard, M., Kifer, I., Helland, A., Yakhini, Z., Borresen-Dale, A.L., Rudd, P.M.: Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J. Proteome Res. 13(5), 2314–2327 (2014). https://doi.org/10.1021/pr401092y

    Article  CAS  PubMed  Google Scholar 

  28. Higel, F., Demelbauer, U., Seidl, A., Friess, W., Sorgel, F.: Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal. Bioanal. Chem. 405(8), 2481–2493 (2013). https://doi.org/10.1007/s00216-012-6690-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Melmer, M., Stangler, T., Premstaller, A., Lindner, W.: Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J. Chromatogr. A. 1218(1), 118–123 (2011). https://doi.org/10.1016/j.chroma.2010.10.122

    Article  CAS  PubMed  Google Scholar 

  30. Prater, B.D., Connelly, H.M., Qin, Q., Cockrill, S.L.: High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal. Biochem. 385(1), 69–79 (2009). https://doi.org/10.1016/j.ab.2008.10.023

    Article  CAS  PubMed  Google Scholar 

  31. Adamczyk, B., Tharmalingam-Jaikaran, T., Schomberg, M., Szekrenyes, A., Kelly, R.M., Karlsson, N.G., Guttman, A., Rudd, P.M.: Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr. Res. 389, 174–185 (2014). https://doi.org/10.1016/j.carres.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  32. Anugraham, M., Jacob, F., Nixdorf, S., Everest-Dass, A.V., Heinzelmann-Schwarz, V., Packer, N.H.: Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol. Cell. Proteomics. 13(9), 2213–2232 (2014). https://doi.org/10.1074/mcp.M113.037085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Everest-Dass, A.V., Abrahams, J.L., Kolarich, D., Packer, N.H., Campbell, M.P.: Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J. Am. Soc. Mass Spectrom. 24(6), 895–906 (2013). https://doi.org/10.1007/s13361-013-0610-4

    Article  CAS  PubMed  Google Scholar 

  34. Stavenhagen, K., Kolarich, D., Wuhrer, M.: Clinical glycomics employing graphitized carbon liquid chromatography–mass spectrometry. Chromatographia, 1–14. (2014). https://doi.org/10.1007/s10337-014-2813-7

  35. Abrahams, J.L., Packer, N.H., Campbell, M.P.: Relative quantitation of multi-antennary N-glycan classes: combining PGC-LC-ESI-MS with exoglycosidase digestion. Analyst. 140(16), 5444–5449 (2015). https://doi.org/10.1039/c5an00691k

    Article  CAS  PubMed  Google Scholar 

  36. Kolarich, D., Windwarder, M., Alagesan, K., Altmann, F.: Isomer-specific analysis of released N-Glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol. Biol. 1321, 427–435 (2015). https://doi.org/10.1007/978-1-4939-2760-9_29

    Article  PubMed  Google Scholar 

  37. Nakano, M., Saldanha, R., Gobel, A., Kavallaris, M., Packer, N.H.: Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol Cell Proteomics. 10(11), M111.009001 (2011). https://doi.org/10.1074/mcp.M111.009001

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pabst, M., Altmann, F.: Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal. Chem. 80(19), 7534–7542 (2008). https://doi.org/10.1021/ac801024r

    Article  CAS  PubMed  Google Scholar 

  39. Aldredge, D., An, H.J., Tang, N., Waddell, K., Lebrilla, C.B.: Annotation of a serum N-glycan library for rapid identification of structures. J. Proteome Res. 11(3), 1958–1968 (2012). https://doi.org/10.1021/pr2011439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hua, S., Jeong, H.N., Dimapasoc, L.M., Kang, I., Han, C., Choi, J.S., Lebrilla, C.B., An, H.J.: Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal. Chem. 85(9), 4636–4643 (2013). https://doi.org/10.1021/ac400195h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jensen, P.H., Karlsson, N.G., Kolarich, D., Packer, N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012). https://doi.org/10.1038/nprot.2012.063

