Skip to main content

Introduction and Literature Review of Power System Challenges and Issues

  • Chapter
  • First Online:
Application of Machine Learning and Deep Learning Methods to Power System Problems

Part of the book series: Power Systems ((POWSYS))

Abstract

Over many decades, the electric power industry has evolved from a single low-power generator serving a small area to highly interconnected networks serving a large number of countries, or even continents. Nowadays, an electric power system is one of the largest man-made systems ever created, consisting of an enormous number of components ranging from small electric appliances to very large turbo-generators. Running such a large system is a significant challenge. It has necessitated the resolution of numerous issues by educational and industrial institutions. The main issues of the power system can be categorized into planning, operation, and control issues which are analyzed in this chapter, separately. Machine learning, deep learning, and a variety of regression, classification, and clustering algorithms are all extremely effective tools for addressing these issues. These procedures can be used to resolve a variety of power system issues and concerns, including planning, operation, fault detection and protection, power system analysis and control, and cyber security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1993)

    Google Scholar 

  2. M. Fotuhi-Firuzabad, A. Safdarian, M. Moeini-Aghtaie, R. Ghorani, M. Rastegar, H. Farzin, Upcoming challenges of future electric power systems: sustainability and resiliency. Sci. Iranica 23, 1565 (2016)

    Article  Google Scholar 

  3. IEA, World Energy Outlook (2019)

    Google Scholar 

  4. A. Moradzadeh, O. Sadeghian, K. Pourhossein, B. Mohammadi-Ivatloo, A. Anvari-Moghaddam, Improving residential load disaggregation for sustainable development of energy via principal component analysis. Sustainability (Switzerland) 12(8), 3158 (2020). https://doi.org/10.3390/SU12083158

    Article  Google Scholar 

  5. C. Canizares, J. Nathwani, D. Kammen, Electricity for all: issues, challenges, and solutions for energy-disadvantaged communities, in Proceedings of the IEEE, vol. 107 (2019)

    Google Scholar 

  6. A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, A. Anvari-Moghaddam, Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings. Appl. Sci. (Switzerland) 10(11), 3829 (2020). https://doi.org/10.3390/app10113829

    Article  Google Scholar 

  7. A. Lotfi, B. Mohammadi-Ivatloo, S. Asadi, Introduction to FEW Nexus, in Food-Energy-Water Nexus Resilience and Sustainable Development, ed. by S. Asadi, B. Mohammadi-Ivatloo, (Springer, Switzerland, 2020)

    Google Scholar 

  8. O. Sadeghian, A. Moradzadeh, B. Mohammadi-Ivatloo, M. Abapour, F.P.G. Marquez, Generation units maintenance in combined heat and power integrated systems using the mixed integer quadratic programming approach. Energies 13(11), 2840 (2020). https://doi.org/10.3390/en13112840

    Article  Google Scholar 

  9. A. Demir, N. Hadžijahić, Power system planning: part I—basic principles, in Advanced Technologies, Systems, and Applications II, ed. by M. Hadžikadić, S. Avdaković, vol. 28, (Springer, New York, 2018)

    Google Scholar 

  10. A.M. Al-Shaalan, Essential aspects of power system planning in developing countries. J. King Saud Univ. Eng. Sci. 23, 27–32 (2011)

    Google Scholar 

  11. A. Lotfi, S.H. Hosseini, Composite distributed generation and transmission expansion planning considering security. World Acad. Sci. Eng. Technol. Int. J. Energy Power Eng. 11 (2017)

    Google Scholar 

  12. A.J. Conejo, L. Baringo, Power Systems. In Power System Operations, pp. 1–15, (Springer, Cham, 2018)

    Google Scholar 

  13. X. Wang, J.R. McDonald, Modern Power System Planning (McGraw-Hill, New York, 1994)

    Google Scholar 

  14. A. Moradzadeh, K. Khaffafi, Comparison and evaluation of the performance of various types of neural networks for planning issues related to optimal management of charging and discharging electric cars in intelligent power grids. Emerg. Sci. J. 1(4), 201–207 (2017). https://doi.org/10.28991/ijse-01123

