Skip to main content

Abstract

Multifidelity methods aim to leverage the availability of models at different levels of fidelity describing the same physical phenomena and are receiving growing attention in computational science. One field that can considerably benefits from statistical multifidelity approaches is data assimilation. This chapter presents a broad overview of multifidelity methods in data assimilation for hierarchies of models and hierarchies of observations. We introduce the theoretical multifidelity Kalman filter, and discuss its practical implementation using an ensemble-based framework as the multifidelity ensemble Kalman filter (MFEnKF). The discussion builds upon the theory of linear and nonlinear control variates. Numerical examples compare the multifidelity and the traditional EnKF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo W, de Wiljes J, Reich S (2017) Second-order accurate ensemble transform particle filters. SIAM J Sci Comput 39(5):A1834–A1850

    Article  Google Scholar 

  • Allen E, Baglama J, Boyd S (2000) Numerical approximation of the product of the square root of a matrix with a vector. Linear Algebra Appl 310(1–3):167–181

    Article  Google Scholar 

  • Asch M, Bocquet M, Nodet M (2016) Data assimilation: methods, algorithms, and applications. SIAM

    Google Scholar 

  • Bishop C, Etherton B, Majumdar S (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon Weather Rev 129:420–436

    Google Scholar 

  • Brunton SL, Kutz JN (2019) Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press

    Google Scholar 

  • Chernov A, Hoel H, Law K, Nobile F, Tempone R (2017) Multilevel ensemble Kalman filtering for for spatio-temporal processes. MATHICSE technical report 22.2017, EPFL

    Google Scholar 

  • Cummings JA (2005) Operational multivariate ocean data assimilation. Q J R Meteorol Soc 131(613):3583–3604

    Article  Google Scholar 

  • Gaspari G, Cohn S (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Giles MB (2008) Multilevel Monte Carlo path simulation. Oper Res 56(3):607–617

    Article  Google Scholar 

  • Giles MB (2015) Multilevel Monte Carlo methods. Acta Numer 24:259–328

    Google Scholar 

  • Gregory A, Cotter CJ (2017) A seamless multilevel ensemble transform particle filter. SIAM J Sci Comput 39(6):A2684–A2701

    Article  Google Scholar 

  • Gregory A, Cotter CJ, Reich S (2016) Multilevel ensemble transform particle filtering. SIAM J Sci Comput 38(3):A1317–A1338

    Article  Google Scholar 

  • Hoel H, Law KJH, Tempone R (2016) Multilevel ensemble Kalman filtering. SIAM J Numer Anal 54(3). https://doi.org/10.1137/15M100955X

  • Houtekamer P, Mitchell H (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126:796–811

    Article  Google Scholar 

  • Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press

    Google Scholar 

  • Kalman R (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82:35–45

    Article  Google Scholar 

  • Lorenz EN (1996) Predictability: a problem partly solved. In: Proceedings of seminar on predictability, vol 1

    Google Scholar 

  • Moosavi A, Stefanescu R, Sandu A (2018a) Efficient construction of local parametric reduced order models using machine learning techniques. Int J Numer Methods Eng 113(3):512–533

    Google Scholar 

  • Moosavi A, Stefanescu R, Sandu A (2018b) Parametric domain decomposition for accurate reduced order models: applications of MP-LROM methodology. J Comput Appl Math 340:629–644

    Google Scholar 

  • Nelson BL (1987) On control variate estimators. Comput Oper Res 14(3):219–225

    Article  Google Scholar 

  • Oke PR, Brassington GB, Griffin DA, Schiller A (2008) The Bluelink ocean data assimilation system (BODAS). Ocean Model 21(1–2):46–70

    Article  Google Scholar 

  • Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60(3):550–591

    Article  Google Scholar 

  • Petrie RE, Dance S (2010) Ensemble-based data assimilation and the localisation problem. Weather 65(3):65–69

    Article  Google Scholar 

  • Popov AA, Mou C, Iliescu T, Sandu A (2020) A multifidelity ensemble Kalman filter with reduced order control variates. arXiv:2007.00793

  • Popov AA, Sandu A (2019) A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions. Nonlinear Process Geophys 26(2):109–122

    Article  Google Scholar 

  • Popov AA, Sandu A (2020) An explicit probabilistic derivation of inflation in a scalar ensemble Kalman filter for finite step, finite ensemble convergence. arXiv:2003.13162

  • Reich S (2013) A nonparametric ensemble transform method for Bayesian inference. SIAM J Sci Comput 35(4):A2013–A2024

    Article  Google Scholar 

  • Reich S, Cotter C (2015) Probabilistic forecasting and Bayesian data assimilation. Cambridge University Press

    Google Scholar 

  • Rubinstein RY, Marcus R (1985) Efficiency of multivariate control variates in Monte Carlo simulation. Oper Res 33(3):661–677

    Article  Google Scholar 

  • Sakov P, Bertino L (2011) Relation between two common localisation methods for the EnKF. Comput Geosci 15(2):225–237

    Article  Google Scholar 

  • Sirovich L(1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 45(3), 561–571

    Google Scholar 

  • Stefanescu R, Sandu A, Navon I (2015) POD/DEIM strategies for reduced data assimilation systems. J Comput Phys 295:569–595

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Traian Iliescu and Changhong Mou who have helped make some of the work underlying this possible. This work was supported by awards NSF CCF–1613905. NSF ACI–1709727, NSF CDS&E-MSS–1953113, and by the Computational Science Laboratory at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Popov, A.A., Sandu, A. (2022). Multifidelity Data Assimilation for Physical Systems. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV). Springer, Cham. https://doi.org/10.1007/978-3-030-77722-7_2

Download citation

Publish with us

Policies and ethics