    Article  CAS  PubMed  Google Scholar 

  42. Royle, L., Campbell, M.P., Radcliffe, C.M., White, D.M., Harvey, D.J., Abrahams, J.L., Kim, Y.G., Henry, G.W., Shadick, N.A., Weinblatt, M.E., Lee, D.M., Rudd, P.M., Dwek, R.A.: HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376(1), 1–12 (2008). https://doi.org/10.1016/j.ab.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  43. Royle, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M.: Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. Methods Mol. Biol. 347, 125–143 (2006). https://doi.org/10.1385/1-59745-167-3:125

    CAS  PubMed  Google Scholar 

  44. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16(5), 631–646 (2005). https://doi.org/10.1016/j.jasms.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  45. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16(5), 647–659 (2005). https://doi.org/10.1016/j.jasms.2005.01.006

    Article  CAS  PubMed  Google Scholar 

  46. Harvey, D.J., Royle, L., Radcliffe, C.M., Rudd, P.M., Dwek, R.A.: Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal. Biochem. 376(1), 44–60 (2008). https://doi.org/10.1016/j.ab.2008.01.025

    Article  CAS  PubMed  Google Scholar 

  47. Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79(13), 5051–5057 (2007). https://doi.org/10.1021/ac070363i

    Article  CAS  PubMed  Google Scholar 

  48. Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R., Altmann, F.: Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics. 8(14), 2858–2871 (2008). https://doi.org/10.1002/pmic.200700968

    Article  CAS  PubMed  Google Scholar 

  49. Huang, C.-C., Mayer, H.E., Montgomery, R.: Microheterogeneity and paucidispersity of glycoproteins. Carbohydr. Res. 13(1), 127–137 (1970). https://doi.org/10.1016/S0008-6215(00)84902-2

    Article  CAS  Google Scholar 

  50. Tai, T., Yamashita, K., Ogata-Arakawa, M., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., Kobata, A.: Structural studies of two ovalbumin glycopeptides in relation to the endo-beta-N-acetylglucosaminidase specificity. J. Biol. Chem. 250(21), 8569–8575 (1975)

    CAS  PubMed  Google Scholar 

  51. Yamashita, K., Tachibana, Y., Kobata, A.: The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 253(11), 3862–3869 (1978)

    CAS  PubMed  Google Scholar 

  52. Yoshima, H., Matsumoto, A., Mizuochi, T., Kawasaki, T., Kobata, A.: Comparative study of the carbohydrate moieties of rat and human plasma alpha 1-acid glycoproteins. J. Biol. Chem. 256(16), 8476–8484 (1981)

    CAS  PubMed  Google Scholar 

  53. Ceccarini, C., Lorenzoni, P., Atkinson, P.H.: Fractionation of ovalbumin glycopeptide AC-C by high-pressure liquid chromatography. Determination of structure by 1H–NMR spectroscopy. Biochim Biophys Acta. 759(3), 214–221 (1983)

    Article  CAS  PubMed  Google Scholar 

  54. Duffin, K.L., Welply, J.K., Huang, E., Henion, J.D.: Characterization of N-linked oligosaccharides by electrospray and tandem mass spectrometry. Anal. Chem. 64(13), 1440–1448 (1992)

    Article  CAS  PubMed  Google Scholar 

  55. Treuheit, M.J., Costello, C.E., Halsall, H.B.: Analysis of the five glycosylation sites of human alpha 1-acid glycoprotein. Biochem. J. 283(Pt 1), 105–112 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fu, D., Chen, L., O'Neill, R.A.: A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr. Res. 261(2), 173–186 (1994)

    Article  CAS  PubMed  Google Scholar 

  57. Kuster, B., Wheeler, S.F., Hunter, A.P., Dwek, R.A., Harvey, D.J.: Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250(1), 82–101 (1997). https://doi.org/10.1006/abio.1997.2199

    Article  CAS  PubMed  Google Scholar 

  58. Mechref, Y., Novotny, M.V.: Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal. Chem. 70(3), 455–463 (1998)

    Article  CAS  PubMed  Google Scholar 

  59. Harvey, D.J., Wing, D.R., Kuster, B., Wilson, I.B.: Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 11(6), 564–571 (2000). https://doi.org/10.1016/S1044-0305(00)00122-7

    Article  CAS  PubMed  Google Scholar 

  60. Zhuang, Z., Starkey, J.A., Mechref, Y., Novotny, M.V., Jacobson, S.C.: Electrophoretic analysis of N-glycans on microfluidic devices. Anal. Chem. 79(18), 7170–7175 (2007). https://doi.org/10.1021/ac071261v