    Article  Google Scholar 

  15. A. Moradzadeh, B. Mohammadi-Ivatloo, M. Abapour, A. Anvari-Moghaddam, S. Gholami Farkoush, S.B. Rhee, A practical solution based on convolutional neural network for non-intrusive load monitoring. J. Ambient Intell. Humaniz. Comput. (2021). https://doi.org/10.1007/s12652-020-02720-6

  16. H. Seifi, M.S. Sepasian, Electric Power System Planning: Issues, Algorithms and Solutions (Springer, New York, 2011)

    Book  Google Scholar 

  17. R. Hemmati, R.A. Hooshmand, A. Khodabakhshian, Comprehensive review of generation and transmission expansion planning. IET Gener. Transm. Distrib. 7(9), 955–964 (2013)

    Article  Google Scholar 

  18. G. Latorre, R.D. Crus, J.M. Areiza, A. Villegas, Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 18(2), 938–946 (2003)

    Article  Google Scholar 

  19. R.S. Najafi, H. Khatami, Optimal and robust distribution system planning to forecasting uncertainty. Tabriz J. Electr. Eng. 46(2), 323–332 (2016)

    Google Scholar 

  20. A. Moradzadeh, K. Pourhossein, Early detection of turn-to-turn faults in power transformer winding: an experimental study, in Proceedings 2019 International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2019 and 2019 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2019 (2019), pp. 199–204, https://doi.org/10.1109/ACEMP-OPTIM44294.2019.9007169

  21. A. Mansour-Saatloo, A. Moradzadeh, B. Mohammadi-Ivatloo, A. Ahmadian, A. Elkamel, Machine learning based PEVs load extraction and analysis. Electronics (Switzerland) 9(7), 1–15 (2020). https://doi.org/10.3390/electronics9071150

    Article  Google Scholar 

  22. S.N. Ravandanegh, N. Jahanyari, A. Amini, N. Taghizadeghan, Smart distribution grid multistage expansion planning under load forecasting uncertainty. IET Gener. Transm. Distrib. 10(5), 1136–1144 (2016)

    Article  Google Scholar 

  23. P. Prakash, D.K. Khatod, Optimal sizing and siting techniques for distributed generation in distribution systems: A review. Renew. Sust. Energ. Rev. 57, 111–130 (2016)

    Article  Google Scholar 

  24. A.R. Jordehi, Allocation of distributed generation units in electric power systems: A review. Renew. Sust. Energ. Rev. 56, 893–905 (2016)

    Article  Google Scholar 

  25. J.P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, N. Jenkins, Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electr. Power Syst. Res. 77(9), 1189–1203 (2007)

    Article  Google Scholar 

  26. A. Patt, S. Pfenninger, J. Lilliestam, Vulnerability of solar energy infrastructure and output to climate change. Clim. Change 121, 93–102 (2013). https://doi.org/10.1007/s10584-013-0887-0

    Article  Google Scholar 

  27. J.A. Crook, L.A. Jones, M. Forster, R. Crook, Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 4, 3101–3109 (2011). https://doi.org/10.1039/c1ee01495a

    Article  Google Scholar 

  28. M. Gaetani, T. Huld, E. Vignati, F. Monforti-ferrario, A. Dosio, F. Raes, The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments. Renew. Sust. Energ. Rev. 38, 706–716 (2014). https://doi.org/10.1016/j.rser.2014.07.041

    Article  Google Scholar 

  29. I.S. Panagea, I.K. Tsanis, A.G. Koutroulis, M.G. Grillakis, Climate change impact on photovoltaic energy output : the case of Greece. Adv Meteorol 2014, 63–86 (2014)

    Google Scholar 

  30. S.C. Pryor, R.J. Barthelmie, Climate change impacts on wind energy: a review. Renewable and sustainable energy reviews 14, 430–437 (2010). https://doi.org/10.1016/j.rser.2009.07.028

  31. I. Tobin et al., Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim. Change 128, 99–112 (2015). https://doi.org/10.1007/s10584-014-1291-0

