Skip to main content

Construction of Poincaré-type Series by Generating Kernels

  • Chapter
  • First Online:
Women in Numbers Europe III

Abstract

Let \(\Gamma \subset \operatorname {PSL}_2(\mathbb {R})\) be a Fuchsian group of the first kind having a fundamental domain with a finite hyperbolic area, and let \(\widetilde \Gamma \) be its cover in \(\operatorname {SL}_2(\mathbb {R})\). Consider the space of twice continuously differentiable, square-integrable functions on the hyperbolic upper half-plane, which transform in a suitable way with respect to a multiplier system of weight \(k\in \mathbb {R}\) under the action of \(\widetilde \Gamma \). The space of such functions admits the action of the hyperbolic Laplacian Δk of weight k. Following an approach of by Jorgenson et al. (Adv Math 288:887–921, 2016) (where k = 0), we use the spectral expansion associated to Δk to construct a wave distribution and then identify the conditions on its test functions under which it represents automorphic kernels and further gives rise to Poincaré-type series. An advantage of this method is that the resulting series may be naturally meromorphically continued to the whole complex plane. Additionally, we derive sup-norm bounds for the eigenfunctions in the discrete spectrum of Δk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This line of investigation was not undertaken in this paper, but we plan to pursue it in forthcoming research.

References

  1. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. AMS Colloquium Publications, 64, AMS, Providence, RI (2017)

    Google Scholar 

  2. Bruggeman, R.W.: Modular forms of varying weight. I. Math. Z. 190, 477–495 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bruggeman, R.W.: Modular forms of varying weight. II. Math. Z. 192, 297–328 (1986)

    Article  MathSciNet  Google Scholar 

  4. Bruggeman, R.W.: Modular forms of varying weight. III. J. Reine Angew. Math. 371, 144–190 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Bump, D.: Automorphic Forms and Representations. Cambridge University Press (1998)

    Google Scholar 

  6. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984)

    MATH  Google Scholar 

  7. Cogdell, J., Jorgenson, J., Smajlović, L.: Spectral construction of non-holomorphic Eisenstein-type series and their Kronecker limit formula. In: Donagy, R., Shaska, T. (eds.) Integrable Systems and Algebraic Geometry: Volume 2, pp. 405–449. Cambrige University Press, Cambrige (2020)

    Chapter  Google Scholar 

  8. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil I. Math. Ann. 203, 295–330 (1973)

    Article  MathSciNet  Google Scholar 

  9. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil II. Math. Z. 132, 99–134 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Fay, J.D.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math. 293/294, 143–203 (1977)

    Google Scholar 

  11. Fischer, J.: An approach to the Selberg trace formula via the Selberg zeta-function. Springer-Verlag, New York (1987)

    Book  Google Scholar 

  12. Friedman, J.S., Jorgenson, J., Kramer, J.: Uniform sup-norm bounds on average for cusp forms of higher weights. In: Ballmann, W. et al. (eds.) Arbeitstagung Bonn 2013, pp. 127–154. Birkhäuser, Cham / Springer (2016)

    Google Scholar 

  13. Friedman, J.S., Jorgenson, J., Kramer, J.: Effective sup-norm bounds on average for cusp forms of even weight. Trans. Amer. Math. Soc. 372, 7735–7766 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products. Elsevier Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  15. Hejhal, D.A.: The Selberg Trace Formula for \(\mathrm {PSL}(2,\mathbb {R})\) Vol. 1. Springer-Verlag, New York (1976)

    Google Scholar 

  16. Hejhal, D.A.: The Selberg Trace Formula for \(\mathrm {PSL}(2,\mathbb {R})\) Vol. 2. Springer-Verlag, New York (1983)

    Google Scholar 

  17. Jorgenson, J., Kramer, J., von Pippich, A.-M.: On the spectral expansion of hyperbolic Eisenstein series. Math. Ann. 346, 931–947 (2010)

    Article  MathSciNet  Google Scholar 

  18. Jorgenson, J., Lang, S.: Analytic continuation and identities involving heat, Poisson, wave and Bessel kernels. Math. Nachr. 258, 44–70 (2003)

    Article  MathSciNet  Google Scholar 

  19. Jorgenson, J., von Pippich, A.-M., Smajlović, L.: On the wave representation of elliptic, hyperbolic, and parabolic Eisenstein series. Advances in Math. 288, 887–921 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kara, Y., Kumari, M., Marzec, J., Maurischat, K., Mocanu, A., Smajlović, L.: Poincaré-type series associated to the weighted Laplacian on finite volume Riemann surfaces (in preparation)

    Google Scholar 

  21. Maass, H.: Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen. Math. Ann. 125, 235–263 (1953)

    Article  MathSciNet  Google Scholar 

  22. Oshima, K.: Completeness relations for Maass Laplacians and heat kernels on the super Poincaré upper half-plane. J. Math. Phys. 31, 3060–3063 (1990)

    Article  MathSciNet  Google Scholar 

  23. Patterson, S.J.: The laplacian operator on a Riemann surface. Compositio Math. 31(1), 83–107 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Patterson, S.J.: The laplacian operator on a Riemann surface II. Compositio Math. 32(1), 71–112 (1976)

    MathSciNet  MATH  Google Scholar 

  25. Patterson, S.J.: The laplacian operator on a Riemann surface III. Compositio Math. 33(3), 227–259 (1976)

    MathSciNet  MATH  Google Scholar 

  26. Petridis, Y.N., Risager, M.S.: Hyperbolic lattice-point counting and modular symbols. J. Théor. Nombres Bordeaux 21(3), 719–732 (2009)

    Article  MathSciNet  Google Scholar 

  27. von Pippich, A.-M.: The arithmetic of elliptic Eisenstein series. PhD thesis, Humboldt-Universität zu Berlin (2010)

    Google Scholar 

  28. Roelcke, W.: Analytische Fortsetzung der Eisensteinreihen zu den parabolischen Spitzen von Grenzkreisgruppen erster Art. Math. Ann. 132, 121–129 (1956)

    Article  MathSciNet  Google Scholar 

  29. Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I. Math. Ann. 167, 292–337 (1966)

    Article  MathSciNet  Google Scholar 

  30. Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, II. Math. Ann. 168, 261–324 (1967)

    Article  MathSciNet  Google Scholar 

  31. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20, 47–87 (1956)

    MathSciNet  MATH  Google Scholar 

  32. Strömberg, F.: Computation of Maass waveforms with nontrivial multiplier systems. Math. Comp. 77(264), 2375–2416 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the organizers and sponsors of WINE3 for providing a stimulating atmosphere for collaborative work. The authors also thank the referees for their work and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejla Smajlović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kara, Y., Kumari, M., Marzec, J., Maurischat, K., Mocanu, A., Smajlović, L. (2021). Construction of Poincaré-type Series by Generating Kernels. In: Cojocaru, A.C., Ionica, S., García, E.L. (eds) Women in Numbers Europe III. Association for Women in Mathematics Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-77700-5_8

Download citation

Publish with us

Policies and ethics