    Article  CAS  PubMed  Google Scholar 

  61. Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007). https://doi.org/10.1146/annurev.immunol.25.022106.141702

    Article  CAS  PubMed  Google Scholar 

  62. Kobata, A.: The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta. 1780(3), 472–478 (2008). https://doi.org/10.1016/j.bbagen.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  63. Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H., Reinhold, V.N.: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20(4), 539–556 (2009). https://doi.org/10.1016/j.jasms.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  64. Alley Jr., W.R., Mann, B.F., Novotny, M.V.: High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem. Rev. 113(4), 2668–2732 (2013). https://doi.org/10.1021/cr3003714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mahan, A.E., Tedesco, J., Dionne, K., Baruah, K., Cheng, H.D., De Jager, P.L., Barouch, D.H., Suscovich, T., Ackerman, M., Crispin, M., Alter, G.: A method for high-throughput, sensitive analysis of IgG fc and fab glycosylation by capillary electrophoresis. J. Immunol. Methods. 417, 34–44 (2015). https://doi.org/10.1016/j.jim.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  66. Harvey, D.J., Abrahams, J.L.: Fragmentation and ion mobility properties of negative ions from N-linked carbohydrates: part 7. Reduced glycans. Rapid Commun. Mass Spectrom. 30(5), 627–634 (2016). https://doi.org/10.1002/rcm.7467

    Article  CAS  PubMed  Google Scholar 

  67. Sanda, M., Goldman, R.: Data independent analysis of IgG Glycoforms in samples of unfractionated human plasma. Anal. Chem. (2016). https://doi.org/10.1021/acs.analchem.6b02554

  68. Harvey, D.J., Scarff, C.A., Edgeworth, M., Pagel, K., Thalassinos, K., Struwe, W.B., Crispin, M., Scrivens, J.H.: Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans. J. Mass Spectrom. (2016). https://doi.org/10.1002/jms.3828

  69. Campbell, M., Royle, L., Radcliffe, C., Dwek, R., Rudd, P.: GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics. 24(9), 1214–1216 (2008)

    Article  CAS  PubMed  Google Scholar 

  70. Guile, G.R., Rudd, P.M., Wing, D.R., Prime, S.B., Dwek, R.A.: A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240(2), 210–226 (1996). https://doi.org/10.1006/abio.1996.0351

    Article  CAS  PubMed  Google Scholar 

  71. Koizumi, K.: High-performance liquid chromatographic separation of carbohydrates on graphitized carbon columns. J. Chromatogr. A. 720(1–2), 119–126 (1996)

    Article  CAS  PubMed  Google Scholar 

  72. Melmer, M., Stangler, T., Premstaller, A., Lindner, W.: Solvent effects on the retention of oligosaccharides in porous graphitic carbon liquid chromatography. J. Chromatogr. A. 1217(39), 6092–6096 (2010). https://doi.org/10.1016/j.chroma.2010.07.059

    Article  CAS  PubMed  Google Scholar 

  73. Prime, S., Merry, T.: Exoglycosidase sequencing of N-linked glycans by the reagent array analysis method (RAAM). Methods Mol. Biol. 76, 53–69 (1998). https://doi.org/10.1385/0-89603-355-4:53

    CAS  PubMed  Google Scholar 

  74. Stavenhagen, K., Kolarich, D., Wuhrer, M.: Clinical Glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia. 78(5–6), 307–320 (2015). https://doi.org/10.1007/s10337-014-2813-7

    Article  CAS  PubMed  Google Scholar 

  75. Pabst, M., Grass, J., Toegel, S., Liebminger, E., Strasser, R., Altmann, F.: Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology. 22(3), 389–399 (2012). https://doi.org/10.1093/glycob/cwr138