    Article  Google Scholar 

  32. R. Davy, N. Gnatiuk, L. Pettersson, L. Bobylev, Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew. Sustain. Energy Rev. 2016, 1–8 (2017). https://doi.org/10.1016/j.rser.2017.05.253

    Article  Google Scholar 

  33. C.S. Santos, D. Carvalho, A. Rocha, M. Gómez-Gesteira, Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 101(2017), 29–40 (2020). https://doi.org/10.1016/j.renene.2016.08.036

    Article  Google Scholar 

  34. L. Chen, S.C. Pryor, D. Li, Assessing the performance of Intergovernmental Panel on Climate Change AR5 climate models in simulating and projecting wind speeds over China. Journal of Geophysical Research: Atmospheres 117, 1–15 (2012). https://doi.org/10.1029/2012JD017533

  35. C. Fant, C.A. Schlosser, K. Strzepek, The impact of climate change on wind and solar resources in southern Africa. Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2015.03.042

  36. B. Kamranzad, A. Etemad-shahidi, V. Chegini, Climate change impact on wave energy in the Persian Gulf. (2015). https://doi.org/10.1007/s10236-015-0833-y

  37. J.P. Sierra, M. Casas-prat, E. Campins, Impact of climate change on wave energy resource : the case of Menorca (Spain). Renew. Energy 101, 275–285 (2017). https://doi.org/10.1016/j.renene.2016.08.060

    Article  Google Scholar 

  38. D.E. Reeve, Y. Chen, S. Pan, V. Magar, D.J. Simmonds, A. Zacharioudaki, An investigation of the impacts of climate change on wave energy generation : The Wave Hub, Cornwall, UK. Renew. Energy 36(9), 2404–2413 (2011). https://doi.org/10.1016/j.renene.2011.02.020

    Article  Google Scholar 

  39. B. Hamududu, A. Killingtveit, E. Engineering, Assessing climate change impacts on global hydropower. Energies 5(2), 305–322 (2012). https://doi.org/10.3390/en5020305

  40. S.W.D. Turner, J. Yi, S. Galelli, Science of the total environment examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. (2017). https://doi.org/10.1016/j.scitotenv.2017.03.022

  41. M.T.H. Van Vliet, D. Wiberg, S. Leduc, K. Riahi, Power-generation system vulnerability and adaptation to changes in climate and water resources. Nature Climate Change 6(4), 375–380 (2016). https://doi.org/10.1038/NCLIMATE2903

  42. H. Haberl et al., Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass and bioenergy 35(12), 4753–4769 (2011). https://doi.org/10.1016/j.biombioe.2011.04.035

  43. G. Tuck, M.J. Glendining, P. Smith, J.I. House, M. Wattenbach, The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30, 183–197 (2006). https://doi.org/10.1016/j.biombioe.2005.11.019

    Article  Google Scholar 

  44. J.N. Barney, J.M. Ditomaso, Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass Bioenergy 34(1), 124–133 (2010). https://doi.org/10.1016/j.biombioe.2009.10.009

    Article  Google Scholar 

  45. H.A. Hager, S.E. Sinasac, Z. Gedalof, J.A. Newman, Predicting potential global distributions of two miscanthus grasses : implications for horticulture, biofuel production, and biological invasions. PLoS One 9(6), e100032 (2014). https://doi.org/10.1371/journal.pone.0100032

    Article  Google Scholar 

  46. C. Chuang, D. Sue, Performance effects of combined cycle power plant with variable condenser pressure and loading. Energy 30, 1793–1801 (2005). https://doi.org/10.1016/j.energy.2004.10.003

    Article  Google Scholar 

  47. A. Durmayaz, O.S. Sogut, Influence of cooling water temperature on the efficiency of a pressurized-water reactor nuclear-power plant. International Journal of Energy Research, 2005, 799–810 (2006). https://doi.org/10.1002/er.1186

  48. K. Linnerud, T.K. Mideksa, G.S. Eskeland, The impact of climate change on nuclear power supply. Energy J. 32, 149–168 (2011)

    Article  Google Scholar 

  49. M. Bartos et al., Environ. Res. Lett. 11 (2016)

    Google Scholar 

  50. R. Contreras-Lisperguer, K. De-Cuba, The potential impact of climate change on the energy sector in the Caribbean region. Organization of American States, Washington DC (2008)

    Google Scholar 

  51. W. Li, E. Vaahedi, P. Choudhury, Power system equipment aging. IEEE Power Energy Mag 4(3), 52–58 (2006). https://doi.org/10.1109/MPAE.2006.1632454

    Article  Google Scholar 

  52. A. Moradnouri, A. Ardeshiri, M. Vakilian, A. Hekmati, M. Fardmanesh, Survey on high-temperature superconducting transformer windings design. J. Superconductivity Novel Magnet. 33, 2581–2599 (2020). https://doi.org/10.1007/s10948-020-05539-6

    Article  Google Scholar 

  53. S.S. Kalsi, Application of High-Temperature Superconductors to Electric Power Equipment (IEEE Press, Wiley, 2011)

    Book  Google Scholar 

  54. We Energies, Disturbance types and solutions [Online], https://www.we-energies.com/safety/power-quality/disturbance-types

  55. R. Godse, S. Bhat, Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line. IEEE Access 8, 38459–38471 (2020). https://doi.org/10.1109/ACCESS.2020.2975431

    Article  Google Scholar 

  56. M.M. Taheri, H. Seyedi, B. Mohammadi-ivatloo, DT-based relaying scheme for fault classification in transmission lines using MODP. IET Generation Transm. Distrib. 11(11), 2796–2804 (2017). https://doi.org/10.1049/iet-gtd.2016.1821

    Article  Google Scholar 

  57. M. Mohammad Taheri, H. Seyedi, M. Nojavan, M. Khoshbouy, B. Mohammadi Ivatloo, High-speed decision tree based series-compensated transmission lines protection using differential phase angle of superimposed current. IEEE Trans. Power Deliv. 33(6), 3130–3138 (2018). https://doi.org/10.1109/TPWRD.2018.2861841

    Article  Google Scholar 

  58. H. Teimourzadeh, A. Moradzadeh, M. Shoaran, B. Mohammadi-Ivatloo, R. Razzaghi, High impedance single-phase faults diagnosis in transmission lines via deep reinforcement learning of transfer functions. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3051411

  59. K. Chen, J. Hu, Y. Zhang, Z. Yu, J. He, Fault location in power distribution systems via deep graph convolutional networks. IEEE J. Sel. Areas Commun. 38(1), 119–131 (2020). https://doi.org/10.1109/JSAC.2019.2951964

    Article  Google Scholar 

  60. S. Zhang, Y. Wang, M. Liu, Z. Bao, Data-based line trip fault prediction in power systems using LSTM networks and SVM. IEEE Access 6, 7675–7686 (2018). https://doi.org/10.1109/ACCESS.2017.2785763

    Article  Google Scholar 

  61. G. Luo, Y. Tan, M. Li, M. Cheng, Y. Liu, J. He, Stacked auto-encoder-based fault location in distribution network. IEEE Access 8, 28043–28053 (2020). https://doi.org/10.1109/ACCESS.2020.2971582

    Article  Google Scholar 

  62. B. Li, J. Wu, L. Hao, M. Shao, R. Zhang, W. Zhao, Anti-jitter and refined power system transient stability assessment based on long-short term memory network. IEEE Access 8, 35231–35244 (2020). https://doi.org/10.1109/ACCESS.2020.2974915

    Article  Google Scholar 

  63. J. Liu, Z. Zhao, C. Tang, C. Yao, C. Li, S. Islam, Classifying transformer winding deformation fault types and degrees using FRA based on support vector machine. IEEE Access 7, 112494–112504 (2019). https://doi.org/10.1109/access.2019.2932497

    Article  Google Scholar 

  64. A. Moradzadeh, K. Pourhossein, Short circuit location in transformer winding using deep learning of its frequency responses, in Proceedings 2019 International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2019 and 2019 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2019 (2019), pp. 268–273, https://doi.org/10.1109/ACEMP-OPTIM44294.2019.9007176