    Article  CAS  PubMed  Google Scholar 

  76. Walsh, I., Zhao, S., Campbell, M., Taron, C.H., Rudd, P.M.: Quantitative profiling of glycans and glycopeptides: an informatics' perspective. Curr. Opin. Struct. Biol. 40, 70–80 (2016). https://doi.org/10.1016/j.sbi.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  77. Campbell, M.P., Ranzinger, R., Lutteke, T., Mariethoz, J., Hayes, C.A., Zhang, J., Akune, Y., Aoki-Kinoshita, K.F., Damerell, D., Carta, G., York, W.S., Haslam, S.M., Narimatsu, H., Rudd, P.M., Karlsson, N.G., Packer, N.H., Lisacek, F.: Toolboxes for a standardised and systematic study of glycans. BMC bioinformatics. 15(Suppl 1), S9 (2014). https://doi.org/10.1186/1471-2105-15-S1-S9

    Article  PubMed  PubMed Central  Google Scholar 

  78. Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Marth, J.D., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Symbol nomenclature for glycan representation. Proteomics. 9(24), 5398–5399 (2009). https://doi.org/10.1002/pmic.200900708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology. 25(12), 1323–1324 (2015). https://doi.org/10.1093/glycob/cwv091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harvey, D., Merry, A., Royle, L., Campbell, M., Dwek, R., Rudd, P.: Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics. 9(15), 3796–3801 (2009)

    Article  CAS  PubMed  Google Scholar 

  81. Harvey, D., Merry, A., Royle, L., Campbell, M., Rudd, P.: Symbol nomenclature for representing glycan structures: extension to cover different carbohydrate types. Proteomics. 11(22), 4291–4295 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. York, W.S., Agravat, S., Aoki-Kinoshita, K.F., McBride, R., Campbell, M.P., Costello, C.E., Dell, A., Feizi, T., Haslam, S.M., Karlsson, N., Khoo, K.H., Kolarich, D., Liu, Y., Novotny, M., Packer, N.H., Paulson, J.C., Rapp, E., Ranzinger, R., Rudd, P.M., Smith, D.F., Struwe, W.B., Tiemeyer, M., Wells, L., Zaia, J., Kettner, C.: MIRAGE: the minimum information required for a glycomics experiment. Glycobiology. 24(5), 402–406 (2014). https://doi.org/10.1093/glycob/cwu018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Campbell, M.P., Hayes, C.A., Struwe, W.B., Wilkins, M.R., Aoki-Kinoshita, K.F., Harvey, D.J., Rudd, P.M., Kolarich, D., Lisacek, F., Karlsson, N.G., Packer, N.H.: UniCarbKB: putting the pieces together for glycomics research. Proteomics. 11(21), 4117–4121 (2011). https://doi.org/10.1002/pmic.201100302

    Article  CAS  PubMed  Google Scholar 

  84. Campbell, M.P., Packer, N.H.: UniCarbKB: new database features for integrating glycan structure abundance, compositional glycoproteomics data, and disease associations. Biochim. Biophys. Acta. (2016). https://doi.org/10.1016/j.bbagen.2016.02.016

  85. Gotz, L., Abrahams, J.L., Mariethoz, J., Rudd, P.M., Karlsson, N.G., Packer, N.H., Campbell, M.P., Lisacek, F.: GlycoDigest: a tool for the targeted use of exoglycosidase digestions in glycan structure determination. Bioinformatics. 30(21), 3131–3133 (2014). https://doi.org/10.1093/bioinformatics/btu425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Campbell, M.P., Nguyen-Khuong, T., Hayes, C.A., Flowers, S.A., Alagesan, K., Kolarich, D., Packer, N.H., Karlsson, N.G.: Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. Biochimica et Biophysica Acta. 1844(1 Pt A), 108–116 (2014). https://doi.org/10.1016/j.bbapap.2013.04.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Macquarie University Research Excellence Scheme postgraduate scholarship, the Northern Translational Cancer Research Unit through a Cancer Institute NSW competitive student grant, and the National eResearch Collaboration Tools and Resources project (NeCTAR RT016). This research project was facilitated by access to the Australian Proteomics Analysis Facility (APAF) established under the Australian Government’s NCRIS program. We would like to acknowledge Dr. Sophie Zhao, Dr. Ian Walsh and Prof. Pauline Rudd (Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore) for supporting the development of GlycoStore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolle H. Packer.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahams, J.L., Campbell, M.P. & Packer, N.H. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 35, 15–29 (2018). https://doi.org/10.1007/s10719-017-9793-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-017-9793-4

Keywords

Navigation