  65. A. Moradzadeh, K. Pourhossein, Application of support vector machines to locate minor short circuits in transformer windings, in 2019 54th International Universities Power Engineering Conference (UPEC), (2019), pp. 1–6

    Google Scholar 

  66. S. Lan, M.-J. Chen, D.-Y. Chen, A novel HVDC double-terminal non-synchronous fault location method based on convolutional neural network. IEEE Trans. Power Deliv. 34(3), 848–857 (2019). https://doi.org/10.1109/TPWRD.2019.2901594

    Article  Google Scholar 

  67. R. Rohani, A. Koochaki, A hybrid method based on optimized neuro-fuzzy system and effective features for fault location in VSC-HVDC systems. IEEE Access 8, 70861–70869 (2020). https://doi.org/10.1109/ACCESS.2020.2986919

    Article  Google Scholar 

  68. G. Luo, J. Hei, C. Yao, J. He, M. Li, An end-to-end transient recognition method for VSC-HVDC based on deep belief network. J. Mod. Power Syst. Clean Energy 8(6), 1070–1079 (2020). https://doi.org/10.35833/MPCE.2020.000190

    Article  Google Scholar 

  69. SGTF_EG2, 2nd Interim Report Recommendations for the European Commission on Implementation of a Network Code on Cybersecurity (2018)

    Google Scholar 

  70. The European Economic and Social Committee and the Committee of the Regions Cybersecurity strategy of the E. U. European Commission. Joint communication to the European parliament, the council, An open, safe and secure cyberspace (2013)

    Google Scholar 

  71. ANL_GSS_15/4, Analysis of critical infrastructure dependencies and interdependencies, Argonne-risk and infrastructure science center, (2015)

    Google Scholar 

  72. A. Dagoumas, Assessing the impact of cybersecurity attacks on power systems. Energies (2019). https://doi.org/10.3390/en12040725

  73. A. Humayed, J. Lin, F. Li, B. Luo, Cyber-physical systems security - a survey. IEEE Internet Things J. 4(6), 1802–1831 (2017). https://doi.org/10.1109/JIOT.2017.2703172

    Article  Google Scholar 

  74. B. Jimada-Ojuolape, J. Teh, Surveys on the reliability impacts of power system cyber–physical layers. Sustain. Cities Soc. 62, 102384 (2020). https://doi.org/10.1016/j.scs.2020.102384

    Article  Google Scholar 

  75. Y. Ashibani, Q.H. Mahmoud, Cyber physical systems security: Analysis, challenges and solutions. Comput. Secur. 68, 81–97 (2017). https://doi.org/10.1016/j.cose.2017.04.005

    Article  Google Scholar 

  76. H. He, J. Yan, Cyber-physical attacks and defences in the smart grid: A survey. IET Cyber-Phys. Syst. Theory Appl. 1(1), 13–27 (2016). https://doi.org/10.1049/iet-cps.2016.0019

    Article  Google Scholar 

  77. J.P.A. Yaacoub, O. Salman, H.N. Noura, N. Kaaniche, A. Chehab, M. Malli, Cyber-physical systems security: Limitations, issues and future trends. Microprocess. Microsyst. 77, 103201 (2020). https://doi.org/10.1016/j.micpro.2020.103201

    Article  Google Scholar 

  78. M. Husak, J. Komarkova, E. Bou-Harb, P. Celeda, Survey of attack projection, prediction, and forecasting in cyber security. IEEE Commun. Surv. Tutorials 21(1), 640–660 (2019). https://doi.org/10.1109/COMST.2018.2871866

    Article  Google Scholar 

  79. Y. Wang, M.M. Amin, J. Fu, H.B. Moussa, A novel data analytical approach for false data injection cyber-physical attack mitigation in smart grids. IEEE Access 5, 26022–26033 (2017). https://doi.org/10.1109/ACCESS.2017.2769099

    Article  Google Scholar 

  80. H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7, 80778–80788 (2019). https://doi.org/10.1109/ACCESS.2019.2920326

    Article  Google Scholar 

  81. J.J.Q. Yu, Y. Hou, V.O.K. Li, Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Trans. Ind. Informat. 14(7), 3271–3280 (2018). https://doi.org/10.1109/TII.2018.2825243

    Article  Google Scholar 

  82. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020). https://doi.org/10.1109/ACCESS.2020.2992249

    Article  Google Scholar 

  83. S. Soltan, P. Mittal, H.V. Poor, Line failure detection after a cyber-physical attack on the grid using Bayesian regression. IEEE Trans. Power Syst. 34(5), 3758–3768 (2019). https://doi.org/10.1109/TPWRS.2019.2910396

    Article  Google Scholar 

  84. F.C. Schweppe, J. Wildes, Power system static-state estimation, part i: Exact model. IEEE Trans. Power Apparatus Syst. 59(1), 120–125 (1970)

    Article  Google Scholar 

  85. A.J. Wood, B.F. Wollenberg, Power Generation Operation and Control (Wiley, New York, 2003)

    Google Scholar 

  86. K. Chatterjee, V. Padmini, S.A. Khaparde, Review of cyber attacks on power system operations, in IEEE Region 10 Symposium, Conference Paper, (2017)

    Google Scholar 

  87. D. P. Kothari and I. J. Padmini, Power System Engineering, New Delhi: Tata McGraw Hill Education, 2008

    Google Scholar 

  88. P.M. Esfahani, M. Vrakopoulou, K. Margellos, J. Lygeros, G. Andersson, Cyber Attack in a Two-Area Power System : Impact Identification using Reachability, In Proceedings of the 2010 American control conference, pp. 962–967. IEEE (2010)

    Google Scholar 

  89. B.F. Wollenberg, Power system operation and control, in Power System Stability and Control, 3rd edn., (CRC Press, 2017). https://doi.org/10.4324/b12113

  90. H. Bevrani, Robust Power System Frequency Control (Power Electronics and Power Systems) (Springer, New York, 2009)

    MATH  Google Scholar 

  91. A. Moradzadeh, K. Pourhossein, B. Mohammadi-Ivatloo, F. Mohammadi, Locating inter-turn faults in transformer windings using isometric feature mapping of frequency response traces. IEEE Trans. Ind. Informat., 17, 1–1 (2020). https://doi.org/10.1109/tii.2020.3016966

  92. Z.A. Obaid, L.M. Cipcigan, L. Abrahim, M.T. Muhssin, Frequency control of future power systems: Reviewing and evaluating challenges and new control methods. J. Mod. Power Syst. Clean Energy 7(1), 9–25 (2019). https://doi.org/10.1007/s40565-018-0441-1

    Article  Google Scholar 

  93. F. Teng, Y. Mu, H. Jia, J. Wu, P. Zeng, G. Strbac, Challenges of primary frequency control and benefits of primary frequency response support from electric vehicles. Energy Procedia 88, 985–990 (2016). https://doi.org/10.1016/j.egypro.2016.06.123

    Article  Google Scholar 

  94. M.J. Bryant, R. Ghanbari, M. Jalili, P. Sokolowski, L. Meegahapola, Frequency Control Challenges in Power Systems with High Renewable Power Generation: An Australian Perspective, RMIT University (2019)

    Google Scholar 

  95. H.T. Nguyen, G. Yang, A.H. Nielsen, P.H. Jensen, Challenges and research opportunities of frequency control in low inertia systems, in E3S Web of Conferences, vol. 115, (2019). https://doi.org/10.1051/e3sconf/201911502001

    Chapter  Google Scholar 

  96. P.W. Sauer, Reactive power and voltage control issues in electric power systems, in Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems, ed. by J. H. Chow, F. F. Wu, J. Momoh, (Springer, Boston, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ardeshiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ardeshiri, A., Lotfi, A., Behkam, R., Moradzadeh, A., Barzkar, A. (2021). Introduction and Literature Review of Power System Challenges and Issues. In: Nazari-Heris, M., Asadi, S., Mohammadi-Ivatloo, B., Abdar, M., Jebelli, H., Sadat-Mohammadi, M. (eds) Application of Machine Learning and Deep Learning Methods to Power System Problems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-77696-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77696-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77695-4

  • Online ISBN: 978-3-030-77696